
Stochastic Local Search Methods
for Highly Constrained

Combinatorial Optimisation Problems

Graph Colouring, Generalisations, and Applications

Dissertationsschrift

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

von
Dipl.-Ing. Marco Chiarandini

aus Udine, Italien

Referent: Prof. Dr. Wolfgang Bibel
Korreferent: Dr. habil. Thomas Stützle

Tag der Einreichung: 6. Mai 2005
Tag der mündlichen Prüfung: 8. Juli 2005

Genehmigte Dissertation vom Fachbereich Informatik
Darmstadt 2005 – Hochschulkennziffer D17

This thesis is about advances in the application of Stochastic Local Search methods
for solving graph colouring problems and highly constrained combinatorial

optimisation problems that arise from real world systems.

Zusammenfassung

Das Graphenfärbeproblem besteht darin, die Knoten eines Graphen so zu färben, dass
keine zwei durch eine Kante verbundenen Knoten die gleiche Farbe erhalten. Zusam-
men mit Verallgemeinerungen dieser Problemstellung taucht es als Kern vieler Prob-
leme des täglichen Lebens wie der Frequenzzuweisung in Mobilfunknetzen oder bei der
Erstellung eines Stundenplans für Vorlesungen an einer Universität auf. Ihre einfache
Formulierung als Graphenfärbungsprobleme erlaubt eine systematische Untersuchung
durch Reduktion auf den harten Kern dieser Probleme. All diese Probleme sind kombi-
natorische Optimierungsprobleme, die durch eine Reihe von Bedingungen an Lösungen
und durch ein Optimierungskriterium charakterisiert werden.

Die Lösung komplexer Graphenfärbeprobleme kann in effizienter Weise durch Meth-
oden der stochastisch lokalen Suche (SLS) erfolgen. Abstrakt gesehen bestehen viele
SLS-Methoden aus mehreren Komponenten, nämlich einem Konstruktionsalgorithmus,
einem iterativen Verbesserungsalgorithmus und einer Metakomponente, genannt Meta-
heuristik, die die beiden ersteren Komponenten steuert. Diese ersten beiden Komponen-
ten sind stark problemabhängig und erfordern das Ausnutzen problemspezifischer Ken-
ntnisse, während die Metaheuristik allgemeiner gehalten ist. Konkrete SLS-Algorithmen
enstehen durch die Kombination verschiedener konkreter Komponenten, die wiederum
jeweils weiter parametrisiert werden können. Die Konfiguration konkreter SLS-Algorith-
men als Auswahl konkreter Komponenten und deren Parametrisierung ist eine kom-
plexe Aufgabe, weil viele verschiedene Variationen konkreter Komponenten mit vie-
len Parametern und dementsprechend viele Kombinationen denkbar sind. Die Konfig-
urationsaufgabe muss auf empirischen Tests beruhen, da theoretische Erkenntnisse in
diesem Kontext schwer und nur grob zu erhalten sind. Der ganze Prozeß von Design,
Entwicklung und Konfiguration von SLS-Methoden und Algorithmen kann tatsächlich
als ein Ingenieursprozess mit dem Ziel der systematischen Implementierung von SLS-
Algorithmen aufgefasst werden.

Der Ausgangspunkt dieser Arbeit ist die Definition statistischer Verfahren für die
Analyse von SLS-Algorithmen und allgemeiner von beliebigen stochastischen Opti-
mierungsalgorithmen. Es wird gezeigt, dass die Annahmen bei der Anwendung para-
metrischer statistischer Tests oft verletzt sind, und dass deshalb oft zwei alternative
Methoden, sogenannte Permutationstests und rangbasierte Tests, verwendet werden
müssen. Im Rahmen dieser Dissertation werden Permutationstests weiterentwickelt und
als weitere Möglichkeit zur Analyse von stochastischen Optimierungsalgorithmen einge-
führt. Darüberhinaus wird aus der parametrischen Statistik eine graphische Darstellung
der Resultate durch simultane Konfidenzintervalle übernommen und hier für nichtpa-
rametrische Testverfahren adaptiert. Der Vorteil dieser graphischen Darstellung ist die
Vereinigung von Informationen der beschreibenden mit denen der schließenden Statis-
tik in einer einzigen Graphik.

Die entwickelten statistischen Methoden werden beispielhaft zur Analyse von SLS–

v

Algorithmen für das Graphenfärbungsproblem und das Mengen–T-Färbungsproblem,
einer wichtigen Verallgemeinerung des Graphenfärbungsproblems, angewendet. Ver-
schiedene SLS-Algorithmen sind in der Literatur zur Lösung des Graphenfärbungs-
problems vorgeschlagen worden, aber ein unvoreingenommener, systematischer Vergle-
ich zwischen diesen wurde bisher nicht unternommen. Eine ähnliche Situation gilt für
das Mengen-T-Färbungsproblem. In beiden Fällen werden im Rahmen dieser Disserta-
tion sowohl die bekanntesten Algorithmen reimplementiert als auch neue Algorithmen
entwickelt und anschließend mittels eines strikten experimentellen Designs verglichen.
Dadurch können Hinweise darauf erhalten werden, welches die besten Lösungsansätze
zur Lösung der zwei betrachteten Probleme sind und welches der beste Algorithmus in
Abhängigkeit von bestimmen Charakteristiken der konkreten Instanzen ist.

In einem letzten Schritt wird untersucht, wie verschiedene allgemeine SLS-Methoden
zur Lösung einer Universitätsvorlesungsplanung (engl. course timetabling) angewendet
und kombiniert werden können. Das Design von Komponenten für abgeleitete Algorith-
men beruht einerseits auf Einsichten, die für die beiden Färbungsprobleme gewonnen
wurden, und andererseits auf Anforderungen eines Algorithmenwettbewerbs, in dessen
Rahmen die Algorithmen entwickelt wurden. Aus diesem Grunde wird ein spezieller
Focus auf die systematische Entwicklung eines Algorithmus gelegt. Die Entwicklung von
Algorithmuskomponenten und die Kombination zu einem kontreten SLS–Algorithmus
wird als ein ingenieurmäßiger Prozess dargestellt, der aus der Wechselwirkung von
Algorithmusdesign und experimentellen Tests besteht. Dieses Verfahren wird als ange-
messen für die Anwendung von beliebigen SLS-Methoden auf komplexe Probleme aus
der realen Welt erachtet und begründet.

Die Hauptergebnisse dieser Dissertation sind die folgenden:

1. Beim Graphenfärbungsproblem bleibt die einfache Tabu–Suche mit einer Einer-
austauschnachbarschaft ein sehr konkurrenzfähiger Ansatz; die Anwendung einer
sehr großen Nachbarschaft ist nicht nutzbringend.

2. Beim Mengen–T–Färbungsproblem gibt es zwei gute Algorithmen, die auf der Ein-
eraustauschnachbarschaft beruhen und jeweils auf einzelnen Instanzklassen die
besten Algorithmen sind: ein adaptiver, iterativer greedy-Algorithmus für Graphen
und ein Tabu–Suchalgorithmus, der durch eine eingeschränkte, exakte Zuweisung
von Farben an Knoten erweitert wurde. Diese zwei Algorithmen können auch
kombiniert werden.

3. Der Einsatz eines ingenieurmäßigen Prozesses zur Entwicklung von Algorithmen,
der auf sequentiellem Tests beruhen, ist besonders geeignet für die erfolgreiche
Anwendung von SLS-Methoden. Der Einsatz eines solchen Prozesses hat die En-
twicklung eines Algorithmus für die Universitätsvorlesungsplanung erleichtert,
der bei einem internationalen Wettbewerb unter 24 eingereichten Lösungen der
beste war.

vi

Summary

Graph colouring is a combinatorial optimisation problem consisting in colouring the
vertices of a graph such that no vertices connected by an edge receive the same colour.
The minimal number of colours for which such a colouring exists is an intrinsic property
of the graph and is called chromatic number. Many real life situations, such as the
frequency assignment in mobile networks or the scheduling of courses at a university,
can be modelled in this way. Colouring planar graphs, such as maps can be easy, and
four colours suffice, but real life systems are much more complex. When modelled by
graph colouring, they entail general graphs of large size and include more sophisticated
constraints than those representable by simple unweighted edges.

Stochastic Local Search (SLS) methods are approximate techniques for efficiently solv-
ing complex combinatorial optimisation problems. They typically consist of construc-
tion algorithms, iterative improvement algorithms, and meta-components, better known
as metaheuristics. The first two are strongly problem dependent and require the ex-
ploitation of problem-specific knowledge, while the last are more general concepts to
guide the first two components. The instantiation of SLS algorithms arises from the
combination of concrete algorithmic components. The task of combining these concrete
components in an effective algorithm is complex due to their many possible combi-
nations and the need of determining a certain number of parameters. This task must
necessarily rely on empirical tests and the whole process of designing, developing, and
configuring an SLS algorithm is actually an engineering process.

The starting point of this work is the definition of the statistical methods that are
appropriate for the analysis of stochastic algorithms for optimisation. We argue that the
assumptions for the application of parametric statistical tests are often violated and opt
for two alternative methods: permutation and rank-based tests. Our work contributes
to the development of permutation tests and to their introduction into the analysis of
algorithms for optimisation. Moreover, we transfer a graphical representation of results
through simultaneous confidence intervals from the parametric to the non-parametric
cases. This representation has the advantage of conveying in one single graph both
descriptive and inferential statistics.

The developed statistical methods serve for the analysis of SLS algorithms on the
graph colouring problem and one of its many possible generalisations, the set T-colour-
ing problem. Several SLS algorithms have been proposed in the literature for the graph
colouring problem but no “unbiased” comparison has been attempted. A similar situ-
ation holds for the set T-colouring problem. In both cases, we design new algorithms,
re-implement the most prominent methods, and finally compare them in a rigorous ex-
perimental analysis. We gain indications on which are the best solution approaches for
these problems and which are the best algorithms in relation to some characteristics of
the instances.

As the final step, we study SLS algorithms for solving a university course timetabling

vii

problem. The design of algorithm components stems from the knowledge gained on the
graph colouring problems but the assemblage and configuration of these components is
carried out with a systematic methodology. The focus in this context was on the selection
of one single algorithm to submit to an algorithm competition on the same considered
problem. The methodology is presented as an engineering process characterised by the
interaction of SLS components design and empirical tests. We deem that this method-
ological approach is appropriate for the application of SLS methods to complex real life
problems.

The main results are the following:

1. on the graph colouring problem, the simple Tabu Search with one-exchange neigh-
bourhood remains a very competitive approach and the use of a very large scale
neighbourhood is not profitable;

2. on the set T-colouring problem, the best overall algorithm is an Adaptive Iter-
ated Greedy also based on Tabu Search with one-exchange neighbourhood which,
under certain circumstances, can be further improved by a restricted exact reas-
signment of colours;

3. the use of an engineering methodology based on sequential testing is particularly
suitable for the application of SLS methods, as it led us to devise the algorithm
whose solutions for course timetabling ranked the best out of 24 feasible submis-
sions at the International Timetabling Competition held in 2003.

viii

Acknowledgements

This work was financially supported by the “Metaheuristics Network”, a Research Train-
ing Network funded by the Improving Human Potential programme of the Commission
of the European Community. I also acknowledge support by the Frankfurt Center for
Scientific Computing for providing access to their computer cluster where part of the
experiments described in the thesis where run.

I express deep gratitude to Dr. habil. T. Stützle for his supervision. His advice, sup-
ported by the expertise in any gory detail of the Stochastic Local Search techniques
guided me from the very beginning of my research activity and his invaluable com-
ments contributed to improve considerably this work of mine. I am convinced that the
impressive availability that he always showed to everybody of our research group is a
rare gift for those willing to learn. Besides him, I express gratitude to Prof. Dr. W. Bibel
for comments on drafts of this thesis and for leading an excellent and heterogeneous
research group, though, I regret not to have taken the chance to learn more about the
deductive approach of Intellectics. I am also grateful to Prof. A. Schaerf who first su-
pervised me on timetabling problems and local search techniques during my Master’s
thesis and introduced me to the Metaheuristic Network.

I am deeply indebted for patience and generosity in the transmission of knowledge
with all the colleagues with whom I shared the office in these three years and a half of
research: Luis Paquete, in particular for bringing to my attention the permutation tests
and inspiring the whole research thereafter, Tommaso Schiavinotto, for solving every
practical problem that I brought to his attention, and Dr. Marco Pranzo, for increasing
my interest on the problems of Operations Research.

A person who definitely showed me the pleasure and the goals of doing research is
Dr. Mauro Birattari. The discussions I had with him during his stay at the Intellectics
group at the beginning of my research career influenced and inspired my whole activity
thereafter. His reasoning is present throughout all the pages of this work. I owe a lot
also to Dr. Irina Dumitrescu with whom I carried out part of the research on the graph
colouring problem. Above all, I tried to grasp from her the preciseness and rigour of the
mathematical formalism.

I am also grateful to Prof. Carlos Fonseca for providing me the code to compute the
empirical attainment function and to Dario Basso for his consultancy on all the issues
concerned with Statistics reported in this work.

A special thank goes to the scientists who, besides Thomas, coordinated the activities
of the Metaheuristic Network: Prof. Marco Dorigo, Prof. Ben Paetcher, and Prof. Luca
M. Garmbardella, and to all young scientists, Dr. Monaldo Mastrolilli, Leonora Bianchi,
Max Manfrin, Dr. Olivia Rossi-Doria, Krzysztof Socha, with whom I had the pleasure to
work.

My thanks goes also to all the other members of the Intellectics group: Dr. Matthijs
den Besten, Dr. Gunter Grieser, Dr. Hesham Khalil, Dr. Peter Grigoriev, Dr. Ulirch Scholz,

ix

Maria Tiedmann, Dr. Klaus Varrentrapp, and Dr. Sergey Yevtuschenko. A perfect group
that made my stay at the Intellectics Group specially comfortable.

On a more personal basis I wish to express my sincerest gratitude to all the people met
in Darmstadt with whom I felt the rare relief of talking to a friend: Alessandro Ercoli,
Mariana Forberg, Giuseppe Galluzzo, Cinzia Pagliuca, Alice Rosini, Hamid Soleymani,
and Emanuela Trifan. A similar debt I owe to my flat-mates Thomas Roth, Thomas
Khüner and Denise Denter and to Denis Dusso.

Still the first as the ultimate, unfailing love and support over the years was provided
by my family. To them, my parents and my grandmother goes my warmest thanks.

M. C.
7th July 2005

Ah não ser eu toda a gente e toda a parte!
Ode triunfal, Fernando Pessoa

x

Contents

Summary vii

Acknowledgements ix

1. Introduction 1

1.1. Large scale optimisation . 1
1.2. Motivations and objectives . 4
1.3. Scientific publications in connection with this thesis 8
1.4. Organisation of the thesis . 10

2. Stochastic Local Search Methods for Combinatorial Optimisation 13

2.1. Combinatorial Optimisation Problems . 13
2.2. Computational complexity and solution approaches 14
2.3. Exact solution methods . 17

2.3.1. Mathematical programming approach 17
2.3.2. Network Flow and Dynamic Programming 18
2.3.3. Search approach . 19

2.4. Stochastic local search methods . 21
2.4.1. Construction heuristics . 23
2.4.2. Iterative improvement . 23
2.4.3. Metaheuristics . 26
2.4.4. Hybrid methods . 34
2.4.5. Theoretical remarks . 36

2.5. Discussion . 37

3. Statistical Methods for the Analysis of Stochastic Optimisers 41

3.1. Introduction . 41
3.2. The need for the empirical approach . 42
3.3. Application scenarios . 43
3.4. Performance measurement . 45
3.5. Statistical analysis . 46
3.6. Design and analysis of experiments . 48

3.6.1. Experimental design . 48
3.6.2. Statistical tests . 52
3.6.3. All-pairwise comparisons . 54
3.6.4. Design A: Several runs on one single instance 55
3.6.5. Design B: One single run on various instances 60
3.6.6. Design C: Several runs on various instances 63
3.6.7. Remarks . 68

xi

3.7. Sequential analysis . 72
3.8. Time dependent analysis . 74

3.8.1. Unified representation of time and quality performance 75
3.8.2. Qualified run time distributions . 79

3.9. Landscape analysis . 82
3.10. Discussion . 88

4. Graph Colouring 91

4.1. Introduction . 91
4.2. Formal definition of the problem and notation 92
4.3. Known theoretical results, complexity, and approximations 94
4.4. Benchmark instances and applications . 96
4.5. Graph reduction . 99
4.6. Exact methods . 100
4.7. Construction heuristics . 103
4.8. Iterative Improvement for graph colouring 108

4.8.1. Neighbourhood structure . 110
4.8.2. Neighbourhood examination . 113

4.9. Analysis of neighbourhood structures for local search 115
4.9.1. Analytical results . 115
4.9.2. Computational analysis on small size graphs 116
4.9.3. Neighbourhood examination and heuristic rules for its speed-up . 118

4.10. Stochastic Local Search algorithms . 124
4.10.1. Solving a sequence of k colouring problems 125
4.10.2. Varying the number of used colours 131
4.10.3. Extending partial colourings: a semi-exhaustive approach 132
4.10.4. Implementation Details . 136

4.11. Experimental analysis on benchmark instances 136
4.12. Further analyses . 145

4.12.1. On the time dependent profile . 145
4.12.2. On the Tabu Search in the very large scale neighbourhood 147
4.12.3. On the Tabu Search in the one-exchange neighbourhood 149

4.13. Experimental analysis on a large set of random graphs 150
4.14. Discussion . 164

5. Graph Colouring Generalisations 167

5.1. Introduction . 167
5.2. Formal definitions . 168

5.2.1. Precolouring Extension . 168
5.2.2. List Colouring . 169
5.2.3. T-Colouring . 169
5.2.4. List T-Colouring . 171
5.2.5. Set T-Colouring . 172
5.2.6. Related problems . 173
5.2.7. Known theoretical results . 173
5.2.8. Problem transformations . 174

5.3. State of the art and motivations . 175

xii

5.4. Benchmark instances . 176
5.5. Algorithms for the Precolouring Extension Problem 177

5.5.1. Two solution approaches . 178
5.5.2. Experimental analysis . 178

5.6. Algorithms for the Set T-Colouring Problem 180
5.6.1. Graph reduction . 180
5.6.2. Exhaustive search . 181
5.6.3. Lower bounds for the minimal span 182
5.6.4. Construction heuristics . 185
5.6.5. Iterative Improvement . 191
5.6.6. Stochastic Local Search algorithms 197
5.6.7. Experimental Analysis . 200

5.7. Discussion . 211

6. Course Timetabling 215

6.1. Introduction . 215
6.2. Methods for timetabling: the state of the art 217
6.3. The definition of the problem . 220
6.4. Timetabling and graph colouring formalism 223
6.5. An engineering methodology for SLS methods 226

6.5.1. The methodology . 227
6.5.2. Design of SLS algorithms in the UCTP-C case 229
6.5.3. The racing algorithm for the experimental analysis 231
6.5.4. General indications from the race 232

6.6. An effective algorithm for course timetabling 234
6.6.1. High level procedure . 235
6.6.2. Data management . 235
6.6.3. The assignment representation . 236
6.6.4. Construction heuristics . 237
6.6.5. Iterative Improvement . 238
6.6.6. Hard constraint solver . 241
6.6.7. Soft constraint optimiser . 242

6.7. Analysis of the algorithm . 244
6.7.1. Benchmark comparisons . 244
6.7.2. Contribution of algorithm components 246
6.7.3. Qualified run time distributions . 249
6.7.4. Landscape Analysis . 251
6.7.5. Further analyses . 255

6.8. General guidelines for the application of SLS methods 257
6.9. Discussion . 260

7. Conclusions 263

7.1. Main themes of this thesis . 263
7.2. Contributions and results . 264
7.3. Open issues . 268

7.3.1. Experimental methodology . 269
7.3.2. A library of basic SLS components 270

xiii

7.3.3. The algorithmic context . 270

A. A Formal Study on Iterative Improvement for Graph Colouring 273

A.1. The conditions of local optimality . 273
A.2. Dominance relations between local searches 277
A.3. Summary of results and discussion . 285

B. On the Behaviour of the Statistical Tests 287

B.1. Implementation details . 288
B.2. A simulation study for general hypothesis testing 289

B.2.1. Comparison of Type I Error Rates 289
B.2.2. Comparison of powers . 292

B.3. A simulation study for all-pairwise comparisons 293
B.3.1. Family-wise type I error rate . 296
B.3.2. Comparison of power . 297

B.4. Discussion . 298

C. Numerical Results on the Benchmark Instances for Graph Colouring Problems 301

C.1. Graph colouring . 301
C.1.1. Instance statistics . 301
C.1.2. The parameter set used for XRLF . 304
C.1.3. Machine benchmark . 304
C.1.4. Detailed results . 305

C.2. Set T-colouring . 307
C.2.1. Instance statistics and computation times 307
C.2.2. Validation of our re-implementation of tabu search 307
C.2.3. Detailed results . 309

References 311

xiv

“Damit Denken nicht in “Metaphysik” bzw. in leeres Gerede ausarte, ist nur
notwendig, daß genügend viele Sätze des Begriffssystems mit Sinnenerlebnissen hin-
reichend sicher verbunden seien und daß das Begriffssystem im Hinblick auf seine
Aufgabe, das sinnlich Erlebte zu ordnen und übersehbar zu machen, möglichste Ein-
heitlichkeit und Sparsamkeit zeige.”

A. Einstein. Mein Weltbild. 1934. Herausgegeben von Carl Seeling.

Chapter 1.

Introduction

In which we give evidence for the importance of combinatorial optimisation in the real
world and point out what still has to be done for advancing the practice of applying

Stochastic Local Search as effective solution method.

1.1. Large scale optimisation

Technology is offering new chances to improve human potential but at the same time it
unveils new complex challenges. Logistic systems, transportation, industrial production,
energy provision, communication means, administration, economic systems, marketing
strategies, and investment planning are all examples where the need arises for a rational
use of resources. In all cases, resources are scarce, and their use must be optimised in or-
der to pursue a sustainable development, by controlling the impact on the environment,
reducing differences in the access to technology, and finally ameliorating our conditions
of life.

The optimisation of real world systems is, however, a hard task due to the dimension
of these systems and to the presence of many complex constraints that must be satisfied.
It becomes really feasible only with the advent of computers. Many of these real world
systems can be formalised as combinatorial optimisation problems and consist in find-
ing an assignment of discrete values to variables such that the solution is optimal with
respect to some criteria. Typically, these problems are relatively easy to state but very
hard to solve. In Computer Science, this concept is captured by the theory of computa-
tional complexity and the hardness of many such problems corresponds to the fact that
they are NP-hard. Because of this inherent difficulty, a large number of solution tech-
niques for solving combinatorial optimisation problems has been proposed in different
scientific fields such as Discrete Mathematics, Operations Research, and Artificial Intel-
ligence. Often, the evaluation of these techniques through experimental investigations
requires the application of Statistics for a correct analysis of experimental results. As a
consequence, combinatorial optimisation is not clearly classifiable as one precise science
but it can rather be characterised as being an interdisciplinary discipline.

The focus of this work is on three classes of combinatorial optimisation problems,
namely graph colouring, some generalisations of graph colouring, and timetabling. Besides
the presence of an optimisation criterion, they share the common features of having

2 Introduction

many constraints which must be rigidly satisfied by a solution. Graph colouring is a
central problem in graph theory. It consists in finding an assignment of colours to ver-
tices of a graph in such a way that no adjacent vertices receive the same colour. In two
of its many possible generalisations, defined as pre-colouring extension and set T-col-
ouring problems, a part of the graph is already coloured or specific separations must be
satisfied between colours assigned to adjacent vertices. These problems are an abstrac-
tion of many real world problems, where less important details are removed and the
essence of the problem type is captured. Such abstract problems allow techniques and
analyses to be more general and, thus, be more adaptable as the underlying application
details changes.

Practical applications that can be modelled as graphs colouring problems are all cases
where the assignment of variables is “constrained” in a specific way by the assignments
of some other related variables. Examples are scheduling problems, which involve re-
strictions in processing two jobs at the same time; register allocation during the exe-
cution of a computer program, where constraints capture the fact that some variables
cannot be assigned to the same register; or the management of air traffic flow, where
the goal is optimising the capacity of the airspace while satisfying vertical separations
between intersecting flight routes.

Besides these, an important field of application for graph colouring is the assignment
of channels in telecommunications. Graph colouring in its simplest formulation can be
used to solve subproblems of a more complex network design. Examples have been
presented in the assignment of light wavelengths in transparent optical networks. More
commonly, however, the assignment of frequencies involves some other constraints that
complicate the problem. These constraints can be modelled by the generalisations of
graph colouring problems into set colouring problems, T-colouring problems and sim-
ilar ones. This allows to formalise, and solve, for example, the assignment of several
frequencies to each cell of a mobile network by satisfying constraints of minimal inter-
ference between adjacent cells.

Finally, graph colouring is at the core of all typologies of timetabling. In all such appli-
cations, a recurrent constraint is that events that share resources cannot be scheduled in
the same time period. As an example, in university course timetabling, courses that are
taught by the same professor or are attended by the same students cannot be scheduled
in the same timeslot. Timetabling problems arise in many contexts besides university.
Examples are railways timetabling, employee shifts timetabling, aircraft scheduling, and
sport timetabling. They comprise peculiar constraints and a universal method for solv-
ing all of them is hardly feasible.

The techniques available for solving these combinatorial optimisation problems fall
into two main classes: exact and approximate. Whereas the former can prove the opti-
mality of the solutions found when given enough time, the latter cannot but typically
provides better solutions for short computation times. Typically, exact methods are lim-
ited to very small problems and are not practicable for large scale real world systems.
The need then arises to circumvent these limitations by accepting solutions of not prov-
able quality. Approximate heuristic methods are the best answer to this need. They are
particularly appealing because of their flexibility, easiness of implementation, and ca-
pability of attaining satisfactory performance on many kinds of optimisation problems
even of large dimensions and with several constraints. Important journal publications

1.1 Large scale optimisation 3

in the field of Operations Research (European Journal of Operational Research, Journal
of Scheduling, Journal of Heuristics, Management Science, INFORMS Journal of Com-
puting) clearly indicate that these methods are appealing and successful for practical
problems. The focus of this thesis is on the application of these methods, specifically
stochastic local search methods, for the solution of the three problems mentioned above.

Stochastic local search (SLS) methods are heuristic methods for combinatorial
optimisation problems developed in Operations Research and Artificial In-
telligence. The process of searching proceeds by trial and error. It consists in
iteratively examining sequences of close solutions of known value and taking
the best of these sequences. This process is an informed search process as it
exploits problem-specific knowledge. Nevertheless, the kind of information
used is local, in the sense that the alternatives which are examined are not
recorded at each point during the search and the search is not systematic.
Finally, the search process is stochastic because it is based on probabilistic
decisions. Random decision are introduced whenever it is unknown which
deterministic rules would allow to reach good solutions for all the problem
instances of interest.

SLS methods are obtained by assembling different components. We will dis-
tinguish three main components: construction heuristics, iterative improve-
ment, and metaheuristics.

SLS methods are currently recognised as state-of-the-art methods for many combi-
natorial problems, as they are efficient in yielding high-quality solutions in relatively
short time and they are easily adaptable to different problems. Their use in the field
of Operations Research is now well established. Nevertheless, in the last 20 years sev-
eral variants of these techniques appeared in scientific publications spreading confusion
about their use. As a consequence, in recent years, we assisted an arising consciousness
about the need of classifying these techniques under common frameworks and defining
a theory of practice for their application. While the first task appears now being accom-
plished with important publications such as the book of Hoos and Stützle (2004) or the
framework by Di Gaspero and Schaerf (2003a), the second remains still unclear.

Our point of view in this thesis is that design, development, and evaluation, are part
of a unique algorithm engineering process for the application of SLS methods. Chiefly
important in this process is the use of experiments and appropriate tools for the anal-
ysis to lead to correct decisions in the design and implementation of high-performing
algorithms. As in science, the final goal is to “order and make predictable the real
world through a system of concepts with highest unity and parsimony”1; thus, in al-
gorithm engineering, the goal is developing optimisation algorithms that are effective
and efficient, and use only indispensable components. The definition and adoption of a
systematic methodological procedure is necessary to achieve this goal.

1The passage, quoted from Einstein “Mein Weltbild”, 1934, is a free English translation of the author. The
original version is reported at page xv of this thesis.

4 Introduction

1.2. Motivations and objectives

According to the philosopher Popper (1963), a young scientist who hopes to make dis-
coveries in science should “try to learn what people are discussing nowadays in science;
find out where difficulties arise, and take an interest in disagreements; these are the
questions he should take up.” In other terms, the problem situation of the day should
be studied and the line of inquiry, which is based on the background of the field, con-
tinued. What has already been done serves as a system to which we refer. We use it
by checking it over, and by criticising it. In this way, science makes progress and in this
way we hope to advance the application of SLS methods.

SLS algorithms have behind a considerable body of literature in Operations Research,
Artificial Intelligence and Mathematics (Papadimitriou and Steiglitz, 1982; Aarts and
Lenstra, 1997; Glover and Kochenberger, 2002; Russell and Norvig, 2003; Hoos and Stüt-
zle, 2004). Many different methods and small variants thereof have been proposed. In
more recent years the space for seminal ideas has drastically decreased and the inter-
est has shifted towards the organisation, refinement and selection of existing methods.
As scientists in this field, our interest is in understanding, articulating, and extending
the paradigm underlying these algorithms that already exist and in deriving a theory
of practice for their implementation. Despite some attempts through landscape analy-
ses and theoretical insights on the convergence of the algorithms, many issues on these
algorithms remain open. While an answer to these issues through theoretical proofs
remains very hard, new consciousness arose that the experimental method can provide
satisfactory answers. Our interest is in determining whether these methods, as they
have been applied so far, yield the best ever possible performance or if margins still
exist for improvements. Most important, we would like to clearly map SLS methods to
optimisation problems, that is, having a problem and specifications on its instances, we
would like to find in the literature (or more likely in the Internet) a clear answer about
which algorithm is worth to be re-implemented as it has been shown to perform the best
among many others. A similar map could be worth also for the components underlying
SLS methods, such as, construction heuristics, neighbourhood structures, local search
procedures, number of solutions maintained, the interaction between these solutions,
etc. Whenever a pratictioner would face the same problem, or a similar one, he could
consult these results and adopt the correct method.

The Metaheuristic Network, a Research Training Network within the Improving Hu-
man Potential Programme of the European Commission, which involved five research
groups and two companies and within whose framework the author of this thesis car-
ried out his research, had as initial goals answering in part these issues. However, it
became clear with the time that trying to extrapolate basic principles for each SLS com-
ponent, in particular for the high level general purpose metaheuristics, independently
from the other components of an SLS method was leading to conclusions of rather weak
practical relevance. It emerged instead that matching the problem details and using the
synergetic properties of SLS components was by a large order of magnitude more im-
portant than the impact of high levels metaheuristic components. New awareness arose
that the success of an application of SLS methods is the outcome of an engineering pro-
cess with experimental analysis in its central place, in which all components and their
combinations must receive attention.

1.2 Motivations and objectives 5

Unfortunately, the fact that the assessment of stochastic optimisation algorithms is a
possible field for applied statistics, with significant problematic issues to be solved, has
been so far partially neglected. There is definitely a need for understanding which tools
of statistics are appropriate in the context of SLS analysis and which could alleviate the
task to SLS practitioners. In fact, not one single tool is needed but rather a set of tools
for accomplishing different tasks such as comparisons, predictions, scalability studies,
combined analysis of multiple criteria, search landscape analyses, and classifications of
algorithms. This necessity is caught by some important conferences, like the Interna-
tional Workshop on Efficient and Experimental Algorithms, books, like those of Cohen
(1995) and Fleischer et al. (2002), journals like the Journal of Experimental Algorithms,
and many articles (Hooker, 1996, Barr et al., 1995, etc.).

The main contributions of this thesis in the line of research outlined above can be
summarised as follows.

Statistical methodologies for the comparison of algorithms

The practice of using statistical tests for supporting the comparisons between optimisers
is not yet widely established. Several publications state the importance of using such
methods. Nevertheless, a clear definition of the experimental scenarios and the methods
appropriate for the analysis is rarely provided (few important exceptions are Rardin and
Uzsoy (2001); Johnson and McGeoch (2002); Fonseca and Fleming (1996); Birattari et al.
(2002)). Researchers in the field of optimisation are thus left with the duty of searching
through the text-books of statistics for those correct methods.

We intent to rise the concern here that some of the statistical assumptions underlying
the most common methods of analysis are inadequate for the analysis of experimental
designs for comparing optimisation algorithms. In particular, we show that parametric
assumptions are often not appropriate and we give details on alternative non-parametric
methods. We implement permutation tests and compare them with rank-based tests in
different experimental designs for practical cases of the comparison of optimisers and
we show that they can lead to different inferences. We also extend a known visualisa-
tion method based on confidence intervals for reporting the results of the analysis to
recent non-parametric methods. This representation allows for an immediate and easy
perception of significant results.

The methodology thus defined will be used for the evaluation of SLS algorithms for
the three problems of our concern.

Comparison of algorithms for graph colouring problems

Some problems are more important than others because of their generality and the
interest they raised. These problems constitute a core class of problems which often arise
as sub-problems in real-world applications. They do not exhibit too many technicalities
and allow to perform case studies that, besides the outcome for the specific problem,
help to develop a methodology useful also in more complex situations.

We study the classical graph colouring problem, the set T-colouring problem and
dedicate a marginal attention to pre-colouring extensions. Our interest was raised by

6 Introduction

the Graph Colouring Symposium where many issues remained open and attracted the
curiosity of the author. Our aim is the empirical characterisation of the behaviour of effective
approximate algorithms on problem instances where exact methods become infeasible. Similar
analyses have been done on other important problems like, for example, the TSP (John-
son and McGeoch, 2002; Johnson et al., 2002a) or, for search algorithms, on the bipartite
matching problem (Setubal, 1996), and constitute very helpful references for all those
who afterwards have to solve the same, or similar, problems in practice.

These issues are addressed in Chapters 4 and 5 and, the main contributions can, in
some more details, be summarised as follows.

Algorithms for the graph colouring problem. We re-implement and test some of the
SLS algorithms for the GCP for which particularly positive results were reported.
For the same level of performance, preference is given to approaches that are better
known and that require less effort in the implementation. Lower relevance is also
given to algorithms that require the tuning of many parameters, since this may be
a cause for scarce robustness.

In addition to the known algorithms, we design and test new algorithms for the
two problems and adapt metaheuristics like Iterated Local Search, Guided Lo-
cal Search, the Min-Conflicts heuristic, and Adaptive Greedy Search. The choice
of these algorithms is due to the fact that they are currently state-of-the-art on
problems that are very similar to graph colouring such as constraint satisfaction
problems and satisfiability problem in propositional logic.

A concern of main interest is understanding whether the whole potential of stochas-
tic local search methods has been exploited for the graph colouring problem. To
this end, we devote particular attention to the examination of neighbourhoods
structures which are at the core of every SLS algorithm. Complex neighbourhood
structures boosted the performance of local search algorithms on problems like
the travelling salesman problem or the set partitioning problem. We try to do the
same on the graph colouring problem comparing the use of small against large
neighbourhoods that can be searched effectively.

Experimental Analysis. The challenge launched in the context of the Graph Colouring
Symposium was partly inconclusive. It was not possible to state clearly which
algorithm was better than others on which class of instances. Above all, the com-
parison of new against old algorithms known from the literature was very hard
due to the use of different experimental settings and the way results are presented.
Our criticism to these comparisons is that they are often (wrongly) based on best
results and on the frequency with which they are attained. Results are often dis-
cussed on the basis of few instances and doubts arise that such results are the
consequence of an over-tuning or simply a matter of chance and, in both cases, not
relevant for practical inference. Moreover, when comparing algorithms described
in different publications, it is very unlikely that all algorithms are considered un-
der the same experimental conditions.

In this thesis, we aim at an “unbiased” comparison, that is, a comparison in which
all algorithms are allowed to use the same computational resources and work
under the same conditions, that is, use the same data structures and equal effort
for tuning. The methods of analysis defined in Chapter 3 are applied for the

1.2 Motivations and objectives 7

inference of statistically correct conclusions and for the graphical representation of
the results.

Most experimental analyses on graph colouring report results on a set of about 120
instances which are the same since over 10 years. We show that many of them are
actually easy and not challenging enough for comparing high-performing approx-
imate algorithms. Moreover, we maintain the analysis of algorithms separated for
classes of problem instances which are recognisable a priori, thus deepening the
understanding of the problem. Besides basing our analysis only on challenging
instances, we also extend our study to a new set of random instances. The large
number of new instances generated allows for the reduction of the variance of the
estimated performance. Moreover, randomly generated graphs also permit to con-
trol some inherent features of the graphs thus allowing study the specialisation of
the algorithms on instance classes.

In addition to the comparison of algorithms, we examine their behaviour over time
trying to understand when it is reasonable to stop them. For some algorithms we
try to understand which are the reasons that make them perform well or poorly
by analytical, detailed profiling, and the recognition of “pathological” cases.

Graph colouring generalisations. A disappointment at the Graph Colouring Sympo-
sium was the scarce interest given to the graph colouring generalisation. The
possible generalisations are manifold. We focus on one in particular: the set T-
colouring problem. This problem has a relevant practical application which is fre-
quency assignment. We unify these two areas which so far have been maintained
separated, transferring and testing ideas published in the two fields.

Comparisons of SLS algorithms for the set T-colouring or for the frequency assign-
ment problem have been even more problematic than in classical graph colouring.
The contribution of a systematic analysis similar to the one developed for the clas-
sical graph colouring appears therefore very timely in this context.

Similar to classical graph colouring, we thoroughly study SLS components, such
as construction heuristics, and neighbourhood structures. Above all, we introduce
a new neighbourhood in the local search which solves sub-problems in an exact
manner. Finally, we compare effective SLS algorithms and study their computa-
tional effort.

The study on the set T-colouring problem serves also to test for basic guidelines in
the application of SLS algorithms to problems with many constraints. In particular,
we intend to make clear, through empirical tests, whether it is more appropriate
to relax constraints or to use them for restricting the search space.

A methodology for the application of SLS algorithms to real-world problems.

When working on real life problems like timetabling the situation is slightly different
from the one in the previous point. Typically, real-world problems have highly specific
constraints linked to the context where they arise and the chance of finding in the lit-
erature a case with the very same characteristics is minimal. The focus then is less on

8 Introduction

specific algorithms but rather on the methodological procedure that lead to the devel-
opment of a highly effective SLS optimiser for the specific application.

We present in this case the successful application of a recently introduced racing
methodology (Birattari et al., 2002) based on sequential testing. The methodological
framework developed at the first point entitles us to adapt a sequential testing procedure
to the different scenarios that may appear in a real application context. Sequential
testing implements a race between algorithms for determining the best algorithms by
running only a small amount of experiments. The reduction of the computational effort
in the testing phase is profitable for two tasks: (i) gathering quickly essential pieces of
information on the best approaches to solve the problem and redirecting the design of
improved algorithms only towards these promising approaches; (ii) inclusion of many
configurations thus allowing for a better tuning. We use the racing methodology in
an interactive procedure for devising the algorithm for the International Timetabling
Competition.

We describe our experience and argue that the application of SLS methods to solve
new complex real life problems necessarily progresses by guesses and by tentative so-
lutions. A precise, fast, and objective testing methodology to compare different ap-
proaches is therefore particularly suitable. In contrast, at least for the case studied here,
other methods of analysis such as analytical studies or landscape analysis failed to pro-
vide any relevant information for the practice.

The application of a systematic methodology allows us to apply to the timetabling
problem several different construction heuristics, local searches, and best known meta-
heuristics, and to severely test them. Besides being profitable for the development of
a good algorithm, this situation offers us the possibility to infer guidelines for future
applications of SLS methods.

1.3. Scientific publications in connection with this thesis

The work described in this thesis is also object of articles or reports that the author, to-
gether with other co-authors, has published, submitted for publication, or are currently
under preparation for submission to journals or conferences.

An extract of the definition of experimental scenarios and statistical methods for the
comparison of the performance of algorithms presented in Chapter 3 is given in

M. Chiarandini, D. Basso, and T. Stützle. (2005). “Statistical methods for the
comparison of stochastic optimizers”. In Proceedings of the Sixth Metaheuristics
International Conference, MIC2005. Vienna, Austria.

An application of these methods for the analysis of algorithm components and for the
comparison of hybrid algorithms in the context of the Vehicle Routing Problem with
Stochastic Demand is described in

L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Pa-
quete, O. Rossi-Doria, and T. Schiavinotto. (2005). “Hybrid Metaheuristics
for the vehicle routing problem with stochastic demand”. Journal of Mathe-
matical Modelling and Algorithms. Accepted for publication.

1.3 Scientific publications in connection with this thesis 9

The interest for graph colouring arose as a consequence of an application of Iterated
Local Search for solving the problem presented at the Graph Colouring Symposium in
2002:

M. Chiarandini and T. Stützle. (2002). “An application of Iterated Local
Search to Graph Coloring”. In Proceedings of the Computational Symposium on
Graph Coloring and its Generalizations, edited by D. S. Johnson, A. Mehrotra,
and M. Trick, pages 112–125, Ithaca, New York, USA.

The study on very large neighbourhoods for Iterative Improvement on graph colouring,
which occupies a large part of Chapter 4 and Appendix A, is based on:

M. Chiarandini, I. Dumitrescu, and T. Stützle. (2003). “Local Search for
the Graph Colouring Problem. A Computational Study”. Technical Report
AIDA–03–01, Fachgebiet Intellektik, Fachbereich Informatik, Technische Uni-
versität Darmstadt.

The study on effective stochastic local search methods for graph colouring will be the
object of a book chapter under preparation:

M. Chiarandini, T. Stützle, and I. Dumitrescu. (2005). “Stochastic Local
Search Algorithms for the Graph Colouring Problem”. In Approximation Al-
gorithms and Metaheuristics, edited by T .F. Gonzalez. Computer & Informa-
tion Science Series, Chapman & Hall/CRC. To appear.

while the analytical results on the local search discussed in Appendix A is planned to
become part of a separate report:

M. Chiarandini, L. Paquete, I. Dumitrescu, and T. Stützle. (2005). “A formal
study on local search for the graph colouring problem”. To be submitted to
Discrete Applied Mathematics.

The whole Chapter 5 on the generalisation of graph colouring is new. Its content will be
collected in an article:

M. Chiarandini and T. Stützle. (2005). “Stochastic local search for graph
colouring generalisations”.

The work on the timetabling described in Chapter 6 is based on a tight collaboration
with other researchers and linked to the activities of the Metaheuristic Network. A
preliminary analysis (not reported in this thesis) of run time distributions for algorithms
that find feasible solutions, on the basis of the general concepts described in Chapter 3,
is reported in

M. Chiarandini and T. Stützle. (2002). “Experimental evaluation of course
timetabling algorithms”. Technical Report AIDA–02–05, Fachgebiet Intellek-
tik, Fachbereich Informatik, Technische Universität Darmstadt.

The attempt to compare basic stochastic local search algorithms that use different meta-
heuristics is described in a joint publication of the members of the Metaheuristics Net-
work:

10 Introduction

O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, M. Dorigo, L. Gam-
bardella, J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and
T. Stützle. (2003). “A comparison of the performance of different meta-
heuristics on the timetabling problem”. In Practice and Theory of Automated
Timetabling IV: Selected Revised Papers, edited by E. Burke and P. Causmaecker,
volume 2740 of Lecture Notes in Computer Science. Springer Verlag, 2003. Ex-
tended abstract available on the Proceedings of PATAT 2002, pages 115-119.

The algorithm that won the International Timetabling Competition is also described in
the two following works:

M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria. (2003) “Inter-
national timetabling competition. A hybrid approach”. Technical Report
AIDA–03–04, Fachgebiet Intellektik, Fachbereich Informatik, Technische Uni-
versität Darmstadt.

M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. (2005) “An
effective hybrid approach for the university course timetabling problem”.
Journal of Scheduling. Accepted for publication.

Finally, the author participated also to the ROADEF 2005 as a member of a team
of young researchers. Object of the competition was a car sequencing problem. The
development methodology and the final algorithm is very similar to the one described
in Chapter 6 for the timetabling case. This experience is reported in

M. Risler, M. Chiarandini, L. Paquete, T. Schiavinotto and T. Stützle. (2004).
“An algorithm for the car sequencing problem of the ROADEF 2005 Chal-
lenge”. Technical Report AIDA–04–06, Fachgebiet Intellektik, Fachbereich
Informatik, Technische Universität Darmstadt.

1.4. Organisation of the thesis

The thesis continues in Chapter 2 with an introduction to combinatorial optimisation
and solution methods. This chapter defines the characteristics of an optimisation prob-
lem and introduces the terminology used throughout this thesis. It provides a com-
prehensive picture of the available algorithmic approaches and places stochastic local
search methods in this context. Here, the components of stochastic local search methods,
construction heuristics, local search, and metaheuristics are described and algorithmic
sketches are provided.

The analytical analysis of stochastic local search algorithms is very hard and the em-
pirical way has been recognised as more suitable for providing results of practical rel-
evance. Chapter 3 is concerned with the analysis of experiments and the methodology
for the comparison of stochastic optimisers. It introduces the statistical concepts needed
and indicates how to use them for the analysis of algorithms.

The graph colouring problem is the object of Chapter 4. The comparison of sev-
eral approximate algorithms is carried out on challenging, large benchmark instances
and newly generated random instances. The presentation proceeds from construction

1.4 Organisation of the thesis 11

heuristics, through iterative improvement algorithms, to the best performing Stochas-
tic Local Search algorithms. The best known algorithms in the literature are described
and re-implemented. In addition, new algorithms like Novelty, Min-Conflict heuristic,
Guided Local Search, are here introduced. In particular, extensive analysis is devoted to
a new very large scale neighbourhood for local search.

In Chapter 5 we extend the results of the previous chapter to graph colouring gener-
alisations. The main focus is on the T-colouring and set T-colouring problems, although
results for pre-colouring extensions are also provided. The chapter follows the same
structure of the previous one by describing and analysing construction heuristics, local
search, and stochastic local search methods. Precise questions are posed on the best
way to approach these problems characterised by the presence of many constraints of
different nature. The questions are then answered by an empirical analysis and the best
performing SLS algorithms are determined.

Chapter 6 is concerned with the application of the methods and methodologies de-
veloped in the previous chapters to a real-world context. The timetabling problem is
strictly related to the graph colouring problem but its complexity, due to the presence
of several side constraints and objective criteria necessarily requires a slightly different
approach than the one followed for the two previous problems. We recognise that the
process for the development of a highly performing algorithm is an engineering pro-
cess. Here we describe in detail the application of a racing methodology as a tool for
helping in this engineering process. The fact that our final algorithm submitted to the
International Timetabling Competition ranked best, demonstrates the usefulness of our
procedure. The algorithm is described in detail and its essential components are anal-
ysed. Finally, guidelines for the application of SLS methods arising from this experience
are presented.

Chapter 7 closes the thesis with a summary of the main contributions and directions
for further research.

The appendices report about additional results. Appendix A contains the formal
analysis of the neighbourhoods structures for graph colouring, Appendix B contains a
simulation analysis for the comparison of the statistical tests presented in Chapter 3,
and Appendix C reports numerical results for cross-checking with other literature on
the graph colouring problem (Chapter 4) and the set T-colouring problem (Chapter 5).

Chapter 2.

Stochastic Local Search Methods for
Combinatorial Optimisation

In which we introduce combinatorial optimisation problems and present the techniques
available to solve them. The focus is on stochastic local search methods.

2.1. Combinatorial Optimisation Problems

A problem is a general question to be answered. It can be completely described by
giving an input, i.e., a general description of the problem parameters, and a question, i.e.,
the statement of what properties the answer, or solution, must satisfy. The specification
of particular values for all problem parameters is an instance of the problem. A search
problem consists of a set of instances I with a set of possible answers S(I) and a finite
set of solutions S(I) ⊆ S(I) for each instance I ∈ I . An algorithm is said to solve a
search problem if it correctly determines that S(I) is empty, or otherwise, it returns
some solution s ∈ S which constitutes a correct answer to the problem. An optimisation
problem is a search problem in which one or more preference criteria are defined to rate
solutions in S(I). It can be formalised as either a minimisation problem or a maximisation
problem and consists of:

• a set of instances I ;

• a finite set of feasible candidate solutions S for each instance I ∈ I , and

• an objective function g that assigns to each candidate solution s ∈ S(I), I ∈ I , a
positive, real number g(I, s) called solution value or objective function value of s.

A combinatorial optimisation problem is an optimisation problem in which candidate
solutions are defined by variables that may only assume integer values. Throughout
this thesis, we assume to deal with minimisation problems unless explicitly specified.
Furthermore, we also use the terms quality of a solution to denote its assessment with
respect to the minimisation criterion, and cost function and solution cost as synonymous
for objective function and solution value, respectively.

In optimisation problems, it is common practice to distinguish general characteris-
tics of the answer, which define the set of candidate solutions S , from constraints, which

14 Stochastic Local Search Methods for Combinatorial Optimisation

restrict the set of candidate solutions to the set of feasible candidate solutions S. The dif-
ference between solution characteristics and constraints may be subtle and may depend
on the way the problem is modelled. We illustrate this difference with the example pro-
vided by the constraint satisfaction problem, a problem at the core of those studied in
this thesis.

The constraint satisfaction problem (CSP) consists of a set of variables X1, X2, . . . , Xn with
a non empty domain D1, D2, . . . , Dn of possible values. A set of constraints C1, C2, . . . , Cm

involves some subset of the variables and specifies the allowable combinations of val-
ues for that subset. The search problem asks to find an assignment {X1 = v1, X2 =
v2, . . . , Xn = vn} of values to variables from their respective domains such that all con-
straints are satisfied. The optimisation problem asks to find, among the assignments
which satisfy all constraints, the ones that are the most desirable according to some
preference criterion.

In the CSP, we may conceive at least three different ways to define the set of candidate
solutions. It may consist of all possible complete assignments of values to the variables
from their respective domains, while the set of feasible candidate solutions being re-
stricted to the assignments that satisfy all the constraints Ci; or it may comprise also
partial assignments in which the values for some variables is still undefined; or it may
be even larger and comprehend also assignments of values to the variables that do not
come from their respective domains, using then the sets of domains at same level as the
constraints for defining the set of feasible candidate solutions. In the rest of the thesis
we refer to a candidate solution as solution, for short.1 We will, however, define for each
problem the solution representation adopted.

The preference criteria are in fact different kind of constraints, which limit the set of
feasible solutions to the set of preferred solutions. In the language of Operations Re-
search, the constraints that specify the set of feasible solutions are called hard constraints
while the constraints that specify the function to minimise are called soft constraints. In
this thesis, we adhere to this terminology and denote the first with H and the second
with Σ.

2.2. Computational complexity and solution approaches

In general, COPs have the characteristic of being very easy to state but very hard to solve.
The concept of hardness of a problem is formalised by the computational complexity
theory and in particular the theory of NP-hardness. Accordingly, search problems
are reduced to decision problems by shifting the interest from finding a solution to
determining whether a solution with given properties exists. Decision problems are
then classified in relation to existing algorithms for solving them. An algorithm can
be characterised by a time complexity function, which indicates, for each possible input
length, the largest amount of time (or steps) needed by the algorithm to solve an instance

1The term is improper because a candidate solution may also be infeasible and hence not be a “solution” of
the problem. Nevertheless, this terminology is commonly adopted in the field of stochastic local search
methods for optimisation. To denote then the real “solution” of the problem the identifier “optimal
solution” is adopted.

2.2 Computational complexity and solution approaches 15

of that size. We say that a function f (n) is O(h(n)) whenever there exist integers c and
N such that | f (n)| ≤ c · |h(n)| for all values of n ≥ N.2 A polynomial time algorithm
is then an algorithm whose time complexity function is O(p(n)) for some polynomial
p. We call any other algorithm, whose time complexity function cannot be bounded
by a polynomial, exponential time algorithm. Decision problems for which polynomial
algorithms exist are called tractable and are grouped in the class P ; those for which
no polynomial time algorithm is known, are referred to as intractable and are grouped
in the class NP . In simple words, supposed intractable problems are so difficult that,
in the worst case, an exponential amount of time is needed to discover a solution. It
is straightforward to show that P ⊆ NP .3 Even though it is widely believed that
P 6= NP , at the time of writing, no proof for this conjecture has been found.4 All
problems in NP can be reduced in polynomial time to a group of problems which
constitute the class of NP-complete problems. Problems in this class are the hardest
problems in NP because showing that one of these problems is tractable would mean
showing that all problems inNP are tractable. Finally, the notion ofNP-hard problems
is used to classify all those problems which are not in NP but problems in NP can be
transformed to them in polynomial time. This more general class of problems comprises,
for example, the search and optimisation variants of the NP-complete problems.

Optimisation problems which are NP-hard may still have important special cases
that are solvable in polynomial time. However, if we are faced with a case that is not
among them, there are two general approaches for solving NP-hard problems.5

A first possibility, even recognising that an algorithm will inevitably require exponen-
tial time, is to try to obtain as much improvement over exhaustive search as possible.
The best known approaches to reduce the search effort are implicit enumeration tech-
niques based on branch and bound, backtracking, and dynamic programming. Other
approaches, that allow to organise effectively the search, are mathematical linear pro-
gramming with the use of cutting planes or Lagrangian techniques. One of these ap-
proaches may be perfectly satisfactory if the actual input size of the instance is small.

A second possibility is to no longer focus on finding an optimal solution and proving

2In this thesis we will use the notation O(·) for the asymptotic worst case behaviour of an algorithm. The
asymptotic mode removes confusing behaviour due to start-up costs. In a similar vein, f (n) = Ω(h(n))
whenever there exist integers c and N such that | f (n)| ≥ c · |h(n)| for all n ≥ N will be used as regard
to an asymptotic best case behaviour.

3The definition of classes P and NP is much more formal in computational complexity theory. Prob-
lems are represented as “languages” and typically the one-tape Turing Machine is used as a model for
computation. The class P is then defined as all languages recognisable deterministically in polynomial
time, while the class NP is defined to consist of all languages recognisable “non-deterministically” in
polynomial time. Non-deterministic algorithms can be imagined as being composed of two stages, a
guessing stage which provides some “structure” and a checking stage which computes deterministically
whether the structure answers the question posed. The non-deterministic algorithm is said to operate
in polynomial time, if the checking stage is accomplished in a polynomially bounded amount of time.

4There is a prize of 1.000.000$ awarded by the Clay Mathematics Institute (CMI) for a correct solution
of the P versus NP problem, while a collection of published and unpublished papers on this issue is
available at http://www.win.tue.nl/~gwoegi/P-versus-NP.htm (November 2004).

5Throughout this thesis we distinguish between approaches, methods (or techniques), and algorithms; in
increasing order of specificity, an approach is a general framework for the development of a solution
algorithm (e.g., exact or approximate solution, mathematical modelling, complete partial candidate so-
lution representation), a technique is an algorithmic procedure or a set of algorithmic procedures for
the solution of a problem (e.g., integer linear programming, construction heuristic, local search), an
algorithm is the final instantiation of a technique for solving a specific problem.

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

16 Stochastic Local Search Methods for Combinatorial Optimisation

its optimality but to try, instead, to find a “good” solution within an acceptable amount
of time. Algorithms that try to do this are loosely termed heuristic algorithms since
they are mainly based on common-sense rules. Heuristic algorithms tend to be rather
problem specific and require to be fine-tuned in order to achieve high performance. For
these reasons, formal analyses are rare and comparisons are done on an empirical basis.

There are, however, heuristic algorithms for which formal results are known. This is
the case of approximation algorithms: they provide a solution to a problem in polynomial
time with a certain performance guarantee. Let A be an approximation algorithm that
returns a candidate solution s when applied to instance I and let A(I) be the solution
value f (I, s). If we denote with OPT(I) the optimal solution value, we can define the
ratio RA(I) as RA(I) = A(I)/OPT(I). The absolute performance ratio RA for an approx-
imation algorithm A is then the largest ratio RA(I) over all possible instances of the
problem. Similarly, the asymptotic performance ratio is the largest ratio RA(I) over all
instances of the problem satisfying OPT(I) ≥ N for some N ∈ Z+.6 There are prob-
lems for which polynomial time algorithms are known which provide a more or less
good performance ratio. There are, however, also problems where formal proofs exist
that, unless P = NP , no polynomial time approximation algorithm can guarantee a
performance ratio below a certain fixed threshold. An example of such a problem is
the graph colouring problem. A polynomial time graph colouring algorithm A with
RA ≤ 4/3 would have to colour any 3-colourable graph with no more than 3 colours
and hence would solve the graph 3-colourability problem in polynomial time. But the
graph 3-colourability problem is an NP-complete problem, thus if P 6= NP , no such
approximation algorithm can exist. We refer to Section 4.3 on page 94 for more results
on the approximability of the graph colouring problem.

As opposed to approximation algorithms, we denote simply as approximate algorithms
those heuristics that return near-optimal solutions in a relatively short time but for
which no formal prove on their performance guarantee has been found so far. The
performance of approximate algorithms is typically described by empirical studies.

The literature on combinatorial optimisation is vast. A reference book in combinato-
rial optimisation, which encompasses methods, problems, and computational complex-
ity, remains the book of Papadimitriou and Steiglitz (1982), although published more
than 20 years ago. Foundations of computational complexity in combinatorial optimi-
sation are given by Garey and Johnson (1979) and Papadimitriou (1994). For a thor-
ough coverage of approximability theory we refer to the books of Vazirani (2001) and of
Ausiello et al. (1999),7 while Hochbaum (1996) collects specialised papers.

6A further refinement in approximability concepts is the definition of polynomial time approximation schemes
in which an approximation algorithm defines a range of approximation algorithms, one for each fixed
value of an accuracy requirement ε > 0. These algorithms take as input an instance I and an accuracy
requirement ε and return a solution such that RA(I) ≤ 1 + ε. Their time complexity function is bounded
by a polynomial in the instance size but, typically, exponential in 1/ε (see Schuurman and Woeginger,
2001 for a publically available tutorial). In practice, the time complexity of such algorithms to obtain
close-to-optimal solutions is often bounded by a polynomial with rather high degree (especially as
ε→ 0 we have that 1/ε→ ∞).

7The book has an updated catalogue available on the Internet of approximability results for NP optimi-
sation problems (Crescenzi and Viggo, 2004)

2.3 Exact solution methods 17

2.3. Exact solution methods

Exact methods guarantee to find an optimal solution and to prove its optimality for ev-
ery finite size instance of a COP within an instance-dependent run time. In the worst
case, their time complexity function is exponential. Within exact methods one can distin-
guish two classes of approaches: general purpose and problem specific ones. In the first
group there are the methods based on mathematical programming in which all prob-
lems are modelled using, for example, a set of linear equations and the resulting linear
system is solved with techniques from linear programming, a branch of Mathematics.
In the second group there are the methods based on the idea of intelligent enumeration
of solutions using problem specific knowledge. The most effective methods within this
class are network flow and dynamic programming but their application is effective only
on a restricted group of well known problems. Search methods, mainly from the field
of Artificial Intelligence, are, instead, more flexible.

2.3.1. Mathematical programming approach

In mathematical programming, a common approach is to formalise an optimisation
problem as a system of linear equations in real variables which is usually written in the
form

min
n
∑

j=1
cjxj

such that
n
∑

j=1
aijxj ≥ bi i = 1, . . . , m and b > 0

xj ≥ 0 j = 1, . . . , n

(2.1)

Linear programming techniques for solving this system are fast and efficient. In addi-
tion, there exists a wide variety of available software and good modelling languages.
Solvers are based on the simplex method combined with the primal-dual algorithm
(which provides upper bounds on the optimal value), or, less frequently, on the inte-
rior point method or the ellipsoid method (this latter having a polynomial worst case
running time). We refer the reader to Carter and Price (2000) for a thorough treatment
of these techniques or to the web-site of the Network Enabled Optimisation System
(NEOS)8 for an interactive demonstration of the simplex method as well as for a com-
prehensive guide to optimisation models, algorithms and software.

Integer Linear Programming (ILP) corresponds to a linear program where the xj vari-
ables of System 2.1 are integer. All problems treated in this thesis can be formalised as
integer linear systems. Also ILP presents convenient modelling possibilities and avail-
able software, but its performance varies: some large instances can be solved easily,
while some other small instances cannot be solved within even a large amount of time.
In ILP, constraints are first pre-processed to identify redundancy, infeasibility and to
tighten the bounds. Then, the ILP system is transformed into its linear programming
relaxation by allowing integer variables to assume real values. Once the problem is in

8Argonne National Laboratory and Northwestern University. “Optimization Technology Center”.
November 2003. http://www.ece.northwestern.edu/OTC/. (November 2004).

http://www.ece.northwestern.edu/OTC/

18 Stochastic Local Search Methods for Combinatorial Optimisation

linear programming form, the basic solution method uses branch and bound strategies to
retrieve the best integer solution. The original problem is split into sub-problems subdi-
viding the solution space according to some branching rules and giving rise to a binary
tree. Sub-problems are solved following some order (depth-first or breadth-first) and
nodes are fathomed (pruned) by considerations on the bounds provided by the solu-
tions of the sub-problems. The procedure ends when a solution with all integer values
has been found and no other node remains to be branched. This algorithm is, then,
strengthened by combining it with other techniques. Lagrangian relaxation simplify the
system by inserting the most “complicated” constraints in the objective function penal-
ising them by some multipliers. Cutting plane algorithms reduce the space of continuous
solutions without loosing integer solutions. To this end, valid constraints that do not ex-
clude integer feasible points are added to the linear inequalities of the problem. Despite
the fact that inequalities are problem specific, there exist standardised procedures which
help to formulate them, like the algebraic method of Gomory. Branch and cut techniques
combine branch and bound and the use of cutting planes. Column generation techniques
are used when the linear programming formulation has a huge number of variables.
In this case the trick is solving the primal and dual of a linear programming model
restricted to a subset of the constraints and to enlarge it afterwards if the solution found
is not optimal for the original problem. The name of the technique derives by the fact
that the linear programming system is restricted to a subset of columns of the matrix
elements aij and columns that have not yet been included are iteratively added. Finally,
branch and price techniques arise from the combination of branch and bound with col-
umn generation. Good branching rules are particularly difficult to devise in branch and
price and are, in general, problem specific. For a full coverage of integer programming
techniques we refer the reader to Wolsey (1998).

2.3.2. Network Flow and Dynamic Programming

Problems that can be represented as flows of commodities in a network can be solved by
fast algorithms that exploit the special structure of the problem itself. Network flow pro-
grams are very fast and can solve enormous problems efficiently. Standard linear pro-
gramming software can recognise some of these classes of problems and adopt proper
algorithms, but also a lot of free software can be found on the Internet. Some of the most
important network flow problems are minimal cost flow, maximal value flow, shortest
path, and matching. Some more complex problems, under certain circumstances, may
be decomposed into some of these basic problems. We will see in Chapter 4 how a fast
algorithm for solving the all-pairs shortest path problem can be used in the context of
approximate algorithms for the graph colouring problem and in Chapter 6 how algo-
rithms for the matching problem can be embedded in more complex algorithms for the
timetabling problem. For a deeper treatment of network flow algorithms we refer to
Ahuja et al. (1993).

Dynamic programming performs an intelligent enumeration of candidate solutions but
it does this in a backward form, from the last decision to the first. The combinatorial
optimisation problem is decomposed into stages of decisions. Dynamic programming
is then based on the principle that if the solution is optimal, the last k decisions in

2.3 Exact solution methods 19

chronological order must also be optimal, since the completion of an optimal sequence
of decisions must be optimal. In practice, a recurrence relation is defined and solved
that leads backward from one stage to the precedent. Dynamic programming demands
ingenuity in finding a good decomposition into stages so that a convenient recursion
function can be used.

2.3.3. Search approach

Besides its use in integer programming, branch and bound can be adopted as a general
context search strategy. It consists of two steps: partitioning the set of candidate solu-
tions into mutually exclusive sets, each represented by a node in a tree (branching); and
computing a lower bound on the cost of any solution in a given subset (lower-bounding).
Clearly, the choice of the branching rule and the algorithm for computing the lower
bound depend on the given problem.

A different approach, although always based on explicit search tree, is used by search
techniques. These techniques are sequential algorithms that “augment” a state descrip-
tion starting from an empty state. A node in the tree corresponds in this case to an
incomplete candidate solution and each node is expanded with the nodes that it is pos-
sible to reach by means of a defined successor function, i.e., by adding elements to the
candidate solution. Leaves correspond to complete candidate solutions. A search strat-
egy decides which node to expand next starting from the root of the tree, i.e., the initial
state. The book of Russell and Norvig, 2003 in Chapters 3 to 5 gives a good introduction
to these methods.

The application of search techniques have been particularly well studied on the binary
CSP. A binary CSP is a CSP (see page 14 for a definition) in which constraints are only de-
fined between pairs of variables. Every CSP can be easily transformed into a binary CSP
and similarly many other combinatorial problems. In our study, the binary CSP is im-
portant because of its correspondence with the graph colouring problem. A binary CSP
can, indeed, be represented by means of a constraint graph in which vertices correspond
to variables and edges correspond to constraints between variables. Since it will make
easier the exposition in Chapter 4 we give here some more details on search techniques
for solving the binary CSP that are used also in the context of graph colouring.

Search techniques for binary CSP deal with incomplete solutions, that is, partial as-
signments of values to variables where some variables are still unassigned. The con-
struction of a complete assignment that satisfies all constraints proceeds by backtracking,
i.e., a depth-first strategy in the search tree. The performance of backtracking can be
considerably enhanced by using problem specific knowledge. We address three main
issues in the design of backtracking algorithms and present the rules adopted in the
case of binary CSP.

Variable and value ordering. The ordering of variables and the order of the values to
assign can have a considerable impact on performance; therefore, strategies have
been considered to decide on this order. For the order of variables, two alternatives
are usually effective.

• Choosing the most constrained variable, that is, the variable with the fewest

20 Stochastic Local Search Methods for Combinatorial Optimisation

legal values. This choice is based on the idea of picking the variable which
is most likely to lead soon to a state in which a variable has no legal values,
thereby allowing to prune the search tree.

• Choosing the variable with highest degree, that is, the variable involved in
the largest number of constraints with unassigned variables. The rationale
for this choice is that it tends to reduce the number of values available for the
remaining variables thereby reducing the branching of the tree.

Once a variable has been selected, it may be effective to assign the least-constraining-
value, that is, the value that rules out the fewest choices for unassigned variables,
thus leaving the maximal flexibility for the successive variable assignments.

Information propagation. By looking at some of the constraints earlier in the search, or
even before the search starts, the search space can be drastically reduced.

The basic form of information propagation is forward checking. In forward check-
ing, whenever a variable X receives a value, the domain of each unassigned vari-
able Y, connected to X in the constraint graph, is restricted by deleting the values
which are incompatible with the value chosen for X.

Constraint propagation may go beyond the neighbours of first order, i.e., it may
be productive to check the consistency of the values remaining available for the
variable Y by checking in its neighbourhood and prune value assignments to X if
they lead later to the impossibility of assigning any value to some other variable.

One has to control, however, that the time spent for propagating constraints does
not grow more than the time necessary to doing a simple search.

Intelligent backtracking. Sometimes backtracking to the shallowest node, that is, the
most recent decision point, may not be the best choice. It can indeed happen that
the cause for failure, that is, reaching a state in which a variable has no legal value,
is not due to the most recently assigned variable but to some other one earlier in
the branch. Some more intelligent approaches to backtracking can therefore be
applied.

All these search techniques for binary CSP are further exploited by constraint logic
programming, which includes higher-order constraints and thus enlarges the class of
handled constraints. Constraint logic programming is also a well defined language to
express the constraints.9 An introduction to this technique is given by Marriott and
Stuckey (1998), while papers on successful applications to real life optimisation prob-
lems appear regularly in the International Conference on Principle and Practice of Con-
straints Programming.

9A popular software system for the development and deployment of constraint programming applications
is ECLiPSe. Up-to-date information can be obtained from the ECLiPSe web site. IC-Parc, Imperial
College London. “The ECLiPSe Constraint Logic Programming System”. 1997. http://www.icparc.

ic.ac.uk/eclipse/. (February 2005)

http://www.icparc.ic.ac.uk/eclipse/
http://www.icparc.ic.ac.uk/eclipse/

2.4 Stochastic local search methods 21

2.4. Stochastic local search methods

Stochastic local search methods are approximate algorithms that not necessarily find op-
timal solutions. As opposed to approximation algorithms they do not provide provable
solution quality and provable run time bounds. In practice, however, they perform often
better than any other method, finding good solutions in reasonably short time. Given
the difficulty to characterise them analytically, their assessment relies on empirical anal-
ysis.

SLS methods are characterised by the use of incomplete knowledge, which makes the
search in the search space of the candidate solutions not systematic but rather based
on the idea of trial and error. Besides being simple and natural, it is surprising how
successful these methods have been proven to be on a variety of problems. They consist
essentially in constructing one or more initial candidate solutions and trying to improve
them by local changes defined by an opportune neighbourhood relation between solu-
tions. Many widely known and high-performing algorithms based on this paradigm
make use of randomised decisions in generating or selecting candidate solutions and
are therefore stochastic algorithms. The success of stochastic algorithms is based on the
adversary argument. Accordingly, an adversary may establish a lower bound for the
run time of a deterministic algorithm by constructing an input for which the algorithm
performs poorly. The input thus constructed may be different for each deterministic
algorithm. A randomised algorithm can be viewed as a probability distribution on a
set of deterministic algorithms. While the adversary may be able to construct an input
that foils one (or a small fraction) of deterministic algorithms in the set, it is difficult to
devise a single input that is likely to defeat whichever algorithm from the distribution
of possible deterministic algorithms implied by a randomised algorithm (Motwani and
Raghavan, 1995). In practice, this entails that if we are not satisfied with the result of
a run of an algorithm, then we can restart it, as there will be a high chance that the
result will be different. From a different perspective, we may assume a distribution of
instances and look for the algorithm that performs better on average on this distribution.
Then, the use of random choices in algorithms based on the principle of trial and error
is introduced to simplify the algorithm from all those deterministic rules that have no
positive impact on the final average performance of the algorithm. In practice, in the
design of SLS algorithms, a random decision may be invoked whenever no heuristic rule
can be conceived that yields a provable improvement in the results of the algorithms on
the considered class of instances.

In SLS methods, we can distinguish three classes of components: construction heuris-
tics, iterative improvement, and metaheuristics. The first constructs a solution from
scratch, the second improves the solution by performing local changes on it, and the
third are high level search strategies. A stochastic local search algorithm is the instantiation
of an SLS method on a specific problem, through configuration, assemblage, and im-
plementation of its components. Such an organisational scheme is given in Figure 2.1.
Whereas construction heuristics and iterative improvement are strongly problem depen-
dent in their instantiation, metaheuristics remain sufficiently problem independent.

According to the definition of Hoos and Stützle (2004), stochastic local search algo-
rithms define a search space and move from some present location to a neighbouring
location in this search space. Each location has only a relatively small number of neigh-

22 Stochastic Local Search Methods for Combinatorial Optimisation

�
��

A
AU

Metaheuristics

Construction
Heuristics

Iterative
Improvement

SLS
Methods

Instantiation-

�
�

�
�GCP

TSN1

GLS

HEA�
�

�
�
Set
T -Col

GOF-TS-reass
GOF-AG

GSF-MC

SLS
Algorithms

Problem independent Problem specific

Figure 2.1.: General purpose SLS methods. The instantiation, i.e., configuration, assemblage,
and implementation of the components on a specific problem determines the SLS algorithm.
The names of the SLS algorithms in the diagram refer to some of the algorithms studied in
Chapter 4 and 5.

bours and each move is determined by a decision based on local knowledge. The candidate
solutions in the search space may be incomplete (partial) solutions or complete solu-
tions of the given problem instance. SLS methods start with an empty candidate solu-
tion and use construction heuristic algorithms to expand incomplete candidate solutions
by adding elements according to greedy choices. Once a complete candidate solution
has been obtained, other heuristic algorithms, typically called local search algorithms,10

that work on complete candidate solutions, change these solutions by modifying one or
more of the solution components and thus moving to a new complete candidate solu-
tion. More in general, these two phases may not be distinguished and local search may
as well work on incomplete candidate solutions. In this case, incomplete solutions are
handled not only by adding elements but also by removing or changing elements, and
in this local search on incomplete solutions differs from simple construction heuristics.

The first step in applying a local search procedure is the definition of a neighbour-
hood structure on the set of candidate solutions. The neighbourhood structure defines
for each candidate solution the set of possible solutions to which the local search algo-
rithm can move in one step. In its most basic version, called iterative improvement, a local
search algorithm searches for an improved candidate solution in the neighbourhood of
the current candidate solution; if an improved candidate solution is found, it replaces
the current solution and the local search is continued until no improving neighbouring
solution is found, that is, the algorithm terminates in a local optimum. A disadvan-
tage of iterative improvement is that the algorithm may stop at very poor-quality local
optima. An obvious extension would be to restart the algorithm several times from
new starting solutions but, in practice, it has been noted that this does not produce
significant improvements (Johnson and McGeoch, 1997; Schreiber and Martin, 1999).
Several different strategies, more or less problem dependent, have then been proposed
to improve basic iterative improvement algorithms and to reach better quality solutions.
Some of these strategies are commonly referred to as metaheuristics and can be seen as
problem independent, general guidance criteria that make use of construction heuristics
and iterative improvement algorithms.

In the remainder of this section, we describe the techniques that usually compose a

10Local search algorithms which work with complete candidate solutions are occasionally also referred to
as perturbative local search algorithms or neighbourhood search algorithms.

2.4 Stochastic local search methods 23

Function Construction_Heuristic(problem instance I);
while (s is not a complete solution) do

Add an element to the solution s according to some criterion;
end
return A complete candidate solution s ∈ S .

Algorithm 2.1: Outline of a general Construction Heuristic algorithm.

stochastic local search algorithm. We proceed from construction heuristics, to simple
local search techniques, and finally to metaheuristics. The field of research is rapidly
growing and we do not aim to provide here a comprehensive coverage of the subject.
For this, the reader may consult recently published books as those of Aarts and Lenstra
(1997), Glover and Kochenberger (2002), and Hoos and Stützle (2004).

2.4.1. Construction heuristics

Construction algorithms build a solution to a combinatorial optimisation problem in an
incremental way. They add solution components step by step and without backtrack-
ing, until a complete solution is generated, as shown in Algorithm 2.1. Construction
algorithms can be described using the search tree representation adopted for search
algorithms (see page 19). Typically, some kind of heuristic rule is employed to add
solution components, i.e., to decide to which child node to move in the search tree.
Differently from search algorithms, construction algorithms do not traverse the search
space in a systematic manner but limit themselves to a single “promising” descent in
the tree. They do not provide, therefore, any guarantee to find the optimal solution and
are, hence, incomplete.

Greedy construction heuristics add a solution component at each construction step with
maximal myopic benefit as estimated by a heuristic function, which depends uniquely on
the incomplete state represented by the current node of the search tree. Usually, such a
procedure ends up in poor quality solutions and more sophisticated rules are needed.
One possible method to improve greedy algorithms is to evaluate nodes by combining
the cost of reaching the node and the estimated cost of the cheapest path from the node
to a complete state. Thus, solution components are added according to the estimated
cost to find the cheapest solution through a defined node. In roll-out (Bertsekas et al.,
1997, also known as pilot method, Duin and Voß, 1999), at each step the cost estimate
for all possible branches is computed and the node leading to the best branch is chosen.
The cost for each branch is estimated using a greedy heuristic for determining the most
convenient path. The same procedure is then repeated at the next node.

2.4.2. Iterative improvement

Four problem specific components must be defined for applying iterative improvement.
The first component is the set S of candidate solutions. The second component is an ini-
tialisation procedure that selects, from the set S , a starting solution. The third component

24 Stochastic Local Search Methods for Combinatorial Optimisation

is a neighbourhood structure, that is, a mapping N : S 7→ 2S . The neighbourhood of
a candidate solution s, denoted as N (s), is the set of all candidate solutions that are
neighbours of s. Note that S and N define a graph, called neighbourhood graph, where
the elements of S are the vertices and the neighbourhood relationship of N determines
the edges between the vertices.11 The fourth, and last, component of local search, is the
evaluation function, f : S → R, necessary to guide the search through S . The evaluation
function serves to assess candidate solutions in the neighbourhood of the current solu-
tion and thus to gain the local information necessary to decide where to move. Often,
the objective function characterising the optimisation problem is used as the evalua-
tion function, that is, f ≡ g. Commonly, but not necessarily, a global optimum for the
evaluation function corresponds to an optimal solution of the problem.

These components lead to introduce the concept of local optimum.

Definition 2.1 A local optimum of an evaluation function f with respect to a neighbourhood
structure N is a candidate solution s ∈ S such that f (s) ≤ f (s′), ∀s′ ∈ N (s).

In addition to these components, a further element to be devised is the search strategy.
In the most general case, a search strategy is defined by the step function, that is, a pair
(s, s′) ∈ S × S of neighbouring search positions (s′ ∈ N (s)) such that the probability
of the algorithm to go from s to s′ is larger than zero. The execution of the step func-
tion defines a move. The most widely used search strategies are best improvement and
first improvement. In a best improvement strategy, one of the neighbouring candidate
solutions that achieves a maximal improvement in the evaluation function is randomly
selected. This requires an exhaustive exploration of the neighbourhood at each step, that
is, all neighbours are evaluated before selection. In a first improvement strategy, instead,
the first improving step encountered in the exploration of the neighbourhood is selected.
The exploration can be random or ordered. Search steps are often computed faster in
first improvement but the improvement is typically smaller than with best improve-
ment. The choice between the two strategies should take into account this trade off. In
general however, for large neighbourhoods best improvement becomes costly and first
improvement is preferred. Nevertheless, in large neighbourhoods best improvement
can be combined with pruning techniques to restrict the neighbourhood by avoiding to
examine neighbours which are unlikely, or, provably, cannot, provide any improvement
in the evaluation function value. Furthermore, often, speed up programming tricks are
possible from which mainly best improvement profits.

In Algorithm 2.2, we outline an iterative improvement procedure as it arises from the
components defined above. The initial solution is commonly created by a construction
heuristic. Depending on alternative choices for each component, despite its simplicity
iterative improvement exhibits already a large number of different possible configura-
tions which must be studied for each specific problem.

Intuitively, the larger the set of solutions in the neighbourhood structure is the larger
the improvement achievable should be. In this thesis we denote as very large-scale neigh-
bourhood (VLSN) a neighbourhood N (s) that is too large to be explored explicitly. The
concept of VLSN is related to the size of the neighbourhood defined as the number of its
elements, |N (s)|. VLSN are all neighbourhoods whose size grows exponentially with
the size of the instance. Also a neighbourhood with a size that grows as O(n3) may as

11Alternatively, a neighbourhood structure on S can be defined as a function µ : S × S → {0, 1}. Two
solutions s1, s2 ∈ S are then called neighbours if µ(s1, s2) = 1. Often, the function µ is symmetric.

2.4 Stochastic local search methods 25

Function Iterative_Improvement(problem instance I);
Generate an initial solution s ∈ S ;
while (s is not local optimum in N (s)) do

Select a solution s′ from N (s) such that f (s′) < f (s);
s← s′;

end
return A solution s that is local optimum in N (s).

Algorithm 2.2: Outline of a general Iterative Improvement algorithm.

well be too large to be searched effectively in practice if n is large and if the evaluation
of a neighbour is costly. The size of the neighbourhood determines a trade off between
the quality of solutions and the cost of exploration and its choice must be carefully eval-
uated both in relation with the problem to be solved and the higher level criteria which
guide the local search.12

Large scale neighbourhood structures may also be obtained by combining smaller
structures:

Definition 2.2 Given a candidate solution s ∈ S and k neighbourhood structures N1,N2,
. . . ,Nk defined on S , the union of the k neighbourhood structures, denoted as N1(s) ∪
N2(s) ∪ · · · ∪ Nk(s) consists of the set of candidate solutions s′ which belong to at least one of
the k neighbourhood structures.

Definition 2.3 Given a candidate solution s ∈ S and k neighbourhood structures N1,N2,
. . . ,Nk defined on S , the composition of the k neighbourhood structures, denoted asN1(s) ◦
N2(s) ◦ · · · ◦ Nk(s), consists of the set (chain) of candidate solutions s′ reachable in an ordered
sequence of moves through the k neighbourhoods, that is, s′ ∈ Nk(sk−1), sk−1 ∈ Nk−1(sk−2),
. . . , s1 ∈ N1(s).

Considering the union of neighbourhoods is rarely a good choice in practice. A more
successful approach is to change the neighbourhood during the search. In variable neigh-
bourhood descent (VND), the k neighbourhoods are ordered, typically, according to in-
creasing size. The algorithm starts with neighbourhood N1 and performs iterative im-
provement steps until a local optimum is reached. Whenever no further improvement
is found for a neighbourhood Ni and i + 1 ≤ k, VND continues the search in neigh-
bourhood Ni+1; if an improvement is obtained in Ni, the search process switches back
to N1: these steps are repeated until no improvement can be found in any of the k
neighbourhoods. The general idea of changing the neighbourhood during the search
belongs originally to a method called variable neighbourhood search, that was introduced
by Hansen and Mladenovic (2002).

The neighbourhood composition grows in size even faster than the union and, there-
fore, it is also rarely a good choice. Variable depth search and ejection chains are techniques
that compose search steps using heuristic rules in order to drastically reduce the time
for the examination of the composed neighbourhood. Variable depth search methods
are state-of-the-art algorithms for the travelling salesman problem (Lin and Kernighan,

12Clearly, if the neighbourhood coincides with the whole search space, i.e., N (s) = S , finding the best so-
lution in N (s) corresponds to finding the optimal solution; then, if the problem is NP-hard, obviously,
finding the best solution in this neighbourhood is also an NP-hard problem.

26 Stochastic Local Search Methods for Combinatorial Optimisation

1973), the graph partitioning problem (Kernighan and Lin, 1970), and several others. The
methods use cost and tabu restrictions in the selection of the constituting search steps
and alternate steps that lead to feasible and infeasible solutions, respectively. Ejection
chains were introduced by Glover (1996) as a structured super-class of variable depth
methods. Subsequently, their use was restricted to sequences of successive steps each
influenced by the precedent and determined only by myopic choices. It is worthwhile to
remark, however, that both variable depth search and ejection chains techniques do not
guarantee the local optimality of the solutions produced with respect to basic moves.
Another approach dealing with complex search steps is dynasearch, in which a number
of mutually independent steps are executed in parallel. Finally, Di Gaspero and Schaerf
(2003b) describe a multi-neighbourhood framework to incorporate several possibilities
to take advantage of a multi-neighbourhood structure definition.

2.4.3. Metaheuristics

More sophisticated SLS algorithms are obtained by the usage of metaheuristics13. These
are general-purpose algorithmic concepts that are used to guide underlying problem
specific heuristics, such as construction heuristics or iterative improvement algorithms.
In this thesis, we regard metaheuristics as problem independent strategies whose appli-
cation to a specific problem contributes to the complete definition of an SLS algorithm.
A minimal requirement for a metaheuristic is to improve over a simple random restart
iterative improvement or construction heuristic by making a more intelligent use of the
computation time available. In most cases, metaheuristics are based on appropriate
common sense rules to improve the local optimum provided by the underlying heuris-
tics.

With the introduction of metaheuristics, SLS algorithms do not have anymore a nat-
ural termination condition. Contrary to construction heuristics that end when a com-
plete solution has been constructed or to iterative improvement that end when a local
optimum has been reached, metaheuristics use arbitrary run time to search for better
solutions. In principle, well designed SLS algorithms should allow to reach better so-
lutions the longer computation times are. Yet, since unlimited computation time is not
a realistic assumption, the following termination conditions are usually adopted: (i) a
maximal CPU time; (ii) a maximal number of search steps; (iii) a maximal number of
search steps without improvement (idle iterations). Alternatively, if an optimal solution is
known a priori then the procedure may end when the optimal solution has been reached
(e.g., in the CSP, when all constraints are satisfied).

Several ways to classify metaheuristics have been proposed: population-based ver-
sus single search point; dynamic versus static objective function; nature-inspired versus
non-nature inspired; one versus various neighbourhood structures; memory usage ver-

13The prefix meta [Gr. at a higher level] to the term heuristic [Gr. to find out, discover] is meant to denote
another superimposed heuristic which deals with ulterior issues related with the original heuristic. It
was introduced in optimisation by Glover (1986). Nothing depends on names, of course. Here, contrary
to some other works in the literature, we adopt the term metaheuristic solely to indicate a general
guidance criterion over a lower level heuristic or local search. As such it is a method and not a finite
algorithm. In our nomenclature, the instantiated algorithm that uses a metaheuristic is called Stochastic
Local Search algorithm.

2.4 Stochastic local search methods 27

Function Randomised_Iterative_Improvement(problem instance I, walk
probability wp);
Generate an initial solution s ∈ S ;
sbest ← s;
while (termination condition not satisfied) do

p← random([0, 1]);
if (p ≤ wp) then

Select a solution s′ from N (s) randomly;
else

Select a solution s′ from N (s) such that f (s′) < f (s) ;
end
if f (s) < f (sbest) then sbest ← s ;
s← s′;

end
return sbest

Algorithm 2.3: Outline of a general Randomised Iterative Improvement algorithm.

sus memory-less methods (see also Stützle, 1998). In our presentation, we proceed from
metaheuristics that work on single solutions (also called trajectory methods as they per-
form steps in a finite sequence of search positions), over more complex methods working
on a population of solutions, to hybrid methods.

Randomised Iterative Improvement

The first idea to make iterative improvement proceed the search beyond local optima
is to accept side walk steps. Side walk steps are moves that lead to candidate solutions
whose evaluation function is the same as the current solution. A further possibility is
to accept also worsening candidate solutions. The problem in doing this is that if wors-
ening solutions are accepted deterministically, the risk is to undo the step immediately
after leading to a possible cycling behaviour.

A way to avoid this drawback is to determine when a worsening step has to be per-
formed by using a probabilistic criterion. The simplest algorithm which does this is
Randomised Iterative Improvement (RII). In RII, a parameter wp ∈ [0, 1], called walk prob-
ability, is used to probabilistically determine whether a worsening step or an improving
step has to be performed. How this happens is shown in Algorithm 2.3. At each step
a random number uniformly distributed in the interval [0, 1] is drawn. If the number
is less or equal wp, a candidate solution from the neighbourhood N (s) is chosen ran-
domly, otherwise an improving candidate solution as in a best improvement or a first
improvement strategy is taken.

Simulated Annealing

Simulated Annealing (SA) (Černý, 1985; Kirkpatrick et al., 1983) is inspired by statistical
mechanics, a discipline of Physics for analysing the property of atoms in solid matter. In
statistical mechanics each configuration of positions of a collection of atoms is weighted

28 Stochastic Local Search Methods for Combinatorial Optimisation

Function Simulated_Annealing(problem instance I, initial temperature T);
Generate an initial solution s ∈ S ;
sbest ← s;
while (termination condition not satisfied) do

Select a solution s′ from N (s);
s← s′ with probability paccept(T, s, s′);
if f (s) < f (sbest) then sbest ← s ;
Update temperature T;

end
return sbest

Algorithm 2.4: Outline of a general Simulated Annealing algorithm.

by a Boltzman probability factor that depends on the energy of the configuration and on
the temperature. The fundamental issue concerns what happens to the system of atoms
when the temperature is decreased. The configurations ideally collapse into those of
perfect lattice structure corresponding to the states of minimal energy.

Metropolis et al. (1953) introduced an algorithm that provides an efficient simulation
of a collection of atoms in equilibrium at a given temperature. At each step a random
perturbation to the current configuration is generated and the probability of accepting a
configuration of higher energy is given by the Boltzman probability distribution. Analo-
gously, in combinatorial optimisation a randomly chosen solution is accepted according
to the deterioration that it brings in the evaluation function value, such that the more
a candidate solution worsens the evaluation function the less likely it is accepted. The
convergence to the solution of the minimal evaluation function value that simulates the
annealing process in Physics is determined by a parameter, called temperature, which
is opportunely varied during the search. The probability function derived from the
Metropolis algorithm for matching the needs of combinatorial optimisation is:

paccept(T, s, s′) =

{
1 if f (s′) ≤ f (s)
exp(f (s)− f (s′)

T) otherwise
(2.2)

where s is the current solution and s′ ∈ N (s). The parameter T is the temperature and
determines how likely it is to perform worsening steps during the search. The lower T
is the less likely a deteriorating configuration is accepted. Algorithm 2.4 outlines the SA
procedure.

The temperature is set relatively high at the beginning of the search and is then de-
creased according to a cooling schedule. The exact characterisation of the temperature
over the whole search depends on the implementation. In this thesis we consider the
temperature at each step of a Simulated Annealing algorithm determined by the follow-
ing factors:

• the initial temperature, often determined from the average solution quality of a
sample of the neighbouring solutions;

• the temperature length, which defines the number of search steps to perform at a
fixed temperature value; usually it is set proportional to the size of the neighbour-
hood;

2.4 Stochastic local search methods 29

Function Tabu_Search(problem instance I, tabu tenure tt);
Generate an initial solution s ∈ S ;
Initialise memory structures;
sbest ← s;
while (termination condition not met) do

Let N ′(s) = {s′ ∈ N (s) : s′ is non-tabu or satisfies an aspiration
criterion};
Let s′ be the best solution in N ′(s);
s← s′;
if f (s′) < f (sbest) then sbest ← s ;
Update memory structures;

end
return sbest

Algorithm 2.5: Outline of a general Tabu Search algorithm.

• the cooling trend, as determined, for example, by the standard formula Ti+1 = α · Ti,
where α is a parameter called cooling rate and Ti is the temperature value at the
iteration i of the algorithm;

• the re-heating mechanism, used to increase the temperature in case no improve-
ment is found, for example, for a number of steps proportional to the temperature
length.

A constant temperature over all the search may also provide good results but deter-
mining a good value for it seems difficult (Fielding, 2000).

Tabu Search

Another strategy to allow iterative best improvement to perform worsening moves with-
out immediately undoing them in the next step is to remember recently visited solutions
and avoid to return to them. Tabu Search (TS), introduced independently by Glover
(1989), Glover (1990), and Hansen and Jaumard (1990), uses a short-term memory to
restrict the neighbourhood of the current solution to a subset N ′(s) ⊆ N (s) of admis-
sible neighbours. In practice, not the complete candidate solutions are memorised, as
this would be costly in terms of space and time for comparisons, but solution compo-
nents. A parameter tt, called tabu tenure determines the duration in terms of search
steps in which the re-insertion or removal of these solution components is forbidden.
When memorising only solution components, it may happen that some attractive solu-
tions become forbidden. To avoid this, an aspiration criterion is commonly introduced
which specifies conditions under which the tabu status of a candidate solution may be
overridden. See Algorithm 2.5 for an outline of a TS procedure.

Many refinements have been proposed in the literature. Taillard (1991) improves
the robustness of performance by choosing tt randomly from an interval [ttmin, ttmax].
Battiti and Tecchiolli (1994) propose a reactive mechanism to dynamically adjust the
tabu tenure during the search based on the detection of trajectory repetitions. Finally,
Glover and Laguna (1997) report many ideas to include also a long-term memory and

30 Stochastic Local Search Methods for Combinatorial Optimisation

extend N (s) through the inclusion of elite candidate solutions. They focus on the trade
off between intensification and diversification, i.e., between exploiting the experience
accumulated during the search and exploring new, unseen regions of the search space.

Dynamic Local Search

A different approach for escaping local optima is to modify the evaluation function in
such a way that further improvement steps become possible. This can be done by as-
sociating penalty weights to individual solution components which have an impact on
the objective function. Whenever the iterative improvement ends in a local optimum,
the penalties of some solution components present in the solution are changed and the
evaluation function is updated with the new weights. This procedure is called Dynamic
Local Search and corresponds to a repeated iterative improvement procedure with a dy-
namically changing evaluation function. Worsening steps with respect to the original
evaluation function are no longer necessary while side walk steps may be accepted in
a limited number according to the search strategy adopted. The modified evaluation
function is usually expressed in the form:

f ′(s) = f (s) + λ ·
n

∑
i=1

wi · Ii(s)

where wi is the penalty weight of solution component i and Ii(s) is an indicator func-
tion which returns 1 if the solution component i is present in s and 0 otherwise. The
parameter λ is used to control the relative weight of the penalties on the evaluation
function.

The penalties are initially set to zero and subsequently updated after each new it-
erative improvement run. The update may involve all or only some of the solution
components present in locally optimal solution and variants of dynamic local search
may differ in this.

In Guided Local Search (GLS), the solution quality contribution of a single solution
component, fi(s), is defined to estimate the utility utili of increasing the penalty weight
of component i:

utili =
fi(s)

1 + wi
.

Only solution components with maximal utility values are updated by setting wi =
wi + 1. The rationale behind this mechanism is that solution components with high
negative impact in the solution should increase their penalties because of their high cost
contribution. The denominator is used to avoid too frequently penalising the same com-
ponents. In some refined implementations, weights are occasionally smoothed during
the search (Mills and Tsang, 2000). Other updating schemes, studied mainly on the logic
satisfiability problem, use probabilistic mechanisms to select the components to penalise
(see Hutter et al., 2002 for an example).

2.4 Stochastic local search methods 31

Function Guided_Local_Search(problem instance I);
Generate an initial solution s ∈ S ;
sbest ← s; Initialise penalty weights;
while (termination condition not met) do

Update evaluation function f ′ = f + λ ·∑n
i=1 wi · Ii(s);

s′ ← Iterative_Improvement(s, f ′);
if f (s′) < f (sbest) then sbest ← s;
s← s′;
forall {i ∈ [1, . . . , n] : arg max

i
utili(s)} do

wi = wi + 1
end

end
return sbest

Algorithm 2.6: Outline of a general Guided local search algorithm.

Function Iterated_Local_Search(problem instance I);
Generate an initial solution s ∈ S ;
s← Iterative_Improvement(s);
sbest ← s;
while (termination condition not met) do

Let s′ be the solution obtained by applying a perturbation to s;
s′′ ← Iterative_Improvement(s′);
if f (s′′) < f (sbest) then sbest ← s′′ ;
Accept s′ or s′′ as the new s;

end
return sbest

Algorithm 2.7: Outline of a general Iterated Local Search algorithm.

Iterated Local Search

In Section 2.4.2, we described the possibility of escaping from local optima by using
different neighbourhoods. Based on the same idea, Iterated Local Search (ILS) uses an
iterated improvement procedure to find local optima, and a perturbation to modify the
solution in such a way that the local search can be continued and new regions of the
search space be explored. Perturbations are composed of one step (or occasionally a
number of steps) in another neighbourhood, not necessarily guided by an evaluation
function. An iterative improvement procedure is then applied from the perturbed so-
lution such that a new local optimum is found. Finally, an acceptance criterion decides
whether to continue the search from the new or from the previous local optimum. Of-
ten, a probabilistic criterion is adopted. Algorithm 2.7 outlines a basic ILS procedure.
More elaborated implementations may include also a history component, used in the ac-
ceptance criterion on the perturbation. However, despite its simplicity, high performing
ILS algorithms require problem specific perturbations and devising them may require
some effort. For deeper insights we refer to Lourenço et al. (2002).

32 Stochastic Local Search Methods for Combinatorial Optimisation

Function Adaptive_Iterated_Construction_Search(problem instance I);
Initialise weights;
while (termination condition not met) do

Construct a solution s ∈ S using a heuristic h and weights;
s′ ← Iterative_Improvement(s);
if f (s′) < f (sbest) then sbest ← s′;
Update weights according to components and quality of s′;

end
return sbest

Algorithm 2.8: Outline of a general Adaptive Iterated Construction Search algorithm.

Adaptive iterated construction search

Greedy construction heuristics are widely adopted to generate the initial solutions of
all the local search methods introduced above. Their involvement can be stronger. An
appealing idea is to exploit gained experience for guiding new solution constructions.
In Adaptive Iterated Construction Search (AICS), weights are associated with possible de-
cisions that are made during the construction process. These weights are adapted over
multiple iterations of the search process to reflect the experience from the previous iter-
ations. As outlined in Algorithm 2.8, in typical implementations of AICS each iteration
consists of three stages: first a construction search process is used to generate a candidate
solution s; next, an additional perturbative iterated improvement process is performed
on s, yielding a locally optimal solution s′. Finally weights are adapted based on the so-
lution components used in s′ and the solution quality of s′. Squeaky wheel optimisation
(Joslin and Clements, 1999) and iterated greedy (Culberson, 1992) are successful AICS
methods based on single solutions. Adaptive memory algorithm (Rochat and Taillard,
1995) and Ant Colony Optimisation are AICS methods based, instead, on a population
of solutions.

Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a nature-inspired, population-based metaheuristic.
ACO mimics the behaviour of ants that indirectly communicate via distributed, dy-
namically changing information, the so-called pheromone trails. In ACO, in each iteration
a population of k candidate solutions is generated by a construction procedure that uses
probabilistic decisions. Solution construction is biased by the pheromone trails, which
are weights that influence decisions in a similar manner as AICS, and heuristic informa-
tion on the instance being solved. Once the solutions are constructed, typically some or
all candidate solutions are improved by an iterative improvement procedure (or a more
elaborated local search method), resulting in a population of locally optimal solutions.
Finally, the pheromone trails are updated on the basis of the current candidate solutions
and their quality. Typically, the update implies first a decrease of all pheromone trails
by a constant factor, which corresponds to pheromone evaporation in nature, and then
an increase for the subset of pheromone trails determined by the current population
and the best solution found so far. The whole procedure is outlined in Algorithm 2.9.

2.4 Stochastic local search methods 33

Function Ant_Colony_Optimisation(problem instance I);
Initialise pheromone;
while (termination condition not met) do

Construct a population of solutions sp ⊆ S exploiting pheromone and
heuristic information;
for all s ∈ sp do

s← Iterative_Improvement(s);
end
if min

s∈sp
f (s) < f (sbest) then sbest = arg min

s∈sp
f (s) ;

Update weights according to solution components and quality of sp or
sbest;

end
return sbest

Algorithm 2.9: Outline of a general Ant Colony Optimisation algorithm.

The first available ACO algorithm is Ant System but it achieved only poor results. A
more successful refinement of ACO is, instead, MAX -MIN Ant System which has a
peculiar way to update pheromone trails (Stützle, 1998; Stützle and Hoos, 2000). For a
comprehensive coverage of Ant Colony Optimisation we refer the reader to Dorigo and
Stützle (2004).

Evolutionary algorithms

Evolutionary algorithms (EA) is a family of approaches inspired by the capability of
nature to evolve living beings adapting them to their environment. This paradigm may
be used for modelling real evolutionary processes and for optimisation. In EA for com-
binatorial optimisation, a population of candidate solutions is maintained and a series
of genetic operators are repeatedly applied to replace, partially or totally the population
with the next one. Typically, two operators are used to modify a solution. A mutation op-
erator modifies an individual of the population usually by random changes. A recombi-
nation operator generates one or more individuals (offspring) by combining information
from two or more individuals (parents). The most commonly used type of recombina-
tion operator is called crossover and consists in assembling pieces from an appropriate
representation of two individuals. Finally, a selection criterion chooses the solutions for
the next generation based on their fitness (usually associated with the value of the objec-
tive function). Individuals with higher fitness have higher probability of being selected
thus applying the principle of survival of the fittest. Often preferred in combinatorial
optimisation are two variants of EA: Genetic algorithms and Memetic algorithms. Genetic
algorithms use a discrete solution representation based on bit strings of equal length.
Memetic algorithms are genetic algorithms in which a local search procedure is applied
after the mutation and recombination operators. Memetic algorithms typically achieve
higher performance than Genetic algorithms in most combinatorial problems. The out-
line in Algorithm 2.10 is a basic version of a Memetic algorithm. The recombination
operator returns the current population sp enlarged with the offsprings. It implements
the inheritance of desirable properties of the parent solution and it is therefore highly

34 Stochastic Local Search Methods for Combinatorial Optimisation

Function Memetic_Algorithm(problem instance I);
Generate a population of solutions sp ⊆ S;
while (termination condition not met) do

sp′ ← recombination(sp);
sp′′ ← mutation(sp′ ∪ sp);
sp′ ← Iterative_Improvement(sp′ ∪ sp′′);
if min

s∈sp′
f (s) < f (sbest) then sbest = arg min

s∈sp′
f (s);

sp← selection(sp′);
end
return sbest

Algorithm 2.10: Outline of a general Memetic Algorithm.

problem specific. The selection operator either replaces the whole population (genera-
tional approach) or replaces less fit individuals (steady-state approach). Two reference
books for EAs in combinatorial problem solving are Holland (1975), Goldberg (1989),
and Davis (1991).

Other methods

We mention shortly other metaheuristics, which we omitted because they are not used
in this thesis. Greedy randomised adaptive search procedures are a two phase approach
which consist in applying a randomised construction heuristic and then improving the
so generated candidate solution by an iterative improvement procedure. Scatter search
and path relinking are two evolutionary algorithms. They use reference solutions spread
in the search space according to some diversity measure and then join or recombine
some of them with good quality and sufficient diversity. The peculiarity of path re-
linking is that the trajectory connecting reference solutions are explored by generating
paths in the neighbourhood space. Estimation of distribution algorithms (Larrañaga and
Lozano, 2001) use machine learning principles to solve optimisation problems. They try
to learn the locations of the most promising regions of the search space, by constructing
a probabilistic model, such as a graphical model, to generate candidate solutions, and
learning is used to adapt the probability model to explore more promising regions of
space. Bayesian optimisation algorithms (Pelikan et al., 1999) consider multiple solution
component dependencies in the probabilistic model. The field of estimation of distribu-
tion algorithms is quite young and much research effort has focused on methodological
aspects rather than on high-performance applications.

2.4.4. Hybrid methods

Practice showed that high performance algorithms are usually achieved by hybrid al-
gorithms. This is particularly true for real-life problems, where the complexity of the
constraints may require several approaches to work together in order to satisfy them
all. Talbi (2002) proposes a taxonomy of hybrid metaheuristics and collects references

2.4 Stochastic local search methods 35

from published literature. Here, we distinguish two main classes of hybrid algorithms
relevant to our study: combinations of metaheuristics, that include components from
several metaheuristics, and combinations of stochastic local search algorithms with ex-
act algorithms.

Combination of metaheuristics

The most common way of hybridising metaheuristics is represented by embedding tra-
jectory approaches into population based approaches or other search strategies. In all
cases, the goal is to find a better trade off between intensification and diversification
of the search. Trajectory methods are better in carefully exploring promising areas of
the search space, whereas population based methods, and also ILS and AICS, are good
in identifying promising areas of the search space. We already described memetic al-
gorithms, which actually are an example of hybridisation of evolutionary algorithms
with local search. Other possibilities arise by the substitution of simple iterative im-
provement procedures in the algorithms outlined above by more complex local searches
like variable neighbourhood descent, tabu search, or simulated annealing. In general,
the use of more powerful iterative improvement procedures reduces the risk of missing
good solutions in a region of the search space before moving away to investigate other
regions.

Another approach consists in alternating different strategies during the search. For
example one may first use fast improvement algorithms and then slower approaches
like Simulated Annealing. In particular, VND and TS are usually good for solving
hard constraints while SA helps for optimising soft constraints when long run times
are available (in Chapter 6 we give empirical support to this claim in the context of
timetabling).

Combination of stochastic local search methods with exact algorithms

The combination of local search methods with exact algorithms is currently receiving
particular attention in the research community. The following areas of research, de-
pending on the type of hybridisation, may be characterised.

Type 1. An SLS algorithm and an exact algorithm are used sequentially for solving dif-
ferent subproblems. Usually, an SLS algorithm is used to solve large size problems
while subproblems of smaller dimension can be solved by exact methods.

Type 2. Constraint programming techniques are used to reduce the search space to be
exploited by local search algorithms.

Type 3. Exact algorithms are used for efficiently exploring large neighbourhoods, instead
of simply enumerating or randomly sampling the neighbourhood.

Type 4. Concepts from stochastic local search methods, like tabu rules or probabilistic
choices, are adopted into tree search algorithms.

Hybridisations of Type 1 are particularly well suited for problems with a large num-
ber of constraints. An example is the travelling salesman problem with time windows

36 Stochastic Local Search Methods for Combinatorial Optimisation

(TSPTW), in which each node must be visited in a predefined time interval. An SLS ap-
proach is well suited for finding a tour, i.e., a sequence of points, while an exact method
may be used to test whether for a created tour there exists an assignment of departure
and arrival times such that all time constraints are satisfied. We will see a similar ap-
plication in the chapter on timetabling. The TSPTW has also been object of applications
of hybridisation of Type 2. In this case, constraint programming is used to reduce the
neighbourhood to only feasible solutions, such that the solutions considered are only
those that satisfy time constraints (Freuder, 1996). Ahuja et al. (2002) review many
possibilities which arise with hybridisation of Type 3. They focus on very large-scale
neighbourhoods for partitioning problems which can be efficiently searched by network
flow algorithms. Lourenço (1995) presents an example where an exact method is used
to define the perturbation in ILS by solving a simplified subproblem. The same idea is
purported and generalised by Dumitrescu and Stützle (2003). Particularly successful ap-
plications of hybrid algorithms of Type 4 are tree search with probabilistic backtracking
(instead of deterministic node backtracking). In order to search exhaustively some ba-
sic bookkeeping procedures similar to tabu rules may be adopted. Gomes and Shmoys
(2004) and Prestwich (2002b) apply these techniques to the constraint satisfaction prob-
lem and to graph colouring.

Besides these types, the combination of local search methods with integer program-
ming is also currently investigated (Dumitrescu and Stützle, 2003). An example in this
direction are local branching techniques (Fischetti and Lodi, 2003). However, very little
has been done in this area. Finally, exact methods may be used to determine lower
bounds for a problem (an application will be shown in Chapter 5).

2.4.5. Theoretical remarks

The attempt to determine the algorithm that works the best for all the problems is
doomed to fail. This fact is investigated from a theoretical point of view and results
are collected under the name of no free lunch theorems for combinatorial optimisation
(Wolpert and Macready, 1997). In short, the no free lunch theorem states that all search
algorithms have the same average performance over all possible objective functions
f : X → Y , where the search space X as well as the cost function Y are finite sets.14

This fact has been intended as an argument in favour of the specialisation of algorithms:
one does not need an algorithm that performs well on all possible functions, but only on
a subset that arises from the constraints of the real-life problem. It is, indeed accepted
that, in order to make some progress in the search, there must be some regularity in the
function and the no free lunch theorem tells us that there is no reason to believe that an al-
gorithm would do better than a random search unless the operators of the algorithm are
correlated to those regularities. Recently, research has focused on the problem of finding
the classes of functions where the no free lunch theorem does not hold. In particular, one
important issue is whether the no free lunch theorem applies to instances of a specific com-
binatorial optimisation problem, as for example, different types of graphs in the graph
colouring problem. Schumacher et al. (2001) showed that the results of the no free lunch

14We do not use the notation S and R for X and Y because the no free lunch theorem applies to more
abstract definitions.

2.5 Discussion 37

theorem hold only for the subset of functions which are closed under permutation while
Igel and Toussaint (2003) investigate the implications of this result on neighbourhood
methods for combinatorial optimisation problems. However, these results still do not
prove whether instance types have also a strong influence on algorithm performance.
Empirical results suggest that the answer to this issue must be affirmative.

Other theoretical results prove the asymptotic convergence to the global optimum of
some stochastic local search methods. Proofs under specific conditions exist for simu-
lated annealing (Hajek, 1988; Faigle and Kern, 1991), for some probabilistic and deter-
ministic tabu search algorithms (Glover and Hanafi, 2002; Faigle and Kern, 1992), for
genetic algorithms (Rudolph, 1994), and for specific ant colony optimisation algorithms
(Gutjahr, 2002; Stützle and Dorigo, 2002). However, these results have no significant
impact in practice.

More interesting, from a practical point of view, may be worst case results. Examples
of this type are mainly concerned with the maximal satisfiability problem in logic. Al-
imonti (1996) and Khanna et al. (1998) developed and studied local search algorithms
with approximation guarantees on a generalised version of this problem. Mastrolilli
and Gambardella (2004) extend worst case studies to tabu search algorithms. Alterna-
tive and complementary to approximation analysis is domination analysis that determines
for a given combinatorial problem the fraction of solutions that are not better than the
solutions found by a heuristic algorithm (Gutin et al., 2003). The main application of this
analysis concerned heuristics for the travelling salesman problem (Gutin et al., 2002).

Finally, a theory of complexity exists also for local search algorithms. The class PLS
for polynomial time local search consists of those problems and neighbourhood struc-
tures in which (i) some initial solution can be produced in polynomial time, (ii) the cost
of the solution can be computed in polynomial time and (iii) determining whether the
solution is locally optimal or, if not, generating an improved neighbouring solution can
be done in polynomial time. Note that in this definition the number of steps needed to
reach a local optimum is not mentioned, which in most cases cannot be bounded by a
polynomial. Similarly to the case of search problems and to the classes P and NP , the
concept of PLS-complete problems is introduced to denote the problems for which no
local search is known that finds a local optimum in a polynomial number of steps and
to which all other problems can be polynomially reduced. Showing that for a PLS-
complete problem there exists a local search that finds local optima in polynomial time
would imply that finding a local optimum in polynomial time can be accomplished for
all problems in PLS (Johnson et al., 1988). Few problems and neighbourhood structures
that are of interest for practical reasons have been shown to be PLS-complete. Among
them are the TSP with the Lin-Kernighan algorithm and the partitioning of a weighted
graph with the Kernighan-Lin algorithm, the probably two most famous variable depth
algorithms.

2.5. Discussion

We introduced combinatorial optimisation problems and we focused on common meth-
ods for solving them. These solution methods provide frameworks to look at the prob-
lem under specific formalisms. In principle they can be applied to any situation. How-

38 Stochastic Local Search Methods for Combinatorial Optimisation

ever, expertise in only one single method can lead to poor algorithms for a specific
problem. Problems should be analysed from the point of view of different solution
methods outside of any predetermined framework. The task of a researcher in this field
is, then, to unveil which are the best choices for problems that are likely to be of wide
application. For real-world problems with many constraints, which are relevant only for
contextual applications, the task of understanding the best solution approach is left to
the practitioner. Nevertheless, as we will see, the adoption of a systematic engineering
methodology can bring big advantages in this context.

In the case of stochastic local search methods, we saw that several components must
be defined. Techniques for determining an initial solution, solution representation, eval-
uation function, neighbourhood structures, etc. cannot be standardised, but require to
be specifically investigated for the problem at hand.

Crucial for the success of an SLS algorithm is the definition of the neighbourhood
structure. Its definition and analysis will receive central attention throughout the whole
thesis. In particular, we are interested in the assessment of very large-scale neighbour-
hoods which can be searched effectively. Ahuja et al. (2002) and Thompson and Orlin
(1989) showed that for problems that can be formalised as partitioning problems, it is
possible to design a cyclic or path exchange neighbourhood which is searched effectively
by a dynamic programming approach. Graph colouring has indeed the propriety of be-
ing a partitioning problem. Cyclic and path exchange neighbourhoods, as conceived by
Ahuja et al. (2002), appear even more powerful than variable depth methods because
the neighbourhood may be searched exhaustively. Previous results with VLSN appear
to be encouraging and in some cases new algorithms with best peak performances are
obtained. A list of published works on different problems is maintained online by Ahuja
and Orlin.15 As a consequence of this arising interest in VLSN, its application and as-
sessment on the graph colouring problem is of timely interest.

Another interesting aspect of SLS algorithms is the possibility of easily assembling
different algorithms thus obtaining hybrid methods. Usually, hybrid algorithms out-
perform basic implementations and since the scope of this thesis is studying high-
performance algorithms for the mentioned problems, in practice we end up studying
hybrid algorithms. Almost all the typologies of hybridisations introduced in Section
2.4.4 will be applied. Providing a methodology for their development which is likely
to work also for different problems from those studied here is a hard task. An attempt
in this direction will be given in Chapter 6, where we try to outline some guidelines
for the application of hybrid SLS techniques that imply the combination of several com-
ponents and metaheuristics. The hybrid algorithm, which is selected for solving the
timetabling problem, may also be very inspiring for applications to different problems.
Support to this claim is provided by the fact that the final algorithm designed by a team
of researchers, including the author, for solving the car sequencing problem proposed in
the context of the ROADEF 2005 competition ended up being very similar to the one re-
ported here, although the development procedure was completely different (Risler et al.,
2004). However, we are convinced that the only correct procedure for the development
of hybrid SLS algorithms is the adoption of a systematic experimental methodology for
iterative refinements of the algorithm.

15R.K. Ahuja and J.B. Orlin. VLSN Papers. March 2005. http://www.ise.ufl.edu/ahuja/vlsn/index.htm.
May 2005.

http://www.ise.ufl.edu/ahuja/vlsn/index.htm

2.5 Discussion 39

There are, of course, several other important elements of combinatorial optimisation
which remain marginal to our discussion. One of such aspects are parallel algorithms.
Computer industry is shifting towards parallel processors machines16 and research has
been recently focusing on systematic analysis of parallel computation algorithms. In the
field of SLS methods, Crainic et al. (1997) propose a taxonomy of parallel metaheuristics
and present methodological lines and possible future research directions.

Another recent field of research, which requires separate theoretical modelling, is on-
line optimisation. In many practical situations not all input data that define a problem
instance are available in advance and decisions have to be made based on incomplete
knowledge. In an online optimisation problem, the input is modelled as a (finite) se-
quence of requests which are supplied to the algorithm incrementally. Then, an online
algorithm produces the output incrementally without knowing the complete input. An
alternative way to deal with online optimisation is stochastic optimisation which assumes
probability distributions of the inputs and search for the best solution on average (see
Bianchi et al., 2004 for a case study). Stochastic optimisation is also strictly connected
with programming under uncertainty which is of main interest above all in financial ap-
plications. In this thesis, we confine ourselves to consider static and deterministic prob-
lems, in which all the data of the instance are completely known in advance.

16It has been recently announced by Intel and AMD that the next step to enhance their respective Pentium
4 and Opteron processors will be the release of dual-core processors, that is, chips that contain two
processors both running at the same frequency.

Chapter 3.

Statistical Methods for the Analysis of
Stochastic Optimisers

In which we define the experimental designs that are of interest for the assessment of
algorithms and define the appropriate statistical methods for their analysis.

3.1. Introduction

Stochastic local search methods perform well in practice. Yet, their theoretical characteri-
sation is hard and, often, with scarce practical impact. The assessment of SLS algorithms
is therefore carried out through empirical analyses. The central issue of these analyses
is the comparison of algorithms among each other and against benchmark algorithms
that constitute the state-of-the-art for a given problem. In this chapter, we define the
statistical methodologies for carrying out such empirical comparisons of stochastic op-
timisers in a systematic and correct way. Statistical methods have only been recently
recognised as appropriate procedures for the assessment of algorithm performance and
a clear methodology has not yet been established. Our contribution is the identification
of the test procedures which may be applied in different possible scenarios of analysis.
Parametric statistics seems inappropriate for describing algorithm performance because
some of its assumptions are very likely to be violated in this context. We focus, there-
fore, also on alternative methods from non-parametric statistics. In particular, we define
permutation tests for experimental designs that are of interest in the comparison of al-
gorithms and we provide the algorithmic procedure for their implementation. Some of
these procedures are a novel contribution of this thesis. In addition to this, we develop a
visualisation of results for multiple comparisons by means of simultaneous confidence
intervals which allows for an immediate visual perception of descriptive as well as in-
ferential statistics. This representation, inspired by applications of parametric statistics,
is here firstly suggested also for the non-parametric methods. The implementation of
permutation tests is a current active field of research in Applied Statistics and their
introduction and application in the analysis of algorithm performance is new.

The statistical tests thus defined may then be used in sequential testing as a way to
reduce the computational efforts of large scale experiments. Sequential tests constitute a
particularly helpful tool in the development of SLS algorithms when a priori no knowl-
edge is given on which approaches are preferable and a high number of valid alterna-

42 Statistical Methods for the Analysis of Stochastic Optimisers

tives arises. The results of the experiments guide the development of SLS algorithms
and we call this process SLS algorithm engineering.

In the Chapter, we also discuss other empirical methods which are useful for gaining
deeper insights on the behaviour of specific SLS algorithms. These are the representa-
tion of algorithm behaviour over time and the characterisation of problem search space
landscape.

3.2. The need for the empirical approach

There are two ways to study the performance of algorithms: one is analytical and relies
on mathematical proofs and the investigation of combinatorial properties, the other is
experimental and relies on empirical observations. It has been for a long time debated
whether empirical methods to analyse algorithms are appropriate. Two main criticisms
have been put forward against them. The first is that data structures, coding style, com-
piler, and machine have an influence on the experimental performance of an algorithm.
Hence, algorithm implementations are irreproducible and one cannot establish that an
algorithm is efficient or inefficient independently of the apparatus used to test it. The
second critic is that in fact machines execute only deterministic procedures and, there-
fore, it should be possible to deduce their properties in a formal way without need for
empirical tests.

Hooker (1996) uses the analogy with physics to reply to these critics. In physics,
on the one hand, the principle of uncertainty states that it is impossible to observe
the microscopic world without having an influence on it. Thus, similarly, a precise
description of complex algorithms without influence of implementation details is likely
to be impossible. Nevertheless, this should not discourage us from performing practical
tests and relying on their results. The focus must be on a level of analysis which has
practical relevance. On the other hand, a mathematical deductive method could be
adopted to explain physical phenomena but the complexity of the systems analysed
makes it often impossible for a human mind to yield a theoretical characterisation and
empirical methods are used, therefore, to suggest and verify hypothesis. In a similar
manner, complex algorithms with heuristic choices and long procedures are very hard to
be formally understood and empirical testing is needed for gaining insights of practical
relevance.

The analogy with physics can be further extended by considering that both the the-
ory of relativity, which explains macroscopic phenomena, and the quantum mechanics,
which explains microscopic phenomena, admit the classical physics as a good approx-
imation for problem sizes of daily experience. Similarly, although a precise characteri-
sation of algorithmic operations is possible, it can be limited to a low level of analysis
while for problems of larger scale an approximation can be perfectly sufficient for prac-
tical scopes.

Moret (2002) gives further credit to the empirical analysis of algorithms arguing that
theoretical analysis alone is not enough. For example, the O(·)-notation simplifies the
analysis to make results well understood and machine independent. Nevertheless, a
lower asymptotic running time may imply better performance only on instance sizes
much larger than those that we want to solve. In Chapter 6, we will meet one such case

3.3 Application scenarios 43

where an exact algorithm that runs in O(|V||C|) is preferred over one in O(
√|V||C|)

because the sizes of the instances to solve are small and the first algorithm is empirically
faster on those sizes of interest. In other cases, the constants that are hidden from the
O-notation may as well have a large impact.

Similarly, the results on the worst-case behaviour of an algorithm may be restricted to
a very small subset of instances. An example is the simplex method whose behaviour,
despite its exponential worst case, is typically a low-degree polynomial. Approximation
algorithms with performance guarantees may present a similar pattern: the results they
find may be much better than their worst case guarantees. Empirical studies are there-
fore needed even for algorithms with alleged theoretical results. A recent example with
approximation algorithms for scheduling problems is given by Savelsbergh et al. (2005).

All these elements pushed the algorithmic community to include implementation and
testing as an integral part of algorithm development and to recognise empirical tests as
equally important as theoretical analysis. In recent years, several papers have tried to set
out guidelines for empirical research on algorithms (Barr, Golden, Kelly, Resende, and
Stewart, 1995; Pardalos and Romeijn, 2002; Rardin and Uzsoy, 2001; Cohen, 1995; John-
son, 2002; Moret, 2002) and two related areas of research called Experimental Algorith-
mics and Algorithm Engineering have been established (Fleischer, Moret, and Schmidt,
2002).

All these arguments acquire even more emphasis when we are concerned with stochas-
tic local search algorithms. The stochastic character of these algorithms entails the im-
possibility to characterise deterministically the whole procedure. In practice, machines
cannot work randomly, but procedures that generate random numbers use sequences of
numbers such that foreseeing the successor is very hard. Theoretical analyses in this case
must rely on probabilistic methods. Empirical analyses, sustained by statistical meth-
ods, can, however, provide more precise indications with higher relevance for practical
applications. In this context, a rising level of interest has been addressed to rigorous
methods for experimental design of computational tests and statistical analysis of their
results. Statistical methodologies are used also for the tuning of the parameters required
by stochastic local search algorithms. Unfortunately, besides several papers promoting
the use of systematic methodologies in the analysis of empirical data, in practice, papers
in combinatorial optimisation which use these instructions are rare.

3.3. Application scenarios

Experiments on algorithms are conducted to gain insights of practical relevance. They
are therefore defined in relation to the context of an application. We make a first dis-
tinction between two basic contexts: the research context and the practical context.

Research context: Experiments in this context are designed to make powerful statistical
inference on the performance of existing algorithms on a well known and possi-
bly standard enough problem. Results should be reusable and should be precise
enough for the cases studied. New algorithms must be fairly tested against ex-
isting ones. Experiments are also designed to discover or to confirm conjectures
about why an algorithm works or why not. In this case, explanations should be

44 Statistical Methods for the Analysis of Stochastic Optimisers

made general enough to go beyond the specific problem. There is no pre-defined
class of instances to study. Typically, random instances or instances with some
structure are deemed good representatives of possible real life applications. In fact,
instances as much diversified as possible should be considered, possibly grouped
in well defined classes.

Practical context: This is the case of real-life applications where the environment and
the instances are usually quite specific. Algorithms must be designed and trans-
formed into efficient and useful implementations. Often they must be hybridised,
configured and tuned. All this process is referred to as SLS algorithm engineering
and case studies show that experimental techniques are helpful tools to achieve
high quality final results.

A second possible distinction concerns the kind of applications for which the algo-
rithm is designed. This distinction determines how fast an algorithm must be in re-
turning a solution. Its understanding is important for the definition of the termination
criterion for SLS algorithms, in terms of computation time.

1. In a design scenario problems must be solved infrequently and one answer is suf-
ficient to cover long periods. Examples of applications are some typologies of
timetabling, like railways or airplane timetables, frequency assignment in the de-
sign of network infrastructure, or facility location. For many such problems it is
very unlikely that an exact algorithm exists. Quality is critical but computation
times of several hours or days are affordable.

2. In a control scenario problems must be solved frequently and decisions have a short
horizon. Examples are memory allocation, multiprocessor scheduling, routing of
data in networks. Exact algorithms usually exist but heuristics are used because
answers must be obtained almost in real time. Solution quality is often less impor-
tant.

3. A planning scenario is an intermediate case between the previous two. Some ex-
amples are short term timetabling, like weekly employee shift assignments, or
production planning. In these cases a solution must be given in short time (from
few minutes to few hours) and quality matters. Exact algorithms may exist but are
often not appropriate because they are too slow.

In this chapter we present four systematic experimental methods, which can be adopted
in all these scenarios. Design of experiments with statistical analysis of results is the cor-
rect procedure for a research context, in which the analysis of algorithms goes beyond
the mere understanding of which is the best. Two further methods, time dependent profile
and search landscape analysis, go even deeper in the analysis of algorithms’ behaviour and
try to derive some general patterns. Sequential testing is, instead, the choice for practical
contexts where algorithms must be engineered, and determining the best in the most
efficient way is the main issue.

3.4 Performance measurement 45

3.4. Performance measurement

The performance of optimisation algorithms that return approximations of optimal so-
lutions, are described by two variables: the quality of the solution and the computation
time to produce it.

If optimisation algorithms are evaluated on the basis of their ability to solve an in-
stance to optimality or to produce a given solution quality, performance can be assessed
by measuring the computation time (also called run time). In order to make run times on
different machines comparable, transformation ratios may be used which are obtained
by running on all the machines a benchmark code that implements similar algorithmic
operations as those of the algorithms studied. When possible, measuring basic algo-
rithmic operations which are common to all algorithms, removes machine dependencies
and is, therefore, a better choice.

However, in the case of SLS methods, which do not have a natural termination crite-
rion and the longer the run time the better the solution quality should be, the compari-
son among several algorithms is carried out on a different basis. The common practice is
to allow all algorithms to consume the same amount of computational resources (Rardin
and Uzsoy, 2001 refer to this as the “fairness principle”) and to restrict the attention to
the solution quality. (In such an experimental setting, algorithms with a natural termi-
nation condition should be restarted if they end before the time limit imposed.)

A convenient measure for solution quality is the “distance”, or error, from the optimal
value. This measure exhibits two problematic issues. The first is the determination
of the optimal solution, given that, for the cases of our interest, exact methods are
infeasible. There may be cases in which the optimal solution is known from the process
of construction of the instances. An alternative possibility is the substitution of the
optimal solution quality with bounds or approximations. Unfortunately, these values
are often weak indicators of the optimal values. Statistical estimation techniques based
on extreme value theory constitute another alternative for the estimation of optimal
solutions. Accordingly, the distribution of the best solutions in n independent solution
samples is approximated by a Weibull distribution and a confidence interval for the
optimal solution quality can be derived from there. These techniques have been applied
in the field of combinatorial optimisation (McRoberts, 1971; Dannenbring, 1977; Golden
and Alt, 1979; Smith and Sucur, 1996; Ovacik et al., 2000), but further investigations
on more problems are necessary to assess the actual reliability of their estimates. A
last possibility, widely used in common practice, is the comparison of results with best
known solutions. To this end, instances are used that belong to well known benchmark
sets for which a collection of good solutions is made available by previous studies. If
instead instances are new, then as best solution can be taken the best produced by any
of the algorithms involved in the comparison. It might also be a choice to perform
long time runs of a good algorithm and record the best solutions found, unless this is
computationally too expensive. The drawback of relating the analysis to best known
results is that the comparison becomes biased by these values and it may change if the
best known values improve.

The second problematic issue in the definition of a measure for the error is that dif-
ferent instances exhibit different scales of solution costs. If we denote the cost of the

46 Statistical Methods for the Analysis of Stochastic Optimisers

solution found on a run of an algorithm on an instance i as c(i) and the optimal cost,
or a possible approximation of it, as copt(i), the relative error |c(i)− copt(i)|/copt(i) may
help to make results among instances more comparable. Zemel (1981) defines an error
measure as “proper” if it remains invariant under some trivial transformation on the
instance that leaves the problem equivalent. The relative error is not always proper and
he proposes as a more robust measure

e(c, i) =
c(i)− copt(i)
c′(i)− copt(i)

(3.1)

where c′(i) is the worst solution cost. Unfortunately, deriving the worst solution cost
may be a problem as hard as finding copt. Zlochin and Dorigo (2002) suggest then the
use of a surrogate value for c′(i), that is, the expected cost of a uniform distribution of
solutions or the expected cost produced by a most standard algorithm, such as a heuris-
tic or a random solution generator. With this latter choice, besides being more invariant
than the relative error, the error measure 3.1 has also the practical property of providing
an immediate indication of how much better an algorithm performs compared to an el-
ementary algorithm. A value of the error e(c, i) close to 1 indicates that the performance
of the two algorithms are similar.

A different approach from considering an error measure is the transformation of re-
sults into ranks. This method is appealing in experiments with algorithms on several
instances because each instance can be seen as a judge who assigns a vote to the algo-
rithms. A ranking procedure operates within instances and assigns value 1 to the best
result, value 2 to the next, etc., with duplicate ranks allowed in the case of identical
results. Chiefly important, ranking on instances provides results which are invariant
with respect to different instance scales. Nevertheless, ranking necessarily reduces the
information available, as it neglects the entity of differences among algorithms on single
instances.

3.5. Statistical analysis

Statistics is the field of mathematics that studies the probability of events on the ba-
sis of inference from empirical data. We distinguish between descriptive statistics and
inferential statistics.

In descriptive statistics, data are collected and used for descriptive purposes only. Pro-
cedures for presenting and summarising data are, for example, tables, graphs and mea-
sures of central tendency and variability. Common measures of central tendency are
data’s mean and median. Common measures of variability are the range, the quantiles, the
inter-quantile ranges, the standard deviation, and the variance. Box-plots permit, instead, to
visualise contemporaneously several elements of the whole distribution of data. We use
a box to represent the data between the two quartiles in the distribution, and a cross
to represent the median value. “Whiskers” are then extended to data points that are
no more than 1.5 times the interquartile range away from the boxes while extreme data
outside these boundaries are represented by circles. An example is given in Figure 3.1.

In inferential statistics, data are employed to make inference or predictions about one
or more populations from which the samples have been drawn. Whereas a population

3.5 Statistical analysis 47

Response
−2 0 2

0.0

0.1

0.2

0.3

0.4

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

Response
−2 0 2

Alg. 1

Alg. 2

Alg. 3

Alg. 4

Alg. 5

Figure 3.1.: Empirical distributions and box-plots for the results of 5 algorithms on 5 instances.
The 30 results for each algorithm–instance pair are sampled from standardised normal distri-
butions under the alternative hypothesis of algorithms with different performance. The reader
should compare this representation with the one after the statistical analysis of Figure 3.3.

consists of the total subjects that share something in common, a sample is a set of subjects
which have been drawn from that population. To differentiate characteristics of the
sample, called statistics, from characteristics of the population, called parameters, it is
common practice to use Latin letters and lower Greek letters. Thus, for example, µ

and σ2 are respectively the mean and the variance of a population while X̄ and s2 are
respectively the arithmetic mean and variance of the sample. To be useful for making
inference, the sample must be representative of the population. A random sample is
usually satisfactory. Once the sample is taken, the two main methodologies used in
inferential statistics are hypothesis testing and parameter estimation.

In Hypothesis testing two statistical hypotheses are evaluated: the null hypothesis, com-
monly represented by the notation H0, and the alternative hypothesis, represented by H1.
The null hypothesis is the statement of no difference between population parameters
that the researcher expects to reject, while the alternative hypothesis states the presence
of a difference. According to the type of alternative hypothesis, the test can be one-sided
or two-sided. The testing procedure consists in evaluating an appropriate test statistic S
and determining if the value of S from the observed sample is highly unlikely to occur
under the null hypothesis. Within this procedure, it is possible to commit two types

48 Statistical Methods for the Analysis of Stochastic Optimisers

of errors. An error of Type I occurs when a null hypothesis is rejected, although it is
true. The likelihood of committing this type of error is specified by the α level assumed
a priori in the evaluation of the experiment (α determines the level of significance in
the statistical inference). An error of Type II occurs when a false null hypothesis is not
rejected. The likelihood of committing this type of error is denoted by β. The likelihood
of rejecting a false null hypothesis, 1− β, represents the power of the statistical test. The
power of a test for a fixed α depends on the statistic, the sample size, and the alternative
hypothesis.

In parameter estimation, statistical inference is carried out by determining a range of
values within which the true value of a population parameter falls with a given degree
of confidence. Such a range of values is referred to as a confidence interval. As an
example, a 95% confidence interval for a population mean indicates that there is 95% of
probability that the true mean of the population falls in that interval.

We, finally, remark that the separate use of descriptive and inferential statistics may
lead to weak conclusions. If samples are large, inferential statistics are likely to de-
tect even very small differences between populations but these small differences may
have no practical relevance. On the other hand, practically relevant differences observed
through descriptive statistics should not be claimed without guarantees on their statis-
tical significance. A correct analysis of experimental results must therefore necessarily
combine both, descriptive and inferential statistics.

3.6. Design and analysis of experiments

A basic computational experiment to compare algorithms is collecting several runs for
each algorithm on a single instance. More reasonably, algorithms may be tested on
several instances and the experiment can be visualised as a matrix with algorithms in
the columns and instances in the rows. Instances may be completely independent or
grouped by structural characteristics such as size.

In order to make experiments effective, a precise methodology has been developed in
a branch of statistics known as experimental design (Dean and Voss, 1999). We review the
main steps of this methodology with reference to our specific context.

3.6.1. Experimental design

Statement of the objectives of the experiment
A list of the questions to be answered by the experiment must be made explicit. The in-
terest may be merely on the comparison of different algorithms or it may be extended to
investigate how instance characteristics affect the algorithms. Another possible interest
may be the analysis of algorithms components and their effect on algorithm perfor-
mance.

3.6 Design and analysis of experiments 49

Identification of sources of variance
Source of variations are all the components that cause observations to have different
numerical values. It is possible to distinguish two type of sources: those that are of
particular interest to the experimenter, called treatment factors, and those that are of no
interest, called nuisance factors.

Treatment factors are high-level components whose influence on the data is to be stud-
ied. They can be defined as numerical or cathegorical variables, this latter if there are two
or more categories, but there is no intrinsic ordering to the categories. The levels of a
treatment factor are the specific values or cathegories actually used for the treatment fac-
tor in the experiment. For instance, the tabu length in a Tabu Search algorithm is known
to have an influence on its performance; hence, it may be considered as a treatment fac-
tor, while the specific numerical values assigned to it define the levels of the treatment.
Besides tabu length, also the aspiration criterion has an influence; then we may want to
consider an experiment with two treatment factors, namely the tabu length and the as-
piration criterion. The levels of the aspiration criterion are categorical, i.e., “present” and
“not-present”. The combinations of levels are usually called treatment combinations and
an experiment involving two or more treatment factors is called a factorial experiment. In
a single factor experiment the term treatment is commonly used to denote a level of the
treatment factor.

Nuisance factors are factors not explicitly controlled in the experiment. In the context
of optimisation, the instances of the problem to be solved constitute a nuisance factor as,
for example, in the general case no a priori knowledge is given on their optimal solution
or on their hardness. For each treatment combination, an instance must be chosen for
testing, thus defining thoroughly the experimental unit. Usually, units of a nuisance factor
are distributed at random (randomisation principle). For example, each algorithm could
receive a different, randomly chosen, instance. A different approach, called blocking,
is however more appropriate in the context of comparisons of algorithms. Each single
instance is identified as a block and the response of each algorithm is observed the same
number of times on each block. This gives rise to a complete block design.1 Rardin and
Uzsoy (2001) point out that well designed computational experiments for algorithms
always block completely on instances.

It may be possible that we identify more than one nuisance factor, as there are two
or more sources of variations that had been supposed to have an effect but that may
not be controlled. In this case nuisance factors become stratification variables and blocks
arise from their combinations. In the analysis of algorithms, two typical stratification
variables are size and structure of the instances. The instances remain the blocks of a

1More generally, in experimental design the objects to which treatments are applied in the experimental
unit are referred to as subjects. In a between-subject design, different subjects serve in each of the ex-
perimental conditions while in a within-subject design, each subject serves under all the experimental
conditions. A within-subject design corresponds to a complete blocking design. A design involving
matched-subjects is also treated as a within-subjects design. In a matched-subjects design, each subject is
paired with one or more other subjects who are similar with respect to one or more characteristics that
are highly correlated with the response variable. In this sense, an instance solved under all algorithmic
conditions may be considered a matched-subject. A complete block design is only possible when the
number of homogeneous subjects, which constitute the single block, v, are multiples of the number of
treatments, k. Historically, the case with k = v is called randomised complete block design, while the cases
with larger v are called general complete random design. We do not need these distinctions here, since the
same instance can be reused on all treatments within the single block.

50 Statistical Methods for the Analysis of Stochastic Optimisers

single blocking factor but they can be “stratified” by the size and structure variables.2

With stochastic algorithms, successive trials can produce quite different outcomes.
To avoid being mislead by results which are very different from expected, it is common
practice to collect replicates3 of the observations in each experimental unit, that is, several
runs are performed with different random seeds. As we discuss next, replicates may not
be necessary if it is possible to have many instances. McGeoch (1992) points out that,
in order to reduce the variance of results, a common random seed among algorithms
should be used for each replicate.

Definition of the test instances
Rardin and Uzsoy (2001) distinguish four kinds of instances: real world instances, ran-
dom variants of real instances, online libraries and randomly generated instances. Real
world instances are particularly appropriate for real applications but usually only few
data are available and the test for the efficacy of the algorithm proposed remains re-
stricted to the particular context with small general relevance. Random variants of real
instances try to maintain the main structure of the instance varying the details. This
possibility received however little attention in practice. The vast majority of the litera-
ture measures the efficiency of algorithms on benchmark instances from online libraries.
Such libraries are an invaluable tool since they allow immediate comparisons with other
published works. However, they may have the following pitfalls: (i) they might not be
representative of any real application, (ii) they might have been designed for illustrating
pathological behaviours, (iii) they might have been chosen because they are particularly
suitable for some algorithms, and, (iv) they may induce an over-tuning of algorithms on
those instances, reducing the effort to study the behaviour of the algorithms under var-
ious situations. Completely random instances are the last alternative when not enough
data for the problem under study are available. Random instances have several advan-
tages: (i) they can be generated in large number, (ii) their characteristics may vary, thus
widening the study of algorithm behaviour, (iii) if generators are well documented the
features of the instances may be known thus allowing to discover relationships between
algorithms and problems, and (iv) in some cases, optimal solutions or lower bounds
may be known from the construction process. On the other side, they are not represen-
tative of any real application and they may induce an over-tuning of algorithms over the
particular generation process.

Birattari (2004b) investigates the problem of testing stochastic algorithms on problem

2 In the more general context of experimental design, two nuisance factors may be crossed, if the experi-
ments to be carried out are too many and running a complete design is too costly. A design with crossed
nuisance factors is represented by a Latin square. In a Latin square, the rows and the columns of the
matrix correspond to the two nuisance factors, and each cell, which corresponds to a block, receives
a treatment level. The number of resulting experiments is considerably reduced, although some good
characteristics are maintained. Indeed, the particularity of Latin square design is that, if column head-
ings are ignored (if a blocking factor is removed), the design looks like a randomised complete block
design; similarly, if the row headings are ignored, the design with columns as blocks looks like a ran-
domised complete block design. Note that generating Latin squares implies solving a graph colouring
problem, as we will see in Chapter 4. In a Latin square design, all treatment and nuisance factors, must
have the same number of levels. A possible generalisation are Youden Designs (Dean and Voss, 1999).

3In the language of experimental design, the number of replicates is given by the number of times an
original observation is replicated. Hence, it does not include the original observation itself. In this
thesis however, we assume that the number of replicates corresponds to the number of runs without
distinguishing between original observation and replicate.

3.6 Design and analysis of experiments 51

instances from a machine learning perspective. He points out that the practical relevance
of testing algorithms is to forecast the performance on new future instances. However,
he observes that in real applications instances are not all equally likely to appear. He
then introduces a formal definition for the concept of classes of instances. This definition
is based on a probabilistic model, in which each instance is identified by its probability
of appearing. Following this model, the performance of an algorithm over a class of
instances is described by a stochastic variable determined by the probability distribution
of results on a given instance and the probability distribution of the instances in the
class. The expected performance of an algorithm on a class of instances is then the
average performance attained on each single instance weighted by the probability that
an instance has to occur.

Two important consequences arise from this probabilistic model. First, algorithms
should be selected and configured on classes of instances which are representative sam-
ples of the distribution of instances that the algorithm will be called to solve in practice.
The identification of this representative sample of instances is an important aspect for
a realistic assessment of algorithm performance and must be taken into account when
“engineering” the algorithm. Secondly, the best experimental setting for estimating the
expected performance of a given algorithm, on the basis of a given number of exper-
iments N, can be derived analytically. Contrary to a popular belief, there is no trade
off between the number of runs and the number of instances. The setting “one single
run on N different instances” guarantees that the variance of the estimate is minimised.
Any other experimental setting fails being equally efficient in terms of the reduction of
the variance. This result is proven in Birattari (2004a).

Selection of the combinations of factor levels to test
Depending on the computational power available and the duration of the experiment
it must be decided between the two alternatives: full factorial experiments and fractional
factorial experiments. The former alternative consists on running all combinations of
algorithm factors on all the instances. Usually, computer experiments are not too costly
in terms of time and this design is more likely to detect statistical differences. The
latter alternative is mainly used in engineering (see Montgomery, 2005). It consists in
choosing a subset of factor level combinations such that effects are not confounded. We
will not consider this design in this thesis.

Refinement of the experimental design
Running a pilot experiment is a good practice which may help to better define the
experiment. A pilot experiment also helps to identify ceiling or floor effects. Ceiling
effects arise when test instances are insufficiently challenging, while floor effects arise
in the opposite case of instances which are equally hard to solve. In these cases, it is
very hard to gather any statistically significant conclusion and those instances may be
removed. It may also become clear that some levels of factors do not have any impact
on the observations or that some values assigned to the levels must be better rescaled.
In experiments involving algorithms, pilot experiments are also useful to make sure
that no bug is present and that all algorithms work under the same conditions. For
example, detecting a correlation between the number of runs and the performance of
the algorithm may indicate that memory is not correctly deallocated between repeated
runs. Finally, from pilot experiments it is possible to estimate the number of replicates

52 Statistical Methods for the Analysis of Stochastic Optimisers

that are necessary to attain a desired level of statistical power.

Outline of the analysis
From the definition of the factors involved in the experiment it is possible to hypothesise
a model to put in relation the response variable with the sources of variation. Commonly
a linear relation is assumed. The simplest model arises in a single factor design and is
expressed in the form

Response = constant + effect of treatment + error.

A complete block design is instead expressed in the form

Response = constant + effect of block + effect of treatment + error.

The models are used for testing the statistical hypotheses. The outcome of this kind
of analysis is an indication whether the treatments or other factors have statistically
significant influence on the response variable. If the interest is at a finer level of analysis,
meant to establish differences among specific treatments, then a different procedure for
multiple comparisons is undertaken.

The kind of analysis depends on the assumptions concerning the populations under
analysis. If there are reasonable elements to assume a certain probability distribution,
then a parametric analysis may be appropriate. In contrast, if those assumptions are
uncertain, a non-parametric analysis is safer. This choice may have an impact also on
the number of replicates to collect in the experiment. For example, collecting many
replicates (more than 30) makes a parametric analysis more practicable.

Once the experiment has been designed and the data has been collected, results must
be analysed. In the following sections we define the statistical methods for the correct
analysis.

3.6.2. Statistical tests

We distinguish three types of statistical tests to draw inference on a pair of statistical
hypothesis H0 and H1: parametric, permutation, and rank-based tests.

There is a general agreement among statisticians that data should be evaluated with
the appropriate parametric test, if there is no reason to believe that some assumptions, on
which these tests are based, are violated (Sheskin, 2000). A procedure for parametric test
is outlined in Algorithm 3.1. Parametric tests are the most powerful tests when observa-
tions are independent and identically distributed with a known theoretical distribution.

When the probability distributions of the populations involved in the comparison are
unknown, or heavy tailed, or asymmetric, it is possible to derive the distribution of
a test statistic from the empirical observations by using permutation tests (Good, 2000;
Pesarin, 2001). Generating all possible distinct permutations of data, it is possible to
derive the probability distribution of a chosen test statistic and check whether the test
statistic of the original observations yields a value which is highly unlikely to appear
under the null hypothesis. The test achieved may thus be exact, that is, the type I error

3.6 Design and analysis of experiments 53

1. Choose a test statistic, F, whose probability distribution under H0 p(F) is
known independently from the observations;

2. Compute F relative to the observations X;

3. Compare F(X) with the upper α-percentage point of p(F) (in case of one-
sided tests) and accept or reject H0 according to whether F(X) is smaller or
larger than this value.

Algorithm 3.1: Typical procedure of parametric tests.

1. Choose a test statistic T;

2. Compute the observed value of the test statistic T : T0 = T(X) from the
original set of observations;

3. Obtain the permutation distribution of T under H0 by generating all pos-
sible rearrangements (corresponding to the permutations) of the observed
data and compute the value of the test statistic T on each rearrangement
X∗: T∗ = T(X∗). (Rearrangements correspond to exchanging a number of
observations between the treatments that are compared. With two or more
samples, all the observations are combined into a single large sample before
being rearranged);

4. Obtain the upper α-percentage point z (in case of one-sided tests) of the per-
mutation distribution of T and reject H0 if T0 for the original observations is
smaller or larger than the z value.

Algorithm 3.2: Typical procedure of permutation tests.

of the test is exactly the a priori chosen significance level. This test procedure is outlined
in Algorithm 3.2.

If the sample size is not very small, generating all possible permutations at the third
step becomes computationally prohibitive; in this case, an approximate test can be ob-
tained by a sampling without replacement from the space of all possible permutations.
With a sample of size B, the value z in the fourth step is given by #{T∗ ≥ z}/B = α

(for one-sided tests). Approximate permutation tests are also known as randomisation
methods (Cohen, 1995). More precisely, (Pesarin, 2001) defines them as Conditional Monte
Carlo methods where the term conditional emphasises that the re-sampling procedure is
conditional to the observed data. In the implementation of these methods, each distinct
permutation must have the same probability to occur and this requires careful attention
in the implementation. We address some of these implementation issues in Appendix
B. Various sources (Good, 2000; Pesarin, 2001; Anderson and ter Braak, 2003) suggest
using at least samples of size 1000 for tests with an α level of 0.05.

Rank-based tests are permutation tests applied to the ranks of the observations rather
than their original values. Since for a given sample size, ranks have the same values
independent of the actual values of the observations, the significance levels of the test
statistics can be tabulated and heavy computations avoided (Hollander and Wolfe, 1999).
Apparently, rank-based tests are less powerful than permutation tests and parametric
tests but the same power may be reached by increasing the number of observations (see

54 Statistical Methods for the Analysis of Stochastic Optimisers

Good, 2000 and the Appendix for more details on this issue). The loss of power is due to
the loss of information caused by the transformation of data. Nevertheless, rank-based
tests remove problems related with the normalisation of results and with the presence
of outliers in the samples which may affect the exchangeability of observations. The
procedure for a rank-based test is outlined in Algorithm 3.3.

1. Choose a test statistic S;

2. Replace the original observations Xij, i = 1, . . . , k, t = 1, . . . , n by their ranks
in the combined sample Rij = R(Xij), k = 1, . . . , kn and compute the observed
value of the test statistic S : S0 = S(Rij);

3. Compare S0 with the upper α-percentage point (in case of one-sided tests) of
the tabulated distribution and reject H0 if S0 is larger than this value.

Algorithm 3.3: Typical procedure of rank-based tests.

Common statistical packages contain pre-implemented procedures to compute the
parametric tests as well as rank-based tests. Rare are, instead, packages with methods
for permutation tests, one of the reasons being that the test statistic can vary arbitrarily
and that these procedures have not yet been tested enough. The GNU project R, a
language and environment for statistical computing and graphics, makes possible the
implementation of such tests both in its dedicated language or in an embedded language
such as C to which it may interface. The second choice has to be preferred, as an
optimisation of the code is an important issue for the heavy computations required in
some cases by permutation tests.

3.6.3. All-pairwise comparisons

It is usually the case, when comparing algorithms, that the interest is on making infer-
ence on multiple hypotheses rather than a single general hypothesis. In this case, the
interest is on the statistical significance of each single pair-wise comparison. In an all-
pairwise comparison each treatment is compared with every other treatment and a family
of null hypotheses is tested. The null hypotheses, for example, concern the differences
of pairs of parameters µi and µj with i 6= j, that is, H0ij : {µi = µj}, for all i < j,
i = 1, . . . , k, j = 1, . . . , k. This entails testing c = k(k− 1)/2 hypotheses.

In the context of multiple comparisons the probability of rejecting at least one null
hypothesis when it is true is called family-wise error rate (Hochberg and Tamhane, 1987).4

The family-wise error rate αFW is equal to 1− (1− αPC)t where αPC is the error rate at
each single test and t the total number of tests (or hypotheses tested). In order to control
the family-wise error rate at the desired level of confidence (for example, 0.05) the level
of confidence per comparison must be adjusted. When comparisons are planned before
collecting the data, the control of the family-wise error rate requires a lower degree

4More precisely a family-wise error rate in strong sense defines the probability of rejecting at least one null
hypothesis when it is true while a family-wise error rate in weak sense makes reference to the probability
of rejecting the global null hypothesis only (i.e., µ1 = . . . = µk). We avoid to consider the weak sense and
refer only to the strong sense.

3.6 Design and analysis of experiments 55

of adjustment. This is the case of some specific types of comparisons called multiple
comparison with the best or multiple comparison with a control or the more general multiple
comparison of contrasts, i.e., linear combinations of means (we refer the reader to Dean
and Voss (1999) and Hsu (1996) for a full treatment of these cases). An all-pairwise
comparison, instead, maximises the number of comparisons conducted and requires a
stronger adjustment, as t becomes equal to c = k(k − 1)/2 (Hsu, 1996). Yet, there is
a lack of consensus on the degree of adjustment to undertake because of the possible
presence of implications (and hence dependency) between some of the hypothesis. Thus,
a variety of methods for adjusting αPC have been proposed.

The basic method treats all comparisons as independent and consequently adjusts the
per-comparison error rate as αPC = 1− (1− αFW)1/c. Such adjustment is quite conserva-
tive.5 An even more conservative approach is the Bonferroni’s method. Based on the fact
that (1− α)1/c < 1− α/c, Bonferroni suggests to adjust αPC = αFW/c. The difference
between (1− α)1/c and 1− α/c is however typically very small and no practical differ-
ence exists between the two methods. Slightly more complex are step-wise approaches
like the sequentially rejective Holm’s method. In this method the p-values obtained by
the c tests are ordered in nondecreasing order and compared in order against the levels
αFW/c, αFW/(c− 1), . . . αFW/1 (Holm, 1979). Both, Bonferroni and Holm’s methods give
a strong control of the family wise error rate and in general the Bonferroni’s correction is
dominated by Holm’s method, which is also valid under arbitrary assumptions. Other
possible methods are step up methods and closed testing methods. For more details
we refer to Hochberg and Tamhane (1987), Shaffer (1995), Hsu (1996), and Ekenstierna
(2004). Here, we will mainly focus on methods that yield an equal αPC on all the hy-
potheses tested. The reasons for this choice are related with the graphical representation
of results that we intend to produce.

Multiple comparisons can be carried out by means of simultaneous confidence intervals
or simultaneous tests (Hsu, 1996). Computing simultaneous confidence intervals offers
the possibility to represent results graphically and to infer the significance of differences
by visual inspection. In this respect, we endorse the view of the statistician J. Tukey:
“the best single device for suggesting, and at times answering, questions beyond those
originally posed is the graphical display”.6 We will, therefore, give preference to mul-
tiple comparisons procedures for simultaneous confidence intervals and only mention,
when necessary procedures for multiple testing.

We proceed by reviewing the statistical tests for three different experimental designs:
several runs on one single instance, one single run on various instances, and several runs on
various instances. The first is not relevant for us but it serves as an introductory case.

3.6.4. Design A: Several runs on one single instance

In this first design, we compare k algorithms on the basis of r runs collected on one
single instance. Each algorithm constitutes one of the k treatments of the factor. The

5The term conservative is related to the power of the test. Decreasing αPC the power 1− β also decrease
making smaller the probability of detecting significant difference when there is actually one.

6D. R. Brillinger, “John Wilder Tukey (1915-2000)”, Notices American Mathematical Society. 49 (2) (2002),
193-201.

56 Statistical Methods for the Analysis of Stochastic Optimisers

Algorithm 1 Algorithm 2 . . . Algorithm k

X11 X21 Xk1

X12 X22 Xk2
...

...
...

X1r X2r Xkr

Figure 3.2.: Design with several algorithms and several runs per algorithm on one single in-
stance.8

data consist of k random samples of equal size r, one sample per algorithm. We denote
the i-th random sample by Xi1, Xi2, . . . , Xir and Xit the replicate t of algorithm i. Then,
the data can be represented in the columns of a matrix as shown in Figure 3.2.

Each measured response Xit may be expressed as the sum µi + εit, where µi is the “true
response” and εil an error given by the presence of nuisance variation. If we assume that
the variance of the response is due to the differences in means of the responses of the
algorithms, the model can be rewritten as Xit = µ + αi + εit, where αi are the algorithm
effects, corresponding to the deviations from µ due to the i-th algorithm. Note that the
only assumption of this model is the linearity of the relation.

The question of interest is whether the algorithms differ in terms of their effects on
the response variable. This corresponds to test the general null hypothesis H0 : {α1 =
α2 = . . . = αk} and the alternative hypothesis is H1 : {at least one of the αi differs}.

More specifically, the interest may be on the all-pairwise comparisons. In this case the
family of null hypotheses is given by H0(ij) : {αi = αj} for i < j, i = 1, . . . , k, j = 1, . . . , k
and of the alternative hypotheses by H1(ij) : {αi 6= αj} for i < j, i = 1, . . . , k, j = 1, . . . , k.

Parametric tests
The analysis studies the reasons of variance in the linear model above and it is com-
monly referred to as ANOVA (Dean and Voss, 1999; Montgomery, 2005). Let X̄i. =
∑r

t=1 Xit/r and X̄.. = ∑k
i=1 ∑r

t=1 Xit/kr. The sum of squares of the deviations around the
grand mean X̄.. may then be decomposed into two sums

k

∑
i=1

r

∑
t=1

(Xit − X̄..)2 =
k

∑
i=1

r

∑
t=1

(Xit − X̄i.)2 +
k

∑
i=1

r(X̄i. − X̄..)2

the first of which represents the within-group sum of squares, and the second the between-
group sum of squares.

The statistic for testing that the main reason of variance are the k algorithms rather
than the random variation in the replication of the observations is given by the F-ratio
(also known as Snedecor’s F) of the adjusted between-group variance on the within-group
variance. Introducing the abbreviations MSA and MSE for the mean square per algorithm
and the mean square per error, respectively, the F-ratio is given by

8This design has the algorithms as single factor and may also be referred to as several independent samples
(Conover, 1999), single factor between-subjects (Sheskin, 2000), one way analysis of variance (Dean and Voss,
1999; Montgomery, 2005), and one way layout (Hollander and Wolfe, 1999).

3.6 Design and analysis of experiments 57

F =
MSA
MSE

MSA =

k
∑

i=1
r
(
X̄i. − X̄..

)2

k− 1
MSE =

k
∑

i=1

r
∑

t=1

(
Xit − X̄i.

)2

kr− k
(3.2)

In general, large enough values for the F-ratio imply that the between-group variance is
the main reason of variance and, hence, there is a strong effect of the treatments.

Under the assumption that the results of the algorithms are independent, normally dis-
tributed and with equal variance, i.e., homoschedastic, the numerator and denominator of
the F-ratio follow a χ2 distribution and the F-ratio follows the Fisher distribution Fd f1,d f2

with d f1 = k− 1 and d f2 = r− k degrees of freedom.

In order to check whether the assumption of normality of the distributions of the data
are reasonable it suffices to examine the distribution of the standardised residuals from
the fitted linear model. The residuals are the observed values êit = Xit − X̂it where
X̂it are the estimated values from the least squares regression of the linear model. The
standardised residuals reflect the underlying distributions of data and if they are inde-
pendent, homoschedastic among the algorithms, and normally distributed with mean
equal to zero and variance equal to one then the ANOVA test is applicable. The in-
spection of these properties may be done visually. If normality does not arise, it may
still be possible to apply some transformation of the data, the most common are square,
square-root, logarithm, and inverse, or to remove outliers from data if these are deemed
influential in the analysis.

In parametric all-pairwise comparisons, confidence intervals for the differences of
the algorithm sample means are derived. Then, any pair of algorithms i and j with
mean response µi and µj are declared significantly different at a family-wise level αFW
if |X̄i − X̄j| > MSD, where X̄i = ∑t Xit/r and MSD is the minimal significant difference.
Several parametric methods to derive MSDs have been proposed in the literature. We
will focus on the Tukey’s Honest Significant Difference (HSD) method that, according to
Hsu (1996) is particularly suitable for all pairwise comparisons. The minimal significant
difference between sample means is computed as

MSDHSD = q(αFW /2,k,k(r−1))

√
MSE

r
(3.3)

where qα,d f1,d f2 is the Studentized range distribution. The Tukey test is very similar to a
t test, where the t distribution is substituted by the Studentized range distribution that
automatically adjusts the comparison-wise error rate αPC by controlling the family-wise
error rate. More specifically, the relation to the t test with Bonferroni’s adjustment for
multiple comparisons (also known as Fisher’s Least Significant Difference9) is qαFW ,d f1,d f2 ≈√

2 · tαPC ,d f2 . If k = 2, the Tukey’s method coincides with the t test. For a description
of other methods like the Scheffé’s method, also appropriate for all-pairwise comparisons,
we refer to Hsu (1996) and to Dean and Voss (1999).

A graphical representation of simultaneous confidence intervals based on MSDs is
given in Figure 3.3. The graph is obtained by attaching error bars to a scatter plot of the

9Often, in the literature, the Fisher’s least square significant method is also applied without adjustment.
In this case, it is said to be protected if it is applied only after the rejection of the general null hypothesis,
and unprotected if the general null hypothesis is not checked. Compare with Montgomery (2005) and
Hsu (1996).

58 Statistical Methods for the Analysis of Stochastic Optimisers

 All−pairwise comparisons

Response
−0.5 0.0 0.5

Alg. 1

Alg. 2

Alg. 3

Alg. 4

Alg. 5

Figure 3.3.: All-pairwise comparisons by means of simultaneous confidence intervals for the
average response. The spread of the intervals is computed by means of the Tukey formula; the
distributions of the original data is given on Figure 3.1.

estimated effects versus treatment labels. The lengths of the error bars are adjusted so
that the population means of a pair of treatments can be inferred to be different if their
bars do not overlap. From the definition of MSD, the bars correspond to X̄i ±MSD/2.10

We remark that this graphical representation is possible only for tests where the si-
multaneous confidence intervals have the same width for all individual comparisons.
Step-wise methods or comparisons between distributions with different variance are not
included. This is because there is no guarantee of finding the half-lengths of the error
bars when the MSDs are comparison dependent (Hsu, 1996). A different representation
to cope with these cases will be discussed relatively to Figure 3.8.

Permutation tests
With permutation tests we may neglect the assumption that the underlying distributions
are normal and restrict ourselves to assume that Xit are independent and identically
distributed (hence, still homoschedastic but not anymore normally distributed) or ex-
changeable with respect to algorithms.11 Then, under the null hypothesis, all (kr)!/(r!)k

assignments of r observations to the treatments 1, . . . , k are equally likely. For each per-
mutation of data, denoted as X∗, we can compute the test statistic T∗ = F(X∗) using the
F-ratio of Equation (3.2) as in the parametric case. In fact, given that some terms remain
invariant under permutation, the statistic can be simplified to

T′ =
k

∑
i=1

(
∑r

t=1 Xit
)2

r
(3.4)

10Note that the statement that the population mean of an algorithm i falls inside the confidence inter-
val [X̄i −MSD/2, X̄i + MSD/2] at the level of confidence αFW is improper because the width of the
confidence interval MSD is derived for the differences of means and not for the single means.

11A set of random variables (observed data) is said exchangeable if for any permutation of indexes
π(1), . . . , π(kr) we have P(X1, X2, . . . , Xkr) = P(Xπ(1), Xπ(2), . . . , Xπ(kr)). While the assumption of iden-
tical and independent distributions implies the exchangeability of data the converse is not necessarily
true.

3.6 Design and analysis of experiments 59

Procedure Compute_all-pairwise_MSD();
Choose an estimated error ε related with B;
Start: Choose a positive number MSD;
for all (i, j) of the k(k− 1)/2 pairwise comparisons do

if Compute_pairwise_MSD(i, j) returns false then goto Start;
end
Return MSD.

Procedure Compute_pairwise_MSD(i, j);

1. Subtract X̄i. − X̄j. + MSD from every value of the data group relative to one
of the two treatments, say i, obtaining the new vector
Xit(MSD) = Xit − X̄i. + X̄j. −MSD, i = 1, 2, ..., r. This vector is combined with
the vector Xjt and constitutes the pool of observation to permute.

2. Compute the statistic T(MSD) for the observed response
T(MSD) : T0(MSD) = X̄i.(MSD)− X̄j.(MSD).

3. By rearranging the observations B times obtain the permutation distribution
of the statistic T∗(MSD) : X̄∗i.(MSD)− X̄∗j.(MSD).

4. Return “true” if the condition |#(T∗(MSD) ≤ T0(MSD))/B− αPC/2| < ε/2 is
satisfied, else return “false”.

Algorithm 3.4: An algorithm for computing simultaneous MSDs in the case of re-
peated measures. The confidence level 1− αPC is set equal to 1− αFW .

For generating all the permutations data are first pooled in a single vector and then
permutations of this vector are considered. In doing this (r!)k permutations yield the
same statistic value and are superfluous. When using Monte Carlo sampling procedures
however, the presence of superfluous permutations does not affect negatively the anal-
ysis, as equal permutations are equally weighted for each algorithm and their inclusion
does not invalidate the analysis.

To the best of our knowledge, no attempt has been done to derive simultaneous con-
fidence intervals for multiple comparisons from permutation tests. Pesarin (2001) sug-
gests a procedure for obtaining permutation confidence intervals for the difference of
means between two treatments. We extend this procedure to the case of all-pairwise
comparisons in Algorithm 3.4. The algorithm constructs the interval by extending an
initial width until it reaches a value that satisfies, at a confidence level of 1− αPC, all
individual comparisons. The level 1− αPC is set equal to 1− αFW (in the appendix we
compare this choice we the value adjusted from the family-wise level with Bonferroni
and verify empirically that the adjustment is not needed). The procedure of Pesarin
(2001) is used for checking whether the minimal significant difference between two al-
gorithms i and j guarantees the declared level of confidence. An initial value for MSD
can be the value provided by one of the parametric methods, as, for example, from the
t test MSD = tαPC ,kr−k ·

√
2 ·MSE/r, and, in case, made slightly smaller. The final value

for the MSD returned by Algorithm 3.4 is then used for the graphical representation of
the simultaneous confidence intervals in correspondence to each X̄.i..

60 Statistical Methods for the Analysis of Stochastic Optimisers

Rank-based tests
The rank-based counterpart is the Kruskal-Wallis test. The collection of all observations
Xit is ranked jointly, Rit = R(Xit), i = 1, . . . , k, t = 1, . . . , r, with rank 1 given to the best
response, 2 to the second best, and so on; in case of ties, ranks are averaged. Then the
test statistic SKW is computed as

SKW =
1

V2

k

∑
i=1

R2
i

r
− kr(kr + 1)2

4
; V2 =

1
kr− 1

(
∑
it

R2
it − kr

(kr + 1)2

4

)
(3.5)

where Ri is the sum of the ranks assigned to the i-th algorithm, that is, Ri = ∑t R(Xit).
The formula is valid for the general case of the presence of ties in the results. Under the
null hypothesis, and for a large enough design size, the distribution of the test statistic
SKW is approximated by the χ2 distribution with k − 1 degrees of freedom (Conover,
1999).

A procedure for simultaneous confidence intervals in all-pairwise comparisons when
all kr observations are ranked jointly is derived from the Kruskal-Wallis model. In this
case, confidence intervals are computed for the differences between means of ranks
R̄i − R̄j of two algorithms and these differences are claimed statistically significant if
|R̄i − R̄j| > MSDKW where

MSDKW = t1−αFW /2

√
V2 · kr− 1− SKW

k(r− 1)
· 2

r
(3.6)

where V and SKW are derived from Equation 3.5. In the formula, the level of confidence
is not adjusted, hence, it is suggested to adopt at least the protection of testing first the
general hypothesis (given by Equation 3.5) and continuing only if it is rejected (Conover,
1999).12

This method assumes that all kr results are ranked together. Hence, each individual
comparison between two algorithms, i and j, depends also on the observations of the
other k− 2 algorithms. It may then be opportune to corroborate the inference with the
Mann-Whitney test adapted for simultaneous testing with an opportune adjustment of
the α-value. In this test, results are ranked only between the two algorithms involved in
the comparison and the more powerful Holm’s adjustment procedure may be adopted.

3.6.5. Design B: One single run on various instances

In this case, the data consist of b mutually independent k-variate random variables
X = (Xh1, Xh2, . . . , Xhk), with h = {1, . . . , b}, b the number of instances (i.e., the blocks),
and k the number of algorithms (i.e., treatments). The random variable Xhi describes the
observation relative to the i-th algorithm on instance h. The data can be arranged in a
matrix as shown in Figure 3.4.

12Other authors give different formulas (Sheskin, 2000, Hollander and Wolfe, 1999), while Hsu (1996)
criticises the joint ranking approach and suggests a method in which ranks are computed for pairs of
algorithms.

14In the literature this design is also referred to as single factor within-subjects design Sheskin (2000) or one
way analysis of variance with complete blocking design Dean and Voss (1999).

3.6 Design and analysis of experiments 61

Algorithm 1 Algorithm 2 . . . Algorithm k

Instance 1 X11 X12 X1k
...

...
...

...

Instance b Xb1 Xb2 Xbk

Figure 3.4.: Design with several algorithms on various instances and one single measurement.14

The linear model must include the effects of the instances (blocks) θi, because in a
blocking design their influence on the response variable is assumed important. Hence,
the model becomes Xhi = µ + αi + θh + εhi.

Parametric tests
The test for the general hypotheses is again derived from the decomposition of the vari-
ance and relies on the F-ratio of Equation 3.2. The terms of the ratio are now expressed
by

MSA =
b

k
∑

i=1
(X̄.i − X̄..)2

k− 1
; MSE =

b
∑

h=1

k
∑

i=1

(
Xhi − X̄h. − X̄.i + X̄..

)2

bk− b− k + 1
(3.7)

Under the assumptions of independence, homoschedasticity, and normality, the F-ratio
follows a Fisher distribution with k− 1 and bk− b− k + 1 degrees of freedom Dean and
Voss (1999). The effect of the algorithms αi is then statistically important if the computed
F is larger than the upper α-percentage point of this distribution.

The value of the MSDs for the simultaneous confidence intervals in the all-pairwise
comparisons is given by Tukey’s HSD method similarly to the single factor case. The
formula is

MSDHSD = q(αFW /2,k,bk−b−k+1)

√
MSE

b
(3.8)

where the only changes are on the degrees of freedom and on the term MSE that now
is given by Equation 3.7. Connections for this method may be found to the t test with
matched-pairs.

Permutation tests
Here observations are exchangeable only “within” instances while they are not “be-
tween” instances. The total number of possible permutations is (k!)b, that is, k! possible
permutations for each of the b blocks. The test statistic may be the F-ratio or the follow-
ing, which is easier to compute:

T =
k

∑
i=1

(b

∑
h=1

X∗hi

)2
(3.9)

For the implementation of the test, a vector of results is maintained for each instance
and the elements of each vector permuted in all possible ways. For an optimisation of
the code, the procedure can be implemented in such a way that in each new permutation

62 Statistical Methods for the Analysis of Stochastic Optimisers

of data only one vector changes in a minimal-change order. Alternatively, each vector is
shuffled randomly in Monte Carlo simulations.

Algorithm 3.4 is easily adapted to compute MSDs in all-pairwise comparisons in the
current design. The only change is the way permutations are applied in procedure
Compute_pairwise_MSD. Specifically, since permutations can only occur within instances
and differences between pairs of data are needed, the permutation distribution of the
statistic S can be obtained by generating all possible permutations of b “+/−” signs.
The use of Gray Code to generate these permutations in minimal-change order (Press
et al., 1992) may be useful to increase the size of the experiments for which a exact tests
may be obtained without the need to use Monte Carlo simulations.

Rank-based tests
The method of ranks for a two-way design is due to Friedman (1937). The consequent
Friedman test consists in ranking the data in each row of the matrix of Figure 3.4 and
then testing whether rank means for the several columns can be supposed to be equal.
The test statistic is

SF =
12
bk2

k

∑
i=1

(b

∑
h=1

Rhi

)2
− 3b(k + 1) (3.10)

where Rhi is the rank entered for the i-th algorithm on the h-th instance. If b and k are
not too small, SF tends to be distributed like a χ2 distribution with k − 1 degrees of
freedom. When there are only three treatments, instead, a more appropriate test is the
Quade test (Conover, 1999).

An issue related to the Friedman test is whether the b sets of ranks are strongly
correlated one another or if they are unexpectedly independent. A test to check the
significance of a certain correlation is obtained by the ratio of the observed variance
of the sum of ranks on the columns and their maximal variance and is called Kendall’s
coefficient of concordance (Sheskin, 2000). This test is however not independent from the
Friedman test. If instances influence in a different “direction” the results of different
algorithms, then the Friedman test will not be significant even if the algorithms do not
perform the same, for, in such a case, the mean ranks of the k algorithms may all have
the same expected value, although the k ranks for each instance do not (Friedman, 1937).

For all-pairwise comparisons, we distinguish two approaches. Based on the Friedman
test and the same joint ranking procedure, the minimal significant difference between
rank means of any two algorithms i and j, |R̄i − R̄j|, according to Conover (1999), may
be computed as15

MSDF = t1−αFW /2,d f ·
√

2(b ∑hi R2
hi −∑i R̄2

i)
b2(b− 1)(k− 1)

; d f = (b− 1)(k− 1) (3.11)

15Daniel (1978), Sheskin (2000), and Hollander and Wolfe (1999) indicate a different approximation based
on the standardised normal distribution z or on the Studentized range distribution. We were unable
to show analytically that the different formulas coincide. In contrast, the values for the MSD provided
by Equation 3.11 result always tighter than those attained by the formulas given by the other authors.
Moreover, Hsu (1996) observes that methods for all-pairwise comparisons based on Friedman-type joint
ranking may exhibit an actual probability of making at least one incorrect assertion larger than αFW .

3.6 Design and analysis of experiments 63

Algorithm 1 Algorithm 2 . . . Algorithm k

Instance 1 X111, . . . , X11r X121, . . . , X12r X1k1, . . . , X1kr

Instance 2 X211, . . . , X21r X221, . . . , X22r X2k1, . . . , X2kr
...

...
...

...

Instance b Xb11, . . . , Xb1r Xb21, . . . , Xb2r Xbk1, . . . , Xbkr

Figure 3.5.: Design with several algorithms on various instances and repeated measures.16

To guarantee a minimal control over the family-wise error rate, the application of this
formula is recommended only if the general null hypothesis has been rejected through
the test statistic of Equation 3.10.

The second approach is the Wilcoxon matched-pairs simultaneous testing procedure,
which might be used to corroborate the inference on all-pairwise comparisons produced
by the Friedman test. Whereas with the Friedman method the k observations are ranked
together within each block, and, hence, each individual test between two algorithms
i and j depends also from the observation value of the other k − 2 algorithms, in the
Wilcoxon test the comparison between each pair of algorithms is carried out on the basis
of signed-ranks. These are the ranks from the smallest to the largest absolute matched-
differences Dh = |Xih − Xjh|, with any difference Dh = 0 being removed. In this case,
since we do not look for MSDs of equal width, the more liberal Holm’s adjustment can
be used for controlling the error produced by multiple tests.

3.6.6. Design C: Several runs on various instances

For each experimental unit algorithm–instance r, r > 1, independent runs are collected.
Again, the instances are blocks and observations in different blocks are assumed to be
independent. Data may be viewed as random samples of size r of b mutually indepen-
dent k-variate random variables, X = (Xhi1, Xhi2, . . . , Xhir), where k is the number of
treatments, b the number of blocks, and r the number of observations per experimental
unit. The random variable Xhit is the t-th realization on block h for algorithm i. Data
may be visualised as in Figure 3.5.

Here, two cases may be distinguished. In a first case, we consider as unimportant the
interaction between individual instances and algorithms and the model summarising
the experiment is Xhit = µ + αi + θh + εhit. Nevertheless, the question raised in Section
2.4.5 on whether an algorithm performs the same on all instances of a specific prob-
lem remained unsolved and it may be interesting to test whether there actually is an
interaction. Collecting more than one observation per instance, makes it possible to test
for this effect. This gives rise to a second case in which the model is extended to in-
clude also an interaction effect (αθ)hi between algorithms and instances and it becomes
Xhit = µ + αi + θh + (αθ)hi + εhit.

16This design corresponds to a several treatments with blocking factor and repeated measures design. In
the literature it is also referred to as single factor mixed design (Sheskin, 2000), and one way analysis of
variance with complete blocking and repeated measures (Dean and Voss, 1999).

64 Statistical Methods for the Analysis of Stochastic Optimisers

Parametric tests
The test is again derived from the analysis of variance.

In the first case, the terms in the F-ratio are computed as

MSA =
br

k
∑

i=1
(X̄.i. − X̄...)2

k− 1
; MSE =

b
∑

h=1

k
∑

i=1

r
∑

t=1

(
Xhit − X̄h.. − X̄.i. + X̄...

)2

bkr− b− k + 1
(3.12)

Then, under the parametric assumptions, the F-ratio follows a Fisher distribution with
k− 1 and (b− 1)(k− 1) degrees of freedom.

In the second case, besides the effect of the algorithms αi, we may want to test also
the effect of the interaction (αθ)hi. We distinguish the F-ratios needed to do so with FA

and FAθ , respectively. The terms in the numerator and denominator then are

MSA =
br ∑k

i=1(X̄.i. − X̄...)2

k− 1
MSAθ =

r
b
∑

h=1

k
∑

i=1
(X̄hi. − X̄h.. − X̄.i. + X̄...)2

(b− 1)(k− 1)

MSE =

b
∑

h=1

k
∑

i=1

r
∑

t=1

(
Xhit − X̄hj.

)2

bk(r− 1)

(3.13)

and under the parametric assumptions FA ∼ Fk−1,bk(r−1) and FAθ ∼ F(b−1)(k−1),bk(r−1).
Note that the main effect of the blocks is not tested because not relevant, as we cannot
control the instances.

All-pairwise comparisons may be carried out again with Tukey’s method. For the
model without interaction, the formula for the minimal significant difference between
the means X̄.i. is

MSDHSD = q(k,bkr−b−k+1,αFW)

√
MSE

br
(3.14)

where the term MSE is given by Equation 3.12.
For the model with interaction, the formula for comparing the means X̄.i. becomes

MSDHSD = q(bk,bkr−bk,αFW)

√
MSE

br
(3.15)

with the term MSE given by Equation 3.13. However, if the interaction is significant
(we suppose to have tested this effect before proceeding to all-pairwise comparison) the
analysis of all-pairwise comparisons could also proceed separately for each instance.
On each instance h the minimal significant difference for the average response of two
algorithms i and j, X̄hi. − X̄hj. is computed from Equation 3.15 with br replaced by r in
the denominator.

Permutation tests
Permutation tests for factorial layouts are a current active direction of research of ap-
plied statistics (Loughlin and Noble, 1997; Good, 2000; Pesarin, 2001; Anderson and ter
Braak, 2003). Recently, the method of using synchronised permutations introduced by

3.6 Design and analysis of experiments 65

2

1

1 2 3
In

sta
nc

es

Algorithms

2

1

1 2 3

In
sta

nc
es

Algorithms

Figure 3.6.: A pictorial representation of the two procedures for generating synchronised per-
mutations: constrained synchronised permutations on the left and unconstrained synchronised
permutations on the right. In both cases, 3 observations are exchanged between algorithms 1
and 2, but while on the left the data are maintained fixed in their positions, on the right they are
shuffled before the exchange.

Pesarin (2001) is receiving increasing interest. Nevertheless, the correct implementation
of such tests is still an open issue and they must undergo severe simulation analysis
before becoming widely accepted. Accordingly, the test for the general hypothesis of an
algorithm effect αi is obtained as follows. An intermediate statistic is computed within
each instance h for any two algorithms i and j as T∗ij|h = ∑t Xiht −∑t Xjht. Then, for each
instance there are k(k− 1)/2 intermediate statistics, each comparing two different algo-
rithms. If for each pair i and j the number of swapped observations ν∗ij is maintained
equal among all blocks, that is, if permutations are synchronised along the instances, then
the set of intermediate statistics ∑h T∗ij|h depends only on treatment effects and on errors
(Pesarin, 2001) while the instance and the interaction effects are removed. Thus, the test
statistic

T∗A = ∑
i<j

(b

∑
h=1

T∗ij|h
)2

(3.16)

gives rise to an exact permutation test for the effect of the algorithms, which is valid
independently from the presence of interaction. The test statistic for checking the inter-
action effect is given by

T∗Aθ = ∑
i<j

(
∑
h<l

T∗ij|h − T∗ij|l
)2

(3.17)

which depends only on the interaction effects and on a linear combination of errors. Pe-
sarin (2001) observes that, contrarily to the parametric F test, the two statistics obtained
by synchronised permutations are uncorrelated and better satisfy the natural require-
ment of separating main effects from interactions. This allows to consider permutation
solutions competitive even within parametric assumptions.

Pesarin (2001) indicates two possible procedures to generate the synchronised permu-
tations of data: constrained synchronised permutations (CSP) and unconstrained synchronised
permutations (USP). In the first case, elements in exactly the same corresponding coor-
dinates (represented by the index t) are exchanged in all instances. Thus, exactly the
same permutation is applied to each instance giving rise to (2r

r) different restricted per-

66 Statistical Methods for the Analysis of Stochastic Optimisers

mutations from which the values of the intermediated statistic are derived. The same
number of values can receive also the statistic T∗A. In the second case, the same number
of elements are exchanged after shuffling data in each instance. This procedure gives rise
to ∑r

ν∗=1 (r
ν∗)

2 different restricted permutations for each intermediate statistics. Then, the
possible alternative permutations for the statistic T∗A are ∑r

ν∗=1 (r
ν∗)

2b. In Figure 3.6 we
give a pictorial representation of the difference between the two procedures. We observe
that CSP allow to control the minimal attainable α-size of the test, although in general
USP give lower minimal attainable α-sizes. In practice, when the number of design repli-
cates is small (say 2 or 3) and the design includes more than 3 blocks (instances), USP
should be preferred. When there are more than 3 replicates, then CSP may be adopted.
In both USP and CSP, the permutation distributions of the test statistic in Equation 3.16
are symmetric. In the case of CSP, this fact makes feasible the generation of all permu-
tations until replicates of size 7, as in this case the number of permutations to consider
is only 1716. For r > 7, instead, the distribution of the statistic may be approximated
by Monte Carlo sampling. An exact solution for USP is instead much more complicated
and so far only Monte Carlo simulations have been attempted. Nevertheless, in the case
of Monte Carlo simulations a problem is to have each different permutation to appear
with equal probability. In Algorithm 3.5, we give the algorithm for computing the test
statistic on a sampled permutation in both the CSP and the USP scheme.17 The proce-
dures must then be repeated for a chosen number B of Monte Carlo simulations or, in
the exact case of CSP, for all distinct (2r

r)/2 permutations of labels. In case of the test
for interactions, the procedures of Algorithm 3.5 are easily adapted by substituting the
“for” cycle on the blocks with a cycle on all distinct pairs of blocks and computing the
statistics accordingly.

In all-pairwise comparisons, the simultaneous confidence intervals are derived by the
procedures in Algorithm 3.6 which is very similar to the one of Algorithm 3.4.

Rank-based tests
Conover (1999) gives an extension of the previously described Friedman test to the two-
way design with replicates. Here, ranks are created within rows of the matrix of Figure
3.5 and, hence, go from 1 to rk. Denoted as Ri the sum of ranks for the i-th algorithm,
Ri = ∑h ∑t Rhit, the test statistic to check the effect of algorithms in the general case with
presence of ties is given by

SF =
k

∑
i=1

(k− 1)
k

[Ri − E(Ri)]2

Var(Ri)
(3.18)

where E(Ri) and Var(Ri) are the population mean and variance which, in presence also
of ties, are given by

E(Ri) =
br(rk + 1)

2
Var(Ri) =

r(k− 1)
k(rk− 1)

[
∑
hit

R2
hit −

rkb(rk + 1)2

4

]
If the design size is not too small, the distribution of SF tends again to a χ2 distribution
with k− 1 degrees of freedom.

17In the algorithm for the USP the implementation of the step to select ν∗ij is still under revision. A tentative
solution is given in the Appendix.

3.6 Design and analysis of experiments 67

Procedure Compute_statistic_in_CSP();
T∗ = 0;
generate a random permutation π of labels {1, . . . , 2r};
for all k(k− 1)/2 distinct pairs (i, j) do

for h = 1, . . . , b do
Let Xpool = Xhi ∪ Xhj be the set of the 2r pooled observations;
X∗hi = Xpool [π(1), . . . , π(r)];
X∗hj = Xpool [π(r + 1), . . . , π(2r)];
T∗ = T∗ + (∑t Xiht −∑t Xjht)2;

end
end

Procedure Compute_statistic_in_USP();
T∗ = 0;
Select ν∗ij from {0, 1, . . . , r} with a probability distribution that allows each
permutation to appear with equal probability;
for all k(k− 1)/2 distinct pairs (i, j) do

for h = 1, . . . , b do
X∗hi = shuffle Xhi;
X∗hj = shuffle Xhj;
swap X∗hit with X∗hjt for t = 1, . . . , ν∗ij;
T∗ = T∗ + (∑t Xiht −∑t Xjht)2;

end
end

Algorithm 3.5: Synchronised permutations for a two way factorial design.

Studying interactions with the instances by means of sums of ranks has been rarely
attempted. Some references to works on this issue are given in Conover (1999) and
Lehmann (1986). The Kendall’s coefficient of concordance may be adapted to this case
and employed to assess the degree of dependence of the ranked results on the instances.

For all-pairwise comparisons, Conover (1999) gives the following formula to compute
the minimal significant difference between means of ranks R̄.i.

MSDF = t1−α/2

√
2k(kr− 1)Var(Rj)

br2(k− 1)(bkr− k− b + 1)

[
1− TF

b(kr− 1)

]
(3.19)

where SF is the statistic obtained by Equation 3.18 and the rejection of the general hy-
pothesis through SF is first required. However, both these tests on ranks can be obtained
also by the very same procedures given for permutation tests, simply substituting the
original data with their ranks.18

18We observed that the confidence intervals produced by permutation tests with the scheme of Algorithm
3.5 on ranks are always slightly larger than those obtained by using Equation 3.19. Apparently, therefore,
this algorithm is more conservative.

68 Statistical Methods for the Analysis of Stochastic Optimisers

Procedure Compute_all-pairwise_MSD();
Choose an estimated error ε related with B;
Start: Choose a positive number MSD;
for all (i, j) of the k(k− 1)/2 pairwise comparisons do

if Compute_pairwise_MSD(i, j) returns false then goto Start;
end
Return MSD.

Procedure Compute_pairwise_MSD(i, j);

1. Subtract X̄hi. − X̄hj. + MSD from every value of the data group relative to one
of the two algorithms, say i, obtaining the new vector Xhit(MSD) =
Xhit − X̄hi. + X̄hj. −MSD, i = 1, 2, ..., r. This vector is combined with the
vector Xhjt and constitutes the pool of observations to permute.

2. Compute the statistic T(MSD) for the observed response
T(MSD) : T0(MSD) = ∑h

(
X̄hi.(MSD)− X̄hj.(MSD)

)
.

3. By rearranging the observations B times with synchronised permutations
within the b blocks (see Algorithm 3.5) obtain the permutation distribution of
the statistic T∗(MSD) : ∑h

(
X̄∗hi.(MSD)− X̄∗hj.(MSD)

)
.

4. Return “true” if the condition |#{T∗(MSD) ≤ T0(MSD)}/B− αPC/2| < ε/2
is satisfied, else return “false”.

Algorithm 3.6: An algorithm for computing simultaneous MSDs in the case of re-
peated measures. The confidence level 1− αPC is set equal to 1− αFW .

3.6.7. Remarks

Remark 1. If it is possible to control more than one factor in the determination of
the algorithms, or a stratification of the instances is available, then we may consider a
full factorial design. This arises, for example, when it is possible to characterise an al-
gorithm by different parameters, or when instances are grouped, according to size or
other features, in sub-groups called strata. The variables which identify the strata are
not controlled, but they are supposed to have an effect on the experiment and their
identification may be important to reduce the variance of the results. Testing for interac-
tion of strata variable is more meaningful than testing the interaction of single instances
because whenever we are faced with a new instance, we would know to which class
it belongs. A full factorial design is typically represented as in Figure 3.7. Let A and
B be two factors (or strata) with respectively i and j levels and let b be the number of
instances. For each combination of factor levels r runs are collected. The response Xhijt
is the result obtained in a replicate t by the treatment combination i,j on the instance h.

The parametric tests for analysing a full factorial design are extensions from the two-
way design. A series of rules that can be applied to derive each test statistic are reported
in Dean and Voss, 1999, page 202. Common computer packages, like the R environment,
have however these methods already implemented.

In full factorial designs, interaction plots are particularly helpful for the analysis. They
are constructed by joining lines relative to levels of one factor at average response values

3.6 Design and analysis of experiments 69

Block Factor Factor

(Instance) A B Observations

1 1 1 X1111, X1112, . . . , X111r
...

...

kB X11kB1, X11kB2, . . . , X11kBr

2 1 X2111, X2112, . . . , X211r
...

...

kB X21kB1, X21kB2, . . . , X21kBr
...

...
...

...

b
...

...
...

kA 1 XbkA11, XbkA12, . . . , XbkA1r
...

...

kB XbkAkB1, XbkAkB2, . . . , XbkAkBr

Figure 3.7.: Full Factorial with complete blocking

of the levels of another factor and they are used to gain an idea of how different com-
binations of factor levels affect the responses. If the lines are not parallel, then a factor
level performs differently with different levels of the other factor and an interaction may
be hypothesised (see Chapter 4 for examples of such plots, e.g., Figure 4.28).

All-pairwise comparisons depend on the presence or non-presence of interactions be-
tween factors. If there is no interaction, then pairwise comparisons between levels of
one single factor may be considered. In the case of interactions, instead, the pairwise
comparisons should better involve all treatment combinations. This second choice en-
tails a higher number of comparisons and hence requires a higher adjustment of the
α-value.

Extensions of permutations tests to full factorial designs are currently restricted to
only cases with two levels per factors (Pesarin, 2001). Rank-based tests, instead, at the
best of our knowledge, have not been applied to full factorial analysis. In both cases,
however, it is possible to consider all combinations of experimental factors and treat
them as levels of one single factor, thus re-conducting the analysis within the known
cases. Alternatively, it is possible to focus separately on each single factor and repeat
the tests for each factor on the same data. In this case, the family-wise level of confidence
must be adjusted for the multiple use of the same data.

Remark 2. So far, we only considered balanced cases, that is, cases in which the number
of observations on an instance are the same for every treatment combination. Extensions
to unbalanced cases are possible although they require the adjustment of the formulas.
Yet, collecting the same number of runs per algorithm on all instances should not be a
real impediment in experiments with algorithms.

However, an experiment can be unbalanced also on the strata of the blocks. For ex-
ample, having as strata variable the size of the instance, it may occur that the number
of instances available at each size is not the same. If instances come from real life appli-
cations or from benchmark libraries, this may be quite likely. Such a kind of unbalance

70 Statistical Methods for the Analysis of Stochastic Optimisers

may lead to a wrong inference because a large number of instances in one class in the
analysis biases the results. If this effect is unwanted, because the sample is deemed not
to be representative of the application, a possible kludge solution is given by the boot-
strap method. In brief, a balanced design is bootstrapped from the original data preserv-
ing factorial combinations, that is, the observations in the ijk-th factorial combination of
the bootstrap design are selected with replacement from the ijk-th factorial combination
of the original unbalanced design. The resulting balanced design is analysed and the
whole procedure repeated a number of times (indicatively 100 times should be enough).
If the results are consistent with respect to the hypothesis tested in all the instances, then
the corresponding conclusions may be drawn. If results are mixed, varying from boot-
strap sample to bootstrap sample, then a larger number of instances should be collected
in order to draw significant conclusions about interactions.

Remark 3. Stochastic algorithms for optimisation have commonly very asymmetric
distributions of solutions quality. In the case of minimisation problems, this distribution
is bounded from below, should have a left-end point as close as possible to the unknown
minimum, and should be skewed to the right (i.e., the lower end of the distribution is
on the right). Therefore, the assumption of normality of data is often not appropriate
and non-parametric tests are to be preferred.

The non-normality and asymmetry of the distributions also suggests that descriptive
statistics such as the median and other quantiles are more appropriate for resuming,
respectively, central tendency and variability. Sample mean and empirical variance are,
indeed, efficient estimates only if the underlying distributions are close to normality or
for sufficiently large sample sizes. Quantiles are, instead, preferable because they are
scale-invariant for many basic transformations (da Fonseca et al., 2001; Sheskin, 2000).

Remark 4. Also the homoschedasticity of results among different algorithms seems ar-
guable (consider, for example, the extreme case of a deterministic algorithm compared
against a stochastic algorithm on one single instance). In this case not only the para-
metric tests presented are inappropriate but also the permutation tests, which require
homoschedasticity for the exchangeability of data. Transforming data into ranks permits
in this case the elimination of outliers, which are unwanted sources of variability within
distributions, and rank-based tests appear therefore as the most robust among the meth-
ods presented, although they are also based on the assumption of homoschedasticity of
the transformed data.

In all-pairwise comparisons with permutation tests, the simultaneous confidence in-
tervals provided by Algorithms 3.4 and 3.6 are very conservative in the case of not
homoschedasticity because they are largely affected by the algorithms with higher vari-
ance. An alternative procedure to compute the confidence intervals is however possible.
It consists in using the procedure Compute_Pairwise_MSD with a confidence level 1− α

adjusted by the Bonferroni’s rule on each pairwise comparison, without then checking
that the computed interval satisfies also the other pairs through the iterative procedure
Compute_all-Pairwise_MSD. The advantage of this procedure is that the negative bias
of an algorithm with an observed uncommon large variance remains confined to those
comparisons involving the algorithm itself without affecting the other comparisons in
which that specific algorithm is not involved.

Unfortunately, different MSDs for each pairwise comparison exclude the use of the
graphical representation of results as shown in Figure 3.3. Hsu (1996) suggests an alter-

3.6 Design and analysis of experiments 71

PSfrag replacements

X̄3 − X̄2

X̄1

X̄1

X̄2

X̄2

X̄3

X̄3

X̄3 − X̄2/
√

2

MSD/
√

2

Figure 3.8.: Graphical representation of confidence intervals in a two dimensional space. This
mean-mean scatter plot introduced by Hsu (1996) allows the representation of confidence inter-
vals of different width.

native representation, which allows to include confidence intervals of different length
and maintains the unification of both practical and statistical information in a single
plot. This plot is shown in Figure 3.8. It consists of a two dimensional space in which a
45◦ line represents the points satisfying X̄i = X̄j. At each point (X̄i,X̄j), representing the
sample means of two algorithms, a segment is drawn of slope −1, centred in (X̄i,X̄j),
and of length MSD/

√
2. Statistical inference is derived by checking whether the line

segment crosses the 45◦ line. The practical assessment of mean differences is preserved,
instead, on the x-axis or y-axis. All the k(k − 1)/2 confidence intervals can be repre-
sented by drawing only the segments with X̄i > X̄j, i.e., only intervals below the 45◦

line.

Remark 5. Clearly, the set of tests presented is not exhaustive. There may be other test
statistics that are more appropriate in particular situations. Two tests, worth mentioning,
compare two distributions in distinct ways.

• The Binomial signed test counts the number of positive and negative differences and
uses the binomial distribution to test if the number of positive (or negative) differ-
ences is significantly different from an equal distribution. This test is appropriate
to compare matched results of two algorithms when the only thing that matters is
which one wins.

• The Kolmogorov-Smirnov two-sample test compares the empirical cumulative distri-
bution function, CDF, of two samples. This test is able to detect more differences
than all the tests previously introduced, because it is not based on mean values
only. The test computes the maximal difference between the two curves, and ex-
act quantiles or approximation quantiles for the distribution of this statistic are
derived by permutation methods. Besides testing two algorithms, a variant of
this test is also used to assess whether a sample comes from a known theoretical
distribution.

72 Statistical Methods for the Analysis of Stochastic Optimisers

In the rest of the thesis we conform to the experimental designs and the analysis here
presented. In particular, we will design experiments according to design B and design
C. The choice between the two will depend on the number of instances that are available.
If the number is high, as in presence of a random generator, we will compare algorithms
according to the scheme “one single run on various instances”; if the number of instances
is not large we will collect several runs per algorithm on each instance according to the
scheme “several runs on various instances”.

3.7. Sequential analysis

Often, in practical applications the time for developing and delivering a functioning al-
gorithm is limited and a rigorous experimental design, as the one described in Section
3.6, might not be affordable. This kind of methodology imposes a well defined dis-
tinction between the development phase and the testing phase. Experiments planned
beforehand can require large computation time and necessarily force to restrict the at-
tention to a limited number of candidate algorithms with hand tuned parameters and
on small sets of benchmark instances. Moreover, in case the analysis of results unveils
possible improvements for the algorithms (e.g., by hybridisation) the whole process must
be started anew. Clearly, one may wish to avoid unnecessary experimentations.

The issue of reducing the amount of experimentation is examined in statistics by
the sequential testing theory which was firstly developed by Wald (1947) to minimise the
cost of industrial testing. Currently, its application is fostered in clinical trail practice
where, for ethical reasons, the expected number of patients exposed to a treatment has
to be minimised. Recently, sequential testing has been proposed to solve the model
selection problem in Machine Learning which consists, given a set of models and some
training data, in determining the model that best describes the data (Maron and Moore,
1994, 1997). This problem of selecting the best among several alternative models has
been recognised by Birattari et al. (2002) to be similar to the problem of selecting the
best parameter setting for an SLS algorithm on a class of instances of a combinatorial
optimisation problem given a set of training instances sampled from the class of interest.

In contrast to a brute force method, that corresponds to running all experiments
planned beforehand, that is, all algorithms on all available instances, and choosing the
best performing algorithm, the sequential analysis compares repetitively the available
algorithms on a single instance, and ends when enough statistical evidence is gathered
in favour of one algorithm.

There are three approaches for sequential testing: the original Wald’s sequential prob-
ability ratio test, the Hoeffding race, and the testing for significance approach. For the
first two we refer the interested reader to van der Tweel (2004) and (Maron and Moore,
1997), respectively. We focus, instead, on the latter approach which is the only one
that has been used for the selection of a best algorithm in combinatorial optimisation
by Birattari et al. (2002) and by Yuan and Gallagher (2004). In particular, we conform
to the original procedure of Birattari et al. (2002) that received the name of “racing al-
gorithm”, as the best algorithm is the winner of the statistical comparisons against all
other algorithms.

3.7 Sequential analysis 73

Procedure Race_Design_B;
repeat

Randomly select an unseen instance and test all candidates on it;
Perform all-pairwise comparison statistical tests;
Drop all candidates that are significantly inferior to the best algorithm;

until only one candidate left or no more unseen instances ;

Algorithm 3.7: Race for the experimental design “one single run on various in-
stances”.

Procedure Race_Design_C;
repeat

Run all candidates once on all instances;
Perform all-pairwise comparison statistical tests;
Drop all candidates that are significantly inferior to the best algorithm;

until only one candidate left or maximal number of runs exceeded ;

Algorithm 3.8: Race for the experimental design “several runs on various instances”.

The original racing algorithm considers the “one single run on various instances” design
and it is aimed at tuning SLS algorithms. A brief sketch is given in Algorithm 3.7. More
in detail, it works as follows. A set of instances is defined as the class of applicative
interest. The elementary experimental unit of the race is the stage and it consists in
running all candidate configurations of a metaheuristic on a single new instance. At the
end of each stage a decision is made on which candidate should be discarded according
to an all-pairwise test procedure. Four different statistical tests were compared for this
task: three parametric tests based on all-pairwise t-test with α-value (i) adjusted by
Bonferroni’s rule, (ii) adjusted by Holm’s procedure, or (iii) not adjusted, and one non-
parametric test consisting of the protected Friedman test for all-pairwise comparisons
(Equation 3.11). The simulation study conducted by Birattari (2004b) showed that the
race based on Friedman test is the most powerful, that is, it yields the largest saving
of experimental computation and no significant differences can be stated between the
candidate selected by the race and the candidate that would result from a brute force
approach, consisting in running all candidates on a number of instances equal to the
instances used in the race until it was stopped.19

To maintain an overall type I error of α and to avoid inflation of the error rate, the
tests at each stage should be performed at a lower experiment-wise value of α. This
is, because the decision to maintain a candidate in the race depends on all previous
decisions with multiple looks at the data. Lan and DeMets (1983) describe an adaptive
way to “divide” α for a fixed number of stages according to the amount of information
used. Note that in order to adjust the stage-wise α value and maintain an experiment-
wise α-value, the maximal size of the experiment should be planned before starting the
race. Apparently, however, given the result of the simulation study of Birattari (2004a),
an adjustment of the α-value is not necessary in the specific context of his experiments.
The issue on the adjustment is however quite controversial in the statistical literature

19Birattari (2003) made available in the public domain an implementation of Procedure 3.7 for R, the
free software suite for statistical computing. M. Birattari. CRAN - Package race. October 2004. http:

//cran.r-project.org/src/contrib/Descriptions/race.html. (October 2004)

http://cran.r-project.org/src/contrib/Descriptions/race.html
http://cran.r-project.org/src/contrib/Descriptions/race.html

74 Statistical Methods for the Analysis of Stochastic Optimisers

and we believe that in the case of experiments on algorithms trading an increase of risk
in committing a type I error for an increase of power is acceptable. Further increase
of power can be attained by considering that an all-pairwise comparison procedure is
not necessarily needed but a comparison with the best could suffice. However, to the best
of our knowledge, only one parametric method exists for doing this (Hsu, 1996; Dean
and Voss, 1999) while non-parametric solutions are needed in our case. Research on
this issue would provide an important contribution to the amelioration of the racing
algorithm.

The racing algorithm of Birattari can easily be extended to the “several runs on various
instances” design. Although theoretical results show that this is not the ideal case for
comparing optimisers (Birattari, 2004a), this is the highly probable context of real-life
applications where the number of available test instances is usually small. In this case,
the stage consists in running all candidate configurations of an SLS algorithm once on all
the available instances. This extension is outlined in Procedure 3.8. The statistical analy-
sis is based on the extension of the Friedman test to this experimental layout (Equations
3.18 and 3.19). We will use this modified version of the race for configuring an optimiser
for the timetabling problem in Chapter 6.

We finally remark that the few applications of racing algorithms for the selection of
best optimisers ended with one single winning candidate. If no control is applied on the
α value, it is possible, at least in principle, to continue the race, generating new instances
or collecting new runs, until enough evidence arises for selecting one single algorithm.
But, if some algorithms are very similar, the race could become extremely long. A pos-
sible further development of racing algorithms, then, could consider a stronger involve-
ment of the null hypothesis for deciding that some algorithms are not different. In this
way, the racing procedure could be faster because algorithms that seem to be identical
in performance could be removed maintaining only one or because the race could stop
even when high confidence is gained that algorithms are very similar. Unfortunately,
while it is clear how this can be done with Wald’s and Hoeffding’s approaches, it is not
clear how this could be done with the test for significance approach.

3.8. Time dependent analysis

The experimental designs and the statistical methods for their analysis presented in
Section 3.6 are valid for the scenario in which optimisation algorithms are given a strict
time limit to find a solution. Solution quality is in this case the only stochastic variable
which describes algorithm performance.

We already mentioned in Section 3.4 that a thorough description of an optimisation
algorithm should take into account, besides solution quality, also computation time (or
run time). With stochastic algorithms, these two criteria are described by stochastic
variables. In other terms the performance of a stochastic algorithm is characterised by a
bivariate probability distribution. In this section, we outline the possible extensions in
the analysis that arise when also this second variable is taken into account. We present
the possible synthesis in a unified representation of both solution quality and run time.
Two representations have been recently introduced by Hoos and Stützle (2004) and by
da Fonseca et al. (2001) and it can be shown that they coincide. Yet, their statistical

3.8 Time dependent analysis 75

investigation remains still partly unsolved. We propose a further representation, which
may inspire future research on this context. Then, we focus on the sub-case of fixed
solution quality and discuss the possible insights on the behaviour of algorithms that
can arise from the study of run time only.

3.8.1. Unified representation of time and quality performance

Two models are possible for a unified and general description of the performance of
SLS algorithms in terms of time and quality. The implications arising from these models
have only been marginally understood and applied. Further research in this direction
is certainly needed. We present these two models pointing out their current use in the
analysis of algorithms and giving reference for further possible developments.

Bivariate model. The behaviour of a stochastic optimisation algorithm can be modelled
through a set of bivariate random variables X consisting in solution quality SQ and
run time RT. If quality and time are judged equally important, the description of the
algorithm must follow a bi-objective perspective. Each run of an algorithm generates
a set of points X = {Xi ∈ R2, i = 1, . . . , M}, where the size M is random and the
elements Xi(SQ, RT) are the bivariate random variables. Each random element Xi is
non-dominated in the Pareto sense20 within the set. Finding a good descriptor of such a
set-characterised distribution is currently an active area of research (Coello et al., 2005).
Da Fonseca et al. (2001) introduce the attainment function derived from random closed
set theory as a simple and general way to describe the distribution of a set X of elements
X ∈ Rd using the notion of goal-attainment. In our case, where X ∈ R2, the attainment
function αχ(·) : R2 → [0, 1] is defined as

αX (z) = P(X1 ≤ z ∨ X2 ≤ z ∨ . . . ∨ XM ≤ z)
= P(X � z)

The value αX indicates the probability that at least one element of X is smaller or
equal (in Pareto sense) than z ∈ R2, that is, the probability of an SLS algorithm to
find at least one solution of quality better than SQz within time RTz in a single run.
The attainment function can be seen as the generalisation to random point sets of the
multivariate cumulative distribution function FX(z) = P(X ≤ z).

The attainment function is estimated via its empirical counterpart, in the same way as
CDFs are estimated. This empirical attainment function is defined as

α̂n(z) =
1
n

n

∑
j=1

I{Xj � z}; I{Xj � z} =
{

1 if Xj � z;
0 if Xj � z. (3.20)

where each random set X1,X2, . . . ,Xn corresponds to one of the n runs of the algorithm.
In simple words, α̂n indicates the fraction of algorithm runs that produced at least

one solution non-dominated by z. An example of the graphical representation of the

20In a minimisation problem a point X1(RT1, SQ1) ∈ R2 strictly dominates in Pareto sense a point
X2(RT2, SQ2) ∈ R2 if RT1 ≤ RT2 and SQ1 ≤ SQ2 and at least one of the two inequalities is strict.
Throughout this section we use the term “quality” to indicate the “cost” of a solution according to the
evaluation function and we focus on a minimisation problem. This explains the non-sense that lower
quality is preferred over higher quality.

76 Statistical Methods for the Analysis of Stochastic Optimisers

empirical attainment function in the two dimensional case is given in Figure 3.9, left.
For each value of αn it is then possible to represent the boundary separating the points
which are known to be attainable in at least a fraction α̂n of the runs from those that
are not. In a d-dimensional case this boundary corresponds to an attainment surface. In
our two-dimensional case, the surface reduces to a curve in the plane time–quality. As
in the univariate case the median value is a good descriptor of the empirical CDF, in
the bivariate case the median attainment surface, corresponding to α̂n = 0.5 = 50%, is
a good descriptor for the empirical attainment function. In Figure 3.9, on the bottom
right, we represent the median of an attainment function and its first and last quantile.
Intuitively, they are the intersections of horizontal planes with the three dimensional
curve. The computation of the empirical attainment function in two dimensions is re-
lated to the computation of the univariate empirical cumulative distribution function.
But, whereas the latter must be computed only at data points the former is computa-
tionally more expensive, as it requires the computation at the data points and also at all
the intersections of the data points.21

Empirical attainment functions of different algorithms can be compared statistically
by means of Kolmogorov-Smirnov-like tests (Fonseca and Fleming, 1996). Yet, in case
of the rejection of the hypothesis of no differences, the statement that one distribution
is better than the other is possible only in presence of statistical dominance. If, instead,
the empirical attainment functions cross, the comparison is inconclusive. In these cases,
Paquete (2005) proposes a graphical representation of the probability differences of at-
tainment functions α̂A(z)− α̂B(z) between pairs of algorithms A and B for each point z
in the plane. In this way, the amount of the differences can be visually inspected.

We observe that the attainment function in the two dimensional case corresponds in
fact to the joint probability distribution FSQ,RT(q, t) = P[(RT ≤ t) ∪ (SQ ≤ q)] used by
Hoos and Stützle (2004) and called by them run time distribution. In the specific case of
algorithm analysis, Hoos and Stützle (2004) observe that the empirical probability dis-
tribution can be computed by recording the run time and the solution quality whenever,
during a single run of an algorithm, a solution is found with a quality strictly better than
the best solution found so far in that run. More formally, if m is the number of runs and
sq(t, j) is the trace of the best solution quality found at time t in run j, the joint distribu-
tion function of Xi(RT, SQ) is obtained as F̂(RT ≤ t ∧ SQ ≤ q) = #{j | sq(t, j) ≤ q}/m,
which corresponds to counting for every point (q, t) the number of runs in which a
solution of quality q is found within time t. The three dimensional plot of Figure 3.9
provides the representation also for F̂(X). Yet, in practice, Hoos and Stützle (2004)
confine themselves to the study of F̂(X) for fixed values of one of the two variables.
In the upper plot on the right of Figure 3.9, we represent the qualified run time distri-
butions F̂(RT ≤ t ∧ SQ ≤ q̄) that are obtained by sectioning the distribution function
visualised on the left with planes parallel to the time axis, which in the Figure is ex-
pressed by the number of iterations. In an orthogonal way, it is possible to derive
solution quality distributions by sectioning the distribution function with planes parallel
to the quality axis. Hoos and Stützle (2004) derive these sections, that is, the distribu-
tions F̂(RT ≤ t ∧ SQ ≤ q̄) and F̂(RT ≤ t̄ ∧ SQ ≤ q), by considering censored univariate

21An algorithm for doing this efficiently in the two-dimensional case was provided to the author by Carlos
Fonseca (priv. comm.). An updated version has been made recently publically available online: http:
//www.tik.ee.ethz.ch/pisa/ (May 2005).

http://www.tik.ee.ethz.ch/pisa/
http://www.tik.ee.ethz.ch/pisa/

3.8 Time dependent analysis 77

1
102 104 106 500 × 105

50
52

54
56

58
60

0.2

0.4

0.6

0.8

1.0

Iterations

Colours

F

Iterations

Su
cc

es
s

Pr
ob

ab
ilit

y

4950515253545556575859

0.0

0.2

0.4

0.6

0.8

1.0
Qualified RTDs and Median Attainment curve

Iterations
Q

ua
lity

50
52
54
56
58
60
62

1 102 104 106 500 × 105

Figure 3.9.: On the left, a three dimensional representation of the empirical attainment function
α̂ or joint distribution function F̂. The data are collected from 50 runs of Tabu Search TSN1

for
Graph Colouring on the instance DSJC500.5 (see Chapter 4). The quality of the solution is ex-
pressed in the number of colours to minimise. The x-axis indicates the logarithm of the number
of iterations. On the right, are represented the corresponding qualified run time distributions
and empirical attainment curves. For the attainment curves, the median, the first and the last
quantile are represented, derived from Equation 3.20 with α̂ = 25/50, α̂ = 1/50, α̂ = 50/50,
respectively. The first and the last quantile, depicted with dashed lines, also correspond to the
experimental lower and upper bounds of the empirical distribution. Note that at the start of the
algorithm no solution is available, hence, in a non semi-logarithmic plot the attainment curve at
iteration 0 should tend to infinity.

cumulative distribution functions, e.g., F̂(RT ≤ t ∧ SQ ≤ q̄) = #{j | sq(t, j) ≤ q̄}/m.22

In both representations, attainment functions and joint distribution functions, the vari-
ables RT and SQ in each Xi can be dependent (as it actually is, given that longer run
time guarantees better solution quality) but each variable Xi, is considered independent
and each point of the plane time–quality receives an independent probability. How to
estimate probabilities of attaining a whole set of points simultaneously, i.e., all in a single
run of the algorithm, if at all possible, remains unclear (Fonseca and Fleming, 1996).

Multivariate model. An alternative model, that received more attention in statistics
and for which more methods of analysis are available, is the repeated measurement de-
sign. In this case, each algorithm is observed on a number of occasions during its run
time. This yields for each individual algorithm repeated observations of its solution
quality which are called response profile. Each response profile may be viewed as a multi-

22Note that F̂(RT ≤ t ∧ SQ ≤ q̄) = F̂(RT ≤ t | SQ ≤ q̄) · F̂(SQ ≤ q̄) where the first multiplier is the non
censured conditional distribution F̂(RT ≤ t ∧ SQ ≤ q) = #{j | sq(t, j) ≤ q}/m′ where m′, m′ ≤ m, is the
number of runs in which the quality q̄ was attained, and the second multiplying factor is the probability
of attaining q̄: F̂(SQ ≤ q̄) = m′/m.

78 Statistical Methods for the Analysis of Stochastic Optimisers

variate variable Xj(SQ(τ1), SQ(τ2), . . . , SQ(τt)) where τ1, . . . , τt are fixed time occasions
and j is the algorithm’s run number. The hypotheses being tested in such an exper-
imental design are whether the algorithms have different response profiles over time.
The assumption is that measurements are repeated a number of times on the same units
(algorithm–instance) on fixed time occasions. Responses do depend on time but the time
effect is not of primary importance. Note that the requirement of measuring the solution
quality at fixed times is not restrictive, as it is in principle possible from the traces sq to
derive the current best solution quality at each instant in time (the length of the intervals
is arbitrary and can be determined by each instant in which an improvement occurred
in at least one of the algorithms).

To better specify the design, we consider k algorithms running on one instance. For
each of them we collect observations of the univariate variable X(SQ). All algorithms
are observed at t fixed time occasions τ1, . . . , τt and the discrete stochastic process
{Xij(τl), i = 1, . . . , k, j = 1, . . . , r, l = 1, . . . , t} is observed on each run j of algorithm
i. A graphical representation of this process can be obtained by plotting at any time τl
the median, or any other quantile, of X̄i.(τl) obtained from the r runs.

The analysis of such a model to determine whether algorithms are different at certain
times (i.e., whether their response profile are different) is rarely being accomplished in
the study of stochastic algorithms. Taillard (2001) proposes to apply a analysis at each
point in time and to report where the test is significant. Although attractive, this pro-
cedure is not the most correct. Analogous analyses are attempted in biostatistics where
the interest is in comparing the growth curves of treatments and diseases. Heitjan et al.
(1993) review and compare statistical methods for the analysis of tumour growth exper-
iments. The comparison is based on the type I error and on the statistical power. Results
show that repeated tests at all times, or only at final time, exhibit type I error rate much
higher than the declared experiment-wise α value. In contrast, methods that treat the se-
ries of data over time for each experiment as a single multivariate observation have con-
temporaneously more power and higher control over the type I error rate. The authors
suggest MANOVA, Multivariate Curve Model, and regression with random effects and
autoregressive errors as better methods for the analysis. Although in the specific case
of that article the last method is the best, the choice depends on the particular situation
and on the validity of the corresponding assumptions. All three methods assume that
treatments (in our case algorithms) are independent but that the observations within an
algorithm are correlated. They also assume the normality and the homoschedasticity of
the multivariate variable and, in the case of the last two methods, that data relative to
each treatment can be fitted by the same kind of curve. The commonly used curve mod-
els are log-linear models or more complicated piecewise polynomial in case the curve
is not monotone. Gompertz distributions that start log-linear and then flatten are also
used in biostatistics. The validity of the two last assumptions in the case of algorithms
must be checked because, as discussed above, the assumption of normality of the dis-
tribution of results at a certain time does not appear reasonable. Furthermore it must
be verified if the data of all algorithms can satisfactorily be fitted by curves of the same
type. If we consider, for example, simulated annealing and tabu search, it is very likely
that the first algorithm due to its cooling scheduling has a curve which descends slowly
at the beginning and faster after a certain time while tabu search has typically a much
faster descent at the beginning. It is however reasonable to expect that all curves flatten
at long run time to a limiting quality.

3.8 Time dependent analysis 79

Among the different methods, however, MANOVA appears the most appropriate for
our goals. It considers a multivariate linear model

Xij(τl) = µ + αi(τl) + εi,j(taul)

where αi(τl) are the main algorithm effects and εi,j(τl) are the error terms. Then, under
the assumption of multivariate identically normally distributed, the Hotelling-Lawley
trace test statistic (Arnold, 1981) can be used to determine an overall effect.23 If the test
is significant, one can proceed to univariate tests at each time; the global test through the
Hotelling-Lawley guarantees that the type I error rate is preserved at the experiment-
wise α. If the assumption of normality is not reasonably met, permutation tests may
be used based on the same statistic or on invariant simplifications. Permutation tests,
in which the original observations are replaced by ranks have also been defined (Good,
2000; Pesarin, 2001) and their application could be actually more appropriate for the
analysis of algorithms.

We finally observe that in both these models, the bivariate and the multivariate model,
the visualisation of results and a corresponding analysis is only possible if single in-
stances are considered. To the best of our knowledge, no attempt has been done to
generalise the analysis to sets of instances and it is not clear if this is possible. A gener-
alisation of the multivariate model to more than one instance is possible but only if the
times for solving them are comparable. In other cases, where the instances to solve are
considerably different so that longer or shorter times are required for reaching compara-
ble levels of normalised solution quality, the analysis should proceed separately through
sub-groups of instances that are recognised to have similar characteristics.

3.8.2. Qualified run time distributions

In order to focus on qualified run time distributions, a goal must be defined. In the
case of optimisation problems with constraints, there are two kinds of goals that can be
defined:

• the attainment of a feasible solution, that is, a solution that satisfies all hard con-
straints;

• the attainment of a feasible solution of a certain quality, that is, a solution that
satisfies all hard constraints and whose evaluation function with respect to the
soft constraints is such that f (s) ≤ q̄, where q̄ defines the required value level of
quality.

Although an analysis similar to the one described in Section 3.5 is perfectly suitable
also when studying run time instead of quality, the interest in run time analysis for
optimisation problems goes beyond the mere comparison of performance.

We distinguish four possible analyses based on run time distributions (RTD).

23Differently from the Hotelling T2, the Hotelling-Lawley test considers observations which are correlated.
The test is available in R.

80 Statistical Methods for the Analysis of Stochastic Optimisers

Comparison of algorithm performance. The comparison of algorithms to attain a feasi-
ble solution or a solution of a given quality can be done more comprehensively through
RTDs curves. As noted in Section 3.6.7, the Kolmogorov-Smirnov test may be used to
check for statistical significance of differences between RTDs.

Predicting algorithm termination or last improvement occurrence. It might be useful
to investigate how RTDs for a specific algorithm vary when tighter solution quality is
required. In this way, it might become evident that a certain level of solution quality
can always be guaranteed in a given time limit or that the algorithm may profit from
additional time. This latter situation is detected by the presence of truncated RTDs (i.e.,
RTDs that do not reach the value one) if a given solution quality is not always attained
before the time limit expires. In this case, techniques from survival analysis might be
used to estimate time limits that guarantee with a high probability reaching a certain
solution quality level. A strong limitation of this analysis, however, is that the definition
of a quality level remains strongly instance dependent. A possible kludge, then, might
be the study of RTDs of last improvements in algorithm runs. This curve may reveal
whether the whole run time is useful or not.

In the case, in which the algorithm has a termination criterion other than a time
limit, as, for example, a maximal number of iterations, a run time distribution might be
defined for the run time necessary to reach termination. Hoos and Stützle (2004) denote
these as termination time distributions. The graphical representation of these RTDs curves
is useful for understanding the degree of variation of the algorithm’s run time and the
scaling effect due to different problem characteristics (we will use such an analysis in
Chapter 4 and 5).

Summarising RTDs with theoretical distributions. Survival analysis techniques offer
useful tools for the study of RTDs. Of particular interest is the approximation of em-
pirical RTDs by means of theoretical distributions. The use of theoretical probability
distributions to model empirical distributions favours the generalisation of results to
new situations reducing the pitfall of over-fitting and makes possible inference on the
behaviour of the algorithm suggested by the properties of the theoretical distribution.

The Kolmogorov goodness-of-fit test (Conover, 1999), based on cumulative distribu-
tion functions is used to test the null hypothesis that the empirical RTD is one of the
family of a theoretical distribution function with parameters estimated from the data.
The families of theoretical distributions which are usually considered for RTDs are the
exponential, the Weibull, the log-normal, the gamma and the log-logistic.

An exponential run time distribution has the form F(t) = 1− e−λ(t) where λ is the
rate parameter. The exponential distribution has the property of being memoryless in
the sense that the probability of finding a solution within a fixed time does not depend
on the time passed so far and hence improvements occur randomly in time. In the study
of algorithms, as observed on TSP and SAT problems (Stützle and Hoos, 2001; Hoos and
Stützle, 2000), the comparison of an RTD with a fitted exponential distribution is useful
to understand whether it is better leaving the algorithm running or restarting it after
a given cut-off time. To this end it is checked whether the empirical RTD approximates
an exponential distribution with λ = 1/t, where t is the arithmetical mean of the em-
pirical data. If this is not the case then one may proceed varying the inclination of the
exponential distribution until a point is found where the steepness of the empirical RTD

3.8 Time dependent analysis 81

becomes and remains lower than the one of the exponential distribution. In that point
it may be useful restarting the algorithm (we defer to Chapter 6 and to Chiarandini and
Stützle, 2002 for an example of such analysis on a timetabling problem).

If the goal of the analysis is not determining possible cut-off points but simply de-
scribing the distribution through a theoretical one, the presence of an initialisation phase
entails that tan exponential distribution that better approximates the RTD has a transla-
tion θ > 0, i.e., t′ = t− θ, rather than t, should be used in its definition. The first attempt
to estimate the parameters θ and λ can be done by setting again λ = 1/t and the value
of θ equal to that of the first solution time. Then, varying the parameters probably a
better fit can be found. If a good fit is found then it is possible to describe the RTD
of an algorithm through only two parameters, θ and λ. In presence of truncated RTDs
this could allow us, for example, to predict the behaviour of the algorithm beyond the
truncation time limit.

If the exponential distribution does not provide a good fit, one can attempt to use the
Weibull distribution which tends to better represent life data and is commonly used in

reliability analysis. The Weibull cumulative distribution function is F(t) = 1− e−
(t−θ)

b
a

where a is the shape parameter, b the scale parameter and θ the location parameter. The
presence of three parameters in the distribution makes the chance for good fits higher,
but the estimation of the parameters from data harder. To estimate the three parameters
of the Weibull distribution one can use non linear least squares regression techniques
or, preferably, the more efficient maximal likelihood method (Venables and Ripley, 2002;
Al-Fawzan, 2000).

Analysis on set of instances. The analyses in the previous paragraphs are possible only
on single instances and their significance is therefore limited. It might be reasonable,
then, trying to extend the results to a class of instances.

Qualified RTDs for a class of instances can be obtained by defining a quality measure
that is invariant over the instances. Alternatively, other algorithm features, such as
the above mentioned termination criterion or last improvement, can be investigated
through aggregated RTDs. The RTDs correspond in this case to the empirical cumulative
distribution function of the data pooled over several instances. As shown by Hoos
and Stützle (1998) this procedure may however lead to wrong conclusions. A better
procedure might be to approximate the RTDs on each instance with some theoretical
distribution and then use the corresponding parameters as representative measures. In
a more simplistic way, the median value of each distribution may be used but truncated
RTDs induce to use this approach with caution.

The first use of RTDs on a class of instances is observing the variability of instance
hardness for a given goal, a level of solution quality or the feasibility of the solutions.
Also interesting is verifying whether the chosen time limit guarantees limiting behaviour
for the algorithms on all instances of the class or, in the presence of a termination con-
dition, analysing the variation of halting time.

We remark, however, that the use of RTD on a set of instances is reasonable only when
we assume that the instances induce a similar behaviour of the algorithm with respect
to computation time. If the goal is classifying instances according to similar responses
on the RTDs then techniques from exploratory data analysis may be useful. Correlation
plots and regression analysis for instance scaling effects are examples of exploratory
data analysis.

82 Statistical Methods for the Analysis of Stochastic Optimisers

3.9. Landscape analysis

The methods for the analysis described in the previous sections are useful for assessing
the performance of algorithms but do not provide explanations on the search mecha-
nisms underlying these algorithms. SLS methods are intriguing because they perform
well where other mathematical models have difficulties although they are based solely
on intuitive rules whose validity is sometimes not clear. Particularly surprising is the
effectiveness of local search which is in first place responsible for the success of such
methods. One main concern is how to generalise its behaviour from some problems or
from some specific instances.

Studies to improve the understanding of SLS algorithms based on local search have
received increasing interest in recent years. The search space characteristics of a number
of standard problems have been deeply investigated, including the Satisfiability Problem
(Frank et al., 1997), the Travelling Salesman Problem (Merz and Freisleben, 2000), the Job
Shop Scheduling Problem (Watson et al., 2003; Watson, 2003), the Linear Ordering Prob-
lem (Schiavinotto and Stützle, 2004), and others (Merz, 2000). These studies focus on
various properties of the search space which might have an impact on the performance
of SLS algorithms.

The search process of a local-search-based algorithm applied to a problem instance I can
be seen as a walk on a neighbourhood graph, GI(S ,N), induced by the neighbourhood
structureN and the search space S . In this neighbourhood graph, vertices correspond to
solutions s ∈ S and edges connect neighbouring solutions. Typically, the neighbourhood
is symmetric.

Definition 3.1 A search landscape LI(S ,N , f) for a problem instance I corresponds to the
neighborhood graph GI(S ,N) determined by the search space S and the neighbourhood structure
N , with a value f (s), f : S → R, associated to each vertex s ∈ S . The value f (s) is called
vertex level.

The definition of fitness landscape dates back to Wright (1932) who studied the roles
of mutation, crossbreeding, and selection in evolutionary biology. In that context, there
is a space of possible genotypes, each genotype with a certain “fitness”, and the distri-
bution of fitness values over the space of genotypes determines the fitness landscape. In
optimisation, the role of genotypes is taken by the possible solutions to the problem and
the evaluation function determines their fitness (for an in-depth study of the similarities
between biology and optimisation we refer the reader to Goldberg, 1989).

The search landscape can be visualised through similarities with the natural features
of a land surface. It may be a region more or less mountainous, with many peaks of
high level flanked by steep ridges and precipitous cliffs falling to profound valleys. For
the rest of this work, it may be useful to define formally the following classes of points
that may be identified in a search landscape.

Definition 3.2 A plateau of level z, z ∈ R, is a maximal connected subgraph P of LI(S ,N , f)
such that f (p) = z for all p ∈ P. A plateau P is then:

• a local minimum if there does not exist any p ∈ P and s : s ∈ N (p) such that f (s) <

f (p);

3.9 Landscape analysis 83

• a bench if there exists a p ∈ P and a s : s ∈ N (p) such that f (s) < f (p). In this case,
the solution s receives the name of plateau exit.

A study of the features of the search landscape, such as connectivity, solution density,
distribution of local minima, ruggedness and plateau size, may be useful to (i) improve
the current algorithm, (ii) explain the behaviour of SLS algorithms, (iii) understand the
reasons why a problem is difficult or not, (iv) generalise the hardness of problem in-
stances to larger instance classes, and (v) link a priori knowledge on the instance with
characteristics of the search landscape and the consequent appropriate tuning of algo-
rithm. More in general, the ultimate goal of landscape analysis is to create a general
theory of local search based on the relationship between search landscape features and
SLS performance.

Determining all features of a search landscape requires the exhaustive enumeration
of all possible solutions. Alternatively, in some cases, where the search graph has some
particular properties, it might be possible to characterise analytically some of the fea-
tures of the landscape, as pointed out by (Grover, 1992) or (Dimitriou and Impagliazzo,
1996). Typically, however, problems from real world applications are complicated and
such analyses infeasible. In these cases, the techniques are based on approximations
derived by sampling or estimating landscape features through surrogate measures.

A variety of measures have been used in the literature for the approximate charac-
terisation of the search space. We review some of the most important. However, what
can be inferred from each single measures independently by the others is not clear. Val-
idating or refuting intuitive relationships between landscape features and local search
behaviour is still an open issue of landscape analysis.

Autocorrelation function. One important feature of the landscape is its “correlation
structure”, that is, how similar neighbouring solutions in the search space are with
respect to the evaluation function. A smooth landscape is one in which neighbouring
points in the space have similar levels. Knowing the level of one point carries a lot of
information about the level of the neighbouring points and the situation is favourable
to local search procedures which base their search on the local information about the
evaluation function. At the opposite extreme, a random landscape is one in which the
level of neighbouring points is entirely uncorrelated. Knowing the fitness at one point
would then carry no information about the fitness of neighbouring points and a local
search based on the information of the evaluation function is expected to perform not
differently from an uninformed random walk.

One possible way to determine the ruggedness of the landscape is by performing
an explorative random walk in it. It starts from a randomly selected initial candidate
solution, and at each step it goes to a randomly chosen neighbour; a walk in m steps
results in a series of evaluation function values (f1, . . . , fm). In time series analysis, a
measure to detect non-random trends in the data is the (empirical) autocorrelation function
which is defined as

r(i) =
∑m−i

j=1 (f j − f)(f j+i − f)

∑m
j=1(f j − f)2

(3.21)

where f = 1/m · ∑m
j=1 f j. In optimisation, the value r(i) indicates the correlation be-

tween two points that are i steps apart in the random walk (Weinberger, 1990). Of main

84 Statistical Methods for the Analysis of Stochastic Optimisers

importance is r(1) because it captures the statistical dependency between the level of a
point in the landscape and its direct neighbours: r(1) close to 1 corresponds to a smooth
landscape, while a r(1) close to 0 corresponds to a random landscape.

Clearly, the starting point has a strong influence on the character of the random walk.
In order to generalise the results the random walk must, then, be repeated several times
so that a sample of reasonable size of the search space is collected. If the values of
r(1) remain similar the information provided can be used to describe the whole search
landscape, provided that we assume the landscape to be regular in every of its points
and directions (i.e., homogeneous and isotropic).

Descriptions beyond the first neighbourhood are, instead, rare in landscape analysis
for optimisation (see Hordijk and Manderick, 1995 for the only example to our knowl-
edge) but might as well be worth to investigate. Insights may be obtained by autocorre-
lation plots which are scatter plots of r(i) for different distance values i.

For some problems, the correlation structure of the landscape can be determined an-
alytically. Stadler (1996) derives analytical result for the correlation length, defined as
l = 1/|ln(r(1))|, for some particular search landscape that satisfy a certain difference
equation with respect to neighbouring solutions similar to wave equations in mathemat-
ical physics (Grover, 1992). Barnes et al. (2003) extend these results to a broader class
of search landscapes. Some problems like travelling salesman, min-cut graph partition-
ing, graph colouring, and a version of the satisfiability problem have this property. In
particular, graph colouring, with an evaluation function that measures the number of
edges that connect vertices with the same colour, has r(1) = 1− 2k/(k− 1)n, where k
is the number of colours and n the number of vertices (Stadler, 1996). This result en-
tails that the correlation of nearest-neighbours depends only on the number of colours
and the size of the graph. Hence, all instances of graph colouring solved at the same
k have a similar search landscape and the behaviour of local search is expected to be
similar. Nevertheless, this fact contrasts with the observation, reported in Chapter 4,
that local search methods may encounter different difficulties when solving graphs with
different structure. Apparently, the autocorrelation function is not enough to explain
the behaviour of SLS algorithms.

Fitness distance analysis. Fitness distance analysis focuses on the relation between solu-
tion quality and solution distances (Jones and Forrest, 1995). The relation is summarised
by the correlation coefficient and is also often represented graphically by fitness-distance
plots. The solutions considered may be randomly sampled or, more frequently, are local
optima. In the analysis of SLS algorithms, the focus is usually on samples of locally
optimal solutions. Particularly interesting is then the relation between local optima and
global optima. If optimal solutions are not available best known solutions may be used
in their place (in which cases the interpretation of results must be treated with cau-
tion). For minimisation problems, a large positive correlation coefficient indicates that
the lower the evaluation function value, the closer the respective positions are, on aver-
age, to a globally optimal solution. A value close to zero indicates that the evaluation
function does not provide much guidance towards globally optimal solutions, while for
negative correlations, the evaluation function is actually misleading.

The results of fitness distance analysis have impact on the design of SLS algorithms.
Indeed, highly correlated search landscapes suggest that the use of intensification strate-
gies in SLS algorithms leads to good performance while strong diversification may be

3.9 Landscape analysis 85

useful for the cases of weak correlation. Cases of negative correlations may instead sug-
gest that the use of local search is not appealing and that different solution methods
should be considered. Moreover, fitness-distance correlation might also be used to eval-
uate different neighbourhoods, giving preference to those that allow higher correlation.

Fitness distance correlation alone, however, is never enough to account for differences
in the difficulty of individual instances. Moreover, discordant comments on its interpre-
tation are reported in the literature (see Naudts and Kallel, 2000 for a discussion on the
limitations of this approach).

Local optima localisation. The notion of local optima is crucial to SLS algorithms. SLS
algorithms search for local optima, explore them and try to exit from them. Character-
ising the location of local optima in the search space is, therefore, useful to unveil the
difficulties inherent in a search landscape. A sample of local optima may be obtained by
a relatively simple SLS algorithm. Two distributions of distances may then be consid-
ered: the pairwise distances within the set of local optima, or the distances between local
optima and closest optimal solutions. In both cases, the range of observed distances and
the modes of the distribution reflect important properties of the relative placement of
local optima across the landscape. For example, a multi-modal distribution of pairwise
local optima distances reveals the concentration of local minima in a number of clusters
where the lower modes correspond to the intra-cluster distances and the higher modes
represent the inter-cluster distances (see Paquete et al., 2004). In some other cases it was
shown that the average distance of local optima from the nearest optimal solution gives
rise to the most significant model to predict the hardness of an instance (Watson et al.,
2003).

Clearly, the crucial step in this analysis is computing the correct distances between so-
lutions. For many neighbourhoods and solution representations the problem of finding
the minimal distance between two solutions given a move operator is an NP-hard prob-
lem and approximate measures may become necessary. The indications provided by the
approximate measures are then reliable only if highly correlated with the exact value.
However, (Schiavinotto and Stützle, 2005) observe that for some problems represented
by permutations the right distance value can be computed efficiently, and that the use
of an approximate value is unjustified. In addition to this, it must be observed that dis-
tances between pairs of solutions peak in a value which is typical of the move operator
and the analysis of results should distinguish observations determined by the algorithm
from those which are a typical effect of random sampling the search landscape.

Number of local and global optima. Another characteristic of local optima that could
be taken into account is their number. It is reasonable to assume a negative correlation
between the number of local optima and the hardness of solving a problem instance by
local search. Indeed, in the extreme case that all local optima are global optima, local
search would always find a solution to the problem while, in all other cases, the chances
that local search ends in a local optimum that is not a global one increases with the
number of local optima.

In general, neighbourhoods, that entail fewer local optima or local optima of better
quality should be preferred. The analysis of these two features, possibly even from a
theoretical point of view, may be relevant for the selection of the neighbourhood struc-
ture. However, when more complex SLS algorithms are introduced the impact of the

86 Statistical Methods for the Analysis of Stochastic Optimisers

number of local optima on this issue becomes less clear.
Finally, the number of global optima in the search space is also indicative of the effort

for local search to locate them. Intuitively, the lower this number is, the harder it should
be to reach optimal solutions. In contrast, with many optimal solutions spread over the
search landscape, random restart algorithms are likely to perform well.

Backbone size. The backbone of a problem instance is the set of solution components
that maintain identical values in all optimal solutions of the instance (Monasson et al.,
1999). The fraction of solution components appearing in the backbone determines the
backbone size. Studies, above all on the SAT problem, showed that the backbone size is
correlated to the search cost of locating solutions. The SAT problem is known to exhibit
a sharp transition from satisfiable to unsatisfiable problems, and this phase transition
can well be characterised by a few features of the instances. It has been noted that
there is a common pattern of problems easy-hard-easy in correspondence of this phase
transition and this has stimulated researchers to investigate the reasons why instances
become harder. It has been noted that the backbones rapidly pass from small to large
size close to that region, but contemporaneously the number of solutions drastically
decreases (Achlioptas et al., 2000). The backbone size appears, therefore, as a redundant
information on the number of optimal solutions. This conjecture was confirmed on the
Job Shop Scheduling problem by Watson et al. (2003).

Plateaux. In order to escape from a plateau, a local search procedure has either to find
an exit or to accept a move to a worse neighbour. The characterisation of the plateaux,
that is, the definition of the fraction of plateaux that are benches or local minima might,
therefore, help to decide which strategy to adopt. Intuitively, however, the larger a
plateau is the more costly it is to find an exit. The size of plateaux, therefore, has an
impact on the design of SLS algorithms. With small plateaux it might be worth to spend
some iterations moving in the plateau in search of an exit, with large plateaux, instead,
it might be better to diversify soon the search jumping to other regions of the search
space.

To determine its size, the plateau has to be exhaustively explored. In this case sam-
pling does not help and exploration of plateaux may be achieved with standard search
techniques, introduced in Section 2.3.3.

Connectivity. A property of the search landscape which is of chief importance for lo-
cal search, above all in highly constrained problems, is the connectivity of the search
landscape.

Definition 3.3 A landscape L = (S ,N , f) is connected at a level l if, and only if, there
exists a path in the neighbourhood graph GN between any two solutions s, s′ ∈ S , visiting only
solutions t with f (t) ≤ l. If no restriction on f (t) is given, we say L is connected, without
further specifications on the level.

The neighbourhood definition plays a fundamental role in the definition of connected
landscapes. Most neighbourhood structures result in a connected landscape, if we do
not impose any restriction on the level. But things may change with the introduction of
constraints and with the adoption of particular search strategies.

3.9 Landscape analysis 87

(a) All constraints weighted in the evaluation function.

(b) The path through solutions that violate some constraints is not allowed (vertical white line).

(c) Only small deteriorations of solution quality are allowed.

Figure 3.10.: A simplified two dimensional search space landscape with a continuous evaluation
function for three different SLS strategies.

88 Statistical Methods for the Analysis of Stochastic Optimisers

We illustrate the possible pitfall with an example. In general, search landscapes are
multi-dimensional and extremely difficult to visualise. In Figure 3.10 we reduce the
search space to two dimensions and provide a three dimensional view which includes
the evaluation function level and the contours of quality levels. A landscape similar
to the one in Figure 3.10(a) may occur in a highly constrained problem with hard and
soft constraints weighted in a single evaluation function. The higher barrier may then
consist of all those solutions that violate some hard constraints, since these are much
more severely weighted in the evaluation function. The search space is in this case
clearly connected if no level restriction is imposed on the local search.

If we adopt a different strategy, that is, if we decide not to weigh all the constraints
in the evaluation function but only the soft constraints and to forbid visiting infeasi-
ble solutions, then the search landscape becomes disconnected even without any level
restriction on the local search. This case is visualised in Figure 3.10(b). Clearly, in a
disconnected landscape the search may become trapped in single separated regions. In
addition to this, SLS methods tend to limit the entity of worsening steps to jump out
from local optima. A typical case is Simulated Annealing that uses a probabilistic ac-
ceptance criterion that links the probability of moving from a solution to a worse one to
the size of the barrier between the two solutions in the landscape. As the search pro-
ceeds further and the probabilistic criterion becomes tighter, even small barriers become
insurmountable. Thus the search landscape may become characterised by many small
basins of attraction as depicted in Figure 3.10(c).

3.10. Discussion

We reviewed the main methods for analysing stochastic optimisers. We tried to col-
lect and organise the tools of applied statistics that are most relevant in the context of
combinatorial optimisation. In this process, we recognised that a statistical analysis of
algorithms leaves many issues open. We will try to collect them in the conclusions of
this thesis.

Of central importance for the whole thesis is the definition of the statistical methods
for the analysis of experiments on the basis of solution quality. We will provide evidence
in Chapter 4 of the difficulty to adapt parametric methods to the analysis of stochastic
optimisers. We will instead compare permutation tests and rank-based tests and give
preference to the most powerful. A simulation study is reported in Appendix B for
validating and comparing these two approaches. When the behaviour of the tests is
similar, the choice of the test depends on the real application because rank based tests
remove the entity of the differences on single instances while permutation tests take
these entities into account. However, the experience in this thesis seems to confirm the
wide belief that parametric tests remain robust under considerable violations of some of
their assumptions, while instead the implementation of permutation tests still requires
calibration efforts.

Of particular relevance is also sequential analysis that constitutes the central aspect
in the experimental methodology for the development of SLS algorithms described in
Chapter 6. A time dependent analysis will be used only to corroborate, or to restrict the
extent of the results inferred by the previous methods.

3.10 Discussion 89

The space devoted to landscape analysis in this thesis, instead, is marginal and cer-
tainly insufficient. This is a very attractive area of research, as it could unveil the mys-
tery connected with local search algorithms and provide rational arguments for their
use. But it certainly requires full time research and strong skills in a series of disciplines
such as Mathematics, Programming, Statistics, Probability Theory, and Physics plus a
certain degree of creativity in envisaging new hypothesis to test.

Chapter 4.

Graph Colouring

In which we deal with Stochastic Local Search algorithms for solving large instances of the
graph colouring problem. We introduce new methods, study in-depth the use of a very large

scale neighbourhood, and provide extensive experimental results on benchmark graphs.

4.1. Introduction

The interest in graph colouring originates from the question about how many different
colours are necessary to colour the countries of a map in such a way that no pair of
adjacent countries receives the same colour. This question, that can be formalised by the
use of planar graphs, has spawned an enormous amount of mathematical research and
only rather recently the conjecture that four colours are enough for colouring planar
graphs has been finally proved true Appel et al. (1977).

The graph colouring problem (GCP) for more general graphs than planar ones re-
mains a central problem of graph theory with many important real life applications.
Some of such applications were already mentioned in the introduction of this thesis
and are register allocation (Allen et al., 2002), job scheduling (Leighton, 1979), air traffic
flow management (Barnier and Brisset, 2002), light wavelengths assignment in optical
networks (Zymolka et al., 2003), and timetabling (de Werra, 1985). Another real life sit-
uation that can be modelled as a GCP is testing for unintended short circuits in printed
board circuits, where “nets” can be partitioned in supernets that can be tested simulta-
neously thus speeding up the testing process (Garey et al., 1976). Two applications of
graph colouring have also been pointed out in Mathematics: solving the algebraic struc-
ture of Quasigroups (Gomes and Shmoys, 2002), and numerical estimation of large,
sparse Jacobian matrices (Hossain and Steihaug, 2002). In statistics, the problem of con-
structing Latin square designs is also solved through graph colouring (Lewandowski
and Condon, 1996, see also footnote 2 of Chapter 3, on page 50). All these applications
entail solving large GCP instances where the size of the graphs usually exceeds 100
vertices.

In this chapter, we study the application of SLS methods for the GCP. We introduce a
new local search with a very large scale neighbourhood, and we are the first to imple-
ment and test other variants of SLS methods that were successful for the satisfiability
problem in propositional logic and for constraint satisfaction problems. We empirically
assess the performance of construction heuristics, iterative improvement procedures,

92 Graph Colouring

and high-performing SLS algorithms. In this latter case, we compare our new algo-
rithms with state-of-art algorithms through a rigorous experimental analysis. The final
outcome is an unbiased evaluation of approximate algorithms for solving large GCP in-
stances which will become an important reference in the empirical analysis and choice
of algorithms for this problem. We also attempt a more detailed map of algorithms
in relation to structural characteristics of the graphs to be solved. Finally, for some
algorithms we provide more in-depth analyses showing the behaviour with respect to
run time, investigating reasonable stopping times, or, explaining the reason why they
perform unexpectedly poorly.

4.2. Formal definition of the problem and notation

In the graph colouring problem we are given an undirected graph G = (V, E) and a set
of colours Γ. The finite set V is the set of vertices, while the set E ⊂ V × V is the set of
edges.

A colouring is a mapping ϕ : V 7→ Γ that assigns a unique colour to each vertex.
The set of colours is written as a set of natural numbers: Γ = {1, . . . , k}, and, hence
|Γ| = k. Equivalently, a colouring can be seen as a partition C of the set of vertices into
k subsets, that is, C = {C1, . . . , Ck}, where the vertices in the colour class Ci are coloured
with colour i ∈ Γ. The assignment ϕ and the partition C are two equivalent ways of
defining a colouring and we will use either of them interchangeably as is convenient in
the exposition.

A colouring is said to be feasible (or legal) if there are no pairs of vertices u, v ∈ V such
that (u, v) ∈ E and ϕ(u) 6= ϕ(v). Similarly, we say that a colouring is infeasible if there
exists an edge (u, v) ∈ E such that ϕ(u) = ϕ(v). In this case we say that the end vertices
of such an edge are in conflict.

The decision version of the GCP, called the vertex k-colouring problem, consists in find-
ing a feasible colouring using a defined number k of colours. It can formally be defined
as

Input: An undirected graph G = (V, E) and a set of colours Γ with |Γ| = k ≤ |V|.
Question: Is there a k-colouring ϕ : V → Γ such that ϕ(u) 6= ϕ(v) for all

(u, v) ∈ E?

The chromatic number χG is a characteristic of the graph and corresponds to the small-
est k such that a feasible k-colouring exists. The optimisation version of GCP, also known
as the chromatic number problem, consists in determining χG, and can be formalised as

Input: An undirected graph G = (V, E) and a set of colours Γ with |Γ| = k ≤ |V|.
Question: Which is the smallest k such that a feasible k-colouring exists?

The chromatic number problem can be approached by solving a decreasing sequence
of k-colouring problems until for some k a feasible colouring cannot be found. In this
case, the best feasible colouring uses k + 1 colours and this is the chromatic number of
the graph.

4.2 Formal definition of the problem and notation 93

Next, we introduce a few definitions from graph theory which will be used through-
out the rest of the chapter. The order of a graph is the number of vertices in the graph,
i.e., n = |V|. The edge density ρ(G) is the proportion of |E| with respect to the poten-
tial edges of G, i.e., ρ(G) = |E|/(|V|2). Graphs with a number of edges that is roughly
quadratic in the number of vertices are usually called dense, as opposed to sparse graphs,
which exhibit, instead, a linear dependence.1

The degree of a vertex, denoted by d(v), is the number of edges which have v as
one of their end points. The maximal degree ∆(G) and the minimal degree δ(G) are,
respectively, the maximal and the minimal vertex degree over all vertices in V. The
average degree of G is given by

d(G) =
1
|V| ∑

v∈V
d(v).

If all the vertices of G are pairwise adjacent, then G is complete, while a set of vertices
is independent (or stable) if no two of its elements are adjacent. An independent set is also
denoted as a proper set, while if one, or more edges, exist between its vertices then it
is said improper. A path is a non-empty graph Pl−1 = (V, E) with V = {v0, v1, . . . , vl}
and E = {(v0, v1), (v1, v2), . . . , (vl−1, vl)}, where all vi are distinct. A cycle is a graph
Cl = (V, E ∪ {(vl , v0)}) with V, E taken from the path definition . The length of a path
or cycle is the number of edges it contains, i.e., l − 1 or l, respectively. A subgraph of
G(V, E) is a graph G′(V ′, E′) with V ′ ⊆ V and E′ ⊆ E. A non-empty graph G is called
connected if any two of its vertices are linked by a path in G. A connected component is
a maximal connected subgraph of G. If all vertices of G are pairwise adjacent then the
graph is complete. A complete graph on r vertices is denoted as Kr. The greatest number
r such that a Kr is a complete subgraph of G with order r is called the clique number of
the graph and it is denoted by ω(G).

In order to distinguish the value of the chromatic number and the clique number from
approximations of their values we sometimes use for the approximations the notation
χ̂(G) and ω̂(G), respectively. Clearly, we have χ̂(G) ≥ χ(G) and ω̂(G) ≤ ω(G).

We also introduce the following notation which will serve for the description of our
algorithms (U and T are two subsets of V, and, for brevity, if U = {v} we write U = v).

• Vc is the set of vertices in V that are involved in at least one conflict, i.e., Vc =
{v ∈ V : ∃u ∈ V, ϕ(v) = ϕ(u), (u, v) ∈ E};

• AU(v) is the set of vertices in U adjacent to the vertex v, i.e., AU(v) = {u ∈ U :
(u, v) ∈ E};2

• EU(T) with T ⊆ U is the set of edges that connects vertices in T with vertices in
U, i.e., EU(T) = {(u, v) ∈ E : u ∈ U, v ∈ T}. Note that because of T ⊆ U, EU(T)

1Note that, the notion of dense and sparse graphs makes sense only for families of graphs whose order
tends to infinity. In addition, the concept of a sparse graph is distinct from the concept of low-density
graphs. By sparse we mean families of graphs for which the number of edges |E| is in O(|V|) and so the
density decreases with increasing |V|. Meanwhile, by low-density graphs we mean families of graphs
which have O(|V|2) edges but for which the density, remains small but constant with increasing |V|
(for example we will encounter uniform randomly generated graphs which maintain a fixed density of
around 0.1 independently from their size).

2In Graph Theory, the set A is often referred to as the neighbourhood of vertex v. Here we avoid this
terminology in order not to confuse it with the notion of neighbourhood in local search.

94 Graph Colouring

contains also all edges (u, v) with u, v in T. As a special case, we denote with Ec
U

the set of edges between vertices in U, that have the end vertices in the same colour
class, i.e., Ec

U = {(u, v) ∈ E : u, v ∈ U, ϕ(u) = ϕ(v)}. Clearly, Ec
V =

⋃k
i=1 Ec

Ci
.

The following relations between adjacent vertices |AU(v)| and incident edges |EU(T)|
are derived trivially from the definitions above and by the principle of set theory that
avoids multiplicity of the objects collected.

Remark 4.1 |EU(v)| = |AU(v)|, ∀v ∈ U, U ⊆ V.

Remark 4.2 |EU(U)| = |⋃v∈U EU(v)| = 1
2 ∑v∈U |EU(v)|, ∀U ⊆ V.

4.3. Known theoretical results, complexity, and approximations

The focus of our study is on finding the chromatic number. For some special graphs,3

χ(G) is known; such cases are the following ones.

• χ(G) = 1 iff G is totally disconnected.

• χ(Kn) = n;

• χ(Cn) =
{

3 for n odd
2 for n even

and n > 1;

• χ(C2n+1) = n + 1 where Cn is the complement (i.e., a graph on the same set of
vertices but with all edges not present in the original graph) of an odd cycle of
order at least 5;

• χ(Sn) = 2 where Sn is a star graph (i.e., a tree with one vertex of degree n and all
others of degree 1) and n > 1;

• χ(Wn) =
{

3 for n odd
4 for n even

where Wn is a wheel graph and n > 2;

• χ(G) ≥ 3 iff G has a cycle of odd length;

• χ(G) ≤ 4, for any planar graph G. This famous result, called the Four Colour The-
orem, seems to have been first conjectured in a letter from De Morgan to Hamilton
in 1852. Recently, shorter proofs, yet still based on computer, appeared by Robert-
son et al. (1996).4

3A formal definition of the special graphs mentioned in this section is not important in our discussion. The
interested reader is referred to Diestel (2000) or, for a comprehensive survey on the topic, to Brandstädt
et al. (1999).

4Cahit (2004) has recently proposed a non-computer proof but his paper is not yet published and a history
of incorrect “proofs“ for this problem suggests caution. Note that an O(n2) time complexity algorithm
for four-colouring planar graphs can be derived from the proof of Robertson et al. (1996) but it seems
not practical with regard to implementation. With regard to our introductory problem of colouring
geographic maps, in practice the need arises for models with more general graphs than the planar ones.
Countries with exclaves like Russia and single point bordering countries make the four-colour theorem
not applicable. In practice, the assignment task is solved by simple construction heuristics such as the
DSATUR, described later (Freimer, 2000).

4.3 Known theoretical results, complexity, and approximations 95

Approximability results Non approximability results
Factor Due to Factor Due to Assumption

O(n(log log n)2/ log3 n) Halldórsson (1993) O(n1−ε) Feige and Kilian (1998) NP 6= ZPP
O(n(log log n/ log n)3) Berger and Rompel (1990) O(n

1
5−ε) Bellare et al. (1998) NP 6= coRP

O(n(log log n/ log n)2) Wigderson (1983) O(n
1
7−ε) Feige and Kilian (1998) P 6= NP

O(n/ log n) Johnson (1974) O(n
1
5−ε) Bellare et al. (1998) P 6= NP

Table 4.1.: Bounds on the approximability and non approximability of the chromatic number
problem. Strength of the results increases as going upwards in the table. The two conditions
NP 6⊆ ZPP and NP 6⊆ coRP are known to be equivalent.

The k-colouring number problem for arbitrary k was shown to be NP-complete by
Karp (1972). The k-colouring problem is solvable in polynomial time only for k = 2, and
for arbitrary k on the following special graphs: comparability graphs, chordal graphs,
circular arc graphs, (3,1) graphs, and interval graphs (Garey and Johnson, 1979). The
problem remainsNP-complete for k = 3, and graphs having no vertex degree exceeding
4 (Stockmeyer, 1973), and for arbitrary k on intersection graphs for straight line segments
in the plane and on circle graphs.

“Bad” results are known even on the approximability of the chromatic number. For
most existing polynomial-time graph colouring algorithms the absolute performance
ratio can be as bad as O(n) where n = |V| (we recall that the absolute performance
ratio is the largest ratio of colours used by the algorithm to the chromatic number over
all possible graphs, see also Section 2.2). The best absolute performance guarantee of
O(n(log log n)2/ log3 n) for an approximation algorithm is given by Halldórsson (1993).

Even worse, there exist results that show that, unless P =NP , no polynomial time ap-
proximation scheme may exist for certain approximation ratios. We report some of these
results in Table 4.1. The tightest bound on polynomial time approximation schemes for
the chromatic number is presented by Feige and Kilian (1998) who state that unless
NP ⊆ ZPP it is intractable to approximate χ(G) to within n1−ε for any constant ε > 0.
The class ZPP , P ⊆ ZPP , arises in the theory of randomised computation and com-
prises problems that can be solved in polynomial time by a probabilistic algorithm that
makes no errors. More details on approximability for graph colouring can be found in
the survey by Paschos (2003) and on the Internet (Crescenzi and Viggo, 2004).

In the general cases lower and upper bounds on the chromatic number exist. A
simple upper bound is given by ∆(G) + 1. Brook’s theorem tightens this bound to
χ(G) ≤ ∆(G) if G is neither complete nor it has an odd cycle. A lower bound is instead
ωG. However finding the maximal clique in a graph is also an NP-hard problem (Garey
and Johnson, 1979). Tighter lower bounds for specific classes of graphs may be found
in the literature. Johri and Matula (1982) provide tables on lower bounds for random
graphs obtained with the probabilistic method, which is a versatile approach for graph
theory on random graphs. They also provide tables for estimates on the chromatic
number. Finally, a conjecture based on a theorem of Bollobás and Thomason (1985)
states that, for random graphs of sufficiently large order and with edge density equal to
0.5, χ(G) is with high probability equal to |V|/2 log2 |V| (Bollobás, 2004).5

5The complete formula would be n log(1/q)
2 log n (1 + o(1)) where q = 1− p, with p being the edge density, and

o(1) denotes a function of n converging to zero as n → ∞. For graphs of order 1000 and edge density
0.5, o(1) is still about 0.6 as shown in Bollobás and Thomason (1985), hence the approximation given in

96 Graph Colouring

It seems reasonable to speculate that graphs with a large chromatic number must have
large cliques and hence small girth (i.e., the length of the shortest cycle in a graph). Yet,
this may not be true. Erdős (1961) showed that for any two positive integers g and k
there exists a graph of girth at least g with chromatic number at least k. This important
result suggests that a large chromatic number is not always caused by some dense local
substructures, which could be easily detectable, but rather it may occur as a purely
global phenomenon: in fact a graph of large girth, locally (around each vertex), looks
just like a tree and is locally 2-colourable.

Graphs in which the local structure directly implies the chromatic number are per-
fect graphs. A perfect graph is a graph G such that for every induced subgraph of G,
the size of the largest clique equals the chromatic number. Classes of graphs that are
perfect include the empty graph, complete graphs, bipartite graphs, line graphs of bi-
partite graphs, and the graph complements of the latter two. Perfect graphs are also
chordal graphs, comparability graphs and interval graphs which turn up in numerous
applications. Important classes which are known to be perfect graphs are described
in Hougardy (1998).

Grötschel et al. (1981) show that for perfect graphs the clique and the colouring prob-
lem can be solved in polynomial time. Unfortunately, this result makes use of the ellip-
soid method in linear programming and its relevance is mainly theoretical while it has
never been implemented in practice. Surprisingly, in spite of this result, a polynomial
algorithm for recognising perfect graphs has been found recently by Cornuéjols et al.
(2003). Its complexity is O(n10). At the current time, however, no implications of this
result on the graph colouring problem have been published.

4.4. Benchmark instances and applications

The principal goal of our study is to empirically evaluate different approximate algo-
rithms for graph colouring. We assume to have no a priori knowledge on a graph except
the features that are easily retrieved, like size, density, and some basic structure. Con-
sequently, we assume to know nothing about the chromatic number before solving an
instance. This is the most general situation and the most likely to occur in practical
cases.

The literature on methods for graph colouring has focused on a set of instances which
is publically available. The advantage of this is the possibility of having immediate
benchmarks with results attained by other existing algorithms thus making easier the
comparison. We conform to this praxis and use the same set of instances for testing the
algorithms developed by us. The need for using the same instances arises in our case
to substantiate the results of the known algorithms that we re-implement and to make

the text is actually valid only for graphs of order much larger than those to which we will address our
attention. The probabilistic approximations provided by Bollobás and Thomason (1985) and Johri and
Matula (1982) are very close as, for example, for n = 1000 and p = 0.5 they indicate χ(G) ≈ 80 and
χ(G) ≈ 85, respectively. The tables in Johri and Matula (1982) present, however, more detailed results.
Other improved probabilistic results are those of Luczak (1991) and Achlioptas and Naor (2005). The
latter one states that the chromatic number for a random graph Gnp with p = d/n is either kd or kd + 1
where kd is the largest integer k such that d < 2k log k. For n = 1000 and p = 0.5 this entails a χ(G) of
59 or 60. Yet, these values are stronger, as not obtained by computer simulation.

4.4 Benchmark instances and applications 97

the results reliable. Nevertheless, this approach has also some drawbacks which were
pointed out in Section 3.6 and therefore we will also test our algorithms on large classes
of differently structured, random graphs constructed with the generator of Culberson
et al. (1995). The analysis on these graphs will be presented in Section 4.13. The bench-
mark graphs are instead used more extensively throughout the chapter also for testing
construction heuristics and iterative improvement algorithms and we introduce them
here.

The benchmark instances are collected by the DIMACS Computational Challenge on
“Graph Colouring and its Generalisations”.6 They consist of 125 graphs arising in dif-
ferent contexts. Since we saw that results may be different in graphs with different
structure, we maintain them grouped in classes according to similar structure and study
algorithms separately in each class. The presentation of these instances constitutes also
an occasion to stress even more the wide field of practical applicability of graph colour-
ing.

Random graphs: This class is based on Gn,p graphs, which have n vertices and are
generated by including each of the n(n − 1)/2 possible edges independently at
random with probability p. No a priori knowledge on the chromatic number or on
lower bounds is given, although Johri and Matula (1982) provide some probabilis-
tic indications. The instance identifiers are DSJCn.p, with n ∈ {125, 250, 500, 1000}
and p ∈ {0.1, 0.5, 0.9}, and have remained the same since their first use in the
experimental study of Johnson et al. (1991).

Geometric random graphs: These graphs are generated as follows: first, n vertices are
placed at random positions in a two dimensional unit square in the Euclidean
plane; then, edges are added between any pair of vertices u and v whose Euclidean
distance is smaller than a given value d ∈ (0,

√
2]. The graph denoted as DSJR500.5

is such a graph with 500 vertices and d = 0.5, while the graph DSJR500.1c is the
complement of such a graph with 500 vertices and d = 0.1. For a correspondence
between d values and edge density see Figure 4.2 on page 103.

Queen graphs: The n-queens problem asks whether it is possible to place n queens on
a n × n grid such that no pair of queens attacks each other. This problem can
be posed as a graph colouring problem and a feasible solution to the n-queens
problem exists if, and only if, the graph made of the vertices corresponding to
the squares of the grid and joined by edges if the squares are on the same row,
column, or diagonal, has a feasible colouring with n colours. A theorem shows
that the n × n queens graph is n-colourable whenever (n mod 6) is 1 or 5. This
condition is necessary and sufficient for n < 12, however, it is not necessary for all
n and counterexamples exist.7 These graphs are highly structured instances and
sparse, as their edge density decreases with increasing size.

Leighton graphs: Leighton graphs are random graphs with a predetermined chromatic
number. The graphs are constructed by first grouping vertices into k sets, repre-
senting the colour classes, and then assigning edges only to vertices that belong

6M. Trick. “Computational Series: Graph Coloring and its Generalizations.” August 2001.
http://mat.gsia.cmu.edu/COLOR04/. (February 2005).

7V. Chvátal. “Coloring the queen graphs.” February 2004.
http://www.cs.concordia.ca/~chvatal/queengraphs.html. (July 2005).

http://mat.gsia.cmu.edu/COLOR04/
http://www.cs.concordia.ca/~chvatal/queengraphs.html

98 Graph Colouring

to different sets. This guarantees an upper-bound to the chromatic number. The
upper-bound is then made also a lower-bound by implanting cliques of sizes rang-
ing from 2 to k into the graph. The vertices of the cliques are chosen in such a way
that the chromatic number of the graph will not be larger than k. Additionally,
Leighton graphs use a limit on the total number of edges and all graphs have a
density lower or equal to 0.25. The graphs are denoted as le450_kx, where 450
is the number of vertices, k is the chromatic number of the graph and a letter
x ∈ {a, b, c, d} is used to distinguish different graphs with same characteristics
but generated with different random seeds and with c and d having higher edge
density than a and b.

Flat graphs: These graphs are random graphs generated consequently to an equi-partition
of vertices in k independent sets. For a given density of the graph, edges are then
distributed as equitably as possible between pairs of vertices belonging to different
sets. For a discussion on how this is done we refer to Culberson et al. (1995). The
number of sets k is an upper bound to the chromatic number of the graph. There
are six instances, denoted as flatn_k, with n = 300 and k ∈ {20, 26, 28} and with
n = 1000 and k ∈ {50, 60, 76}.

WAP graphs: These graphs arise in the design of transparent optical networks (Zy-
molka et al., 2003). In particular, the GCP is used to find an assignment of a
minimal total number of wavelengths, given some pre-established light-path rout-
ing. The instances have the identifier wap_0ma, m = {1, . . . , 8}. All instances have
a clique of size 40. For some instances, the chromatic number is known.

Mycielski graphs: A Mycielski graph of order k is a triangle-free graph with chromatic
number k. A triangle free graph has no cycles of length three and its clique number
is two. These graphs are important because they show that an indefinitely large
chromatic number is possible for graphs with a small clique number. They are
denoted myciel(k− 1).

Insertions graphs: The insertions graphs are also triangle free graphs. They are ob-
tained by a succession of graphs constructed by means of an extension of the
Mycielski transformation. Shortly, given the insertion graph Ik

i the transformation
produces a new graph Ik

i+1 by introducing n · (k + 1) + 1 vertices, where n is the
number of vertices of Ik

i , and edges in such a way to maintain the general proper-
ties of the graph. Graph Ik

1 is the graph with two vertices and one edge. They were
proposed by Caramia and Dell’Olmo (2002b) and are named as k-insertions_i.

Full Insertions graphs: Full Insertions graphs extend even further the Mycielski trans-
formation. The mechanism is similar to the Insertions graphs where n · (k + 1) +
k + 2 vertices are inserted at each transformation, however, they are not anymore
triangle free graphs. We indicate them as k-FullIns_I, where k and I are two pa-
rameters which determine the transformation. The introduction of Insertions and
Full Insertions graphs is quite recent and no theoretical proof concerning their
chromatic number exists (Caramia and Dell’Olmo, 2002a).

Quasigroup Graphs: A Quasigroup is an algebraic structure on a set with a binary op-
erator. The constraints on this structure define a Latin square, that is a square ma-
trix with elements such that entries in each row and column are distinct. A Latin

4.5 Graph reduction 99

square of order n has n2 vertices and n2(n− 1) edges, corresponding to 2n cliques,
a clique per row/column, each of size n; it is known that the chromatic number
of Latin square (or Quasigroup) graphs is n. We denote Latin square graphs de-
fined by Quasigroups as qg.ordern. The instance latin_square_10 stems from
the design of Latin square experiments in statistical analysis (Lewandowski and
Condon, 1996). The chromatic number of this latter graph is unknown.

Jacobian Estimation Graphs: These graphs stem from a matrix partitioning problem in
the segmented columns approach to determine sparse Jacobian matrices (Hossain
and Steihaug, 2002). The instance identifiers are abb313GPIA, ash331GPIA, ash608-
GPIA, ash958GPIA and will199GPIA.

Course Scheduling Graphs: These graphs arise in a course timetabling problem where
courses cannot be scheduled in a same timeslot if they share students. In this
problem, the vertices correspond to the courses, while an edge exists between
a pair of vertices, if a student visits both courses. Two instances, school and
school-nsh, for the problem of scheduling 385 courses have been proposed by
Lewandowski and Condon (1996). An upper bound for the chromatic number of
both graphs is 14.

Other Graphs: We also solved other graphs from the DIMACS repository, which, how-
ever, resulted to be easily solvable (details on what we mean by easily solvable are
given in Section 4.7). These are:

• instances from register allocation for variables in real codes (Lewandowski
and Condon, 1996);
• graphs from Donald Knuth’s Stanford GraphBase: Book, Game, and Miles

graphs (Knuth, 1993);
• graphs that are almost 3-colourable, but have a hard-to-find four clique em-

bedded (Mizuno and Nishihara, 2002).

Given that these graphs are not anymore interesting for approximate algorithms
we skip their detailed description.

In Appendix C.1.1 we give a detailed account of numerical statistics on all the indi-
vidual instances of the DIMACS repository. Except where differently stated, all results
in terms of computation times reported in this chapter refer to a PC with a 2 GHz AMD
Athlon MP 2400+ Processor with 256 KB cache and 1 GB RAM. In order to make possible
comparisons among different machines, a benchmark code is available at the DIMACS
web site. We report the results produced by its execution on our machine in Appendix
C.1.3.

4.5. Graph reduction

In the chromatic number problem, a graph G can be reduced to a graph G′ if for any
feasible colouring of G′ a feasible colouring for G can be easily derived by some con-
struction rules. Such a reduced graph G′ may be obtained in a preprocessing stage.
Three rules, proposed in Cheeseman et al. (1991), can be used for this scope.

100 Graph Colouring

Rule 1: Remove all vertices in G that have a degree less than the size of the largest
known clique ω̂(G). Knowing that the degree of a vertex is less than ω̂(G) guar-
antees that at least one colour that is not used in the set of adjacent vertices can be
assigned without breaking feasibility.

Rule 2: Remove a vertex v ∈ V if there is another vertex u ∈ V, v 6= u and (u, v) /∈ E,
that is connected to every vertex to which v is connected (subsumption). In this
case, any colour that can be assigned to u can also be assigned to v.

Rule 3: Merge vertices that must have the same colour, that is, if vertices are fully con-
nected to a clique of size k − 1, then these vertices can be merged into a single
vertex that is connected to all vertices to which the original vertices were con-
nected, because they must have the same colour. This rule can be used only when
trying to colour the graph with a number of colours k = ω̂(G) + 1 and needs
therefore k to be fixed and it is a particular case of Rule 2.

These three rules can be applied in any order and, typically, if one rule applies, it
makes possible further reductions through the other rules. Hence, the preprocessing
stage applies these rules iteratively until no vertex can be removed anymore. The rules
are trivial to implement. Rule 1 is done in O(|V|) and a clique can be found by a
construction heuristic. Rule 2 and 3 are, instead, more expensive and require O(|V|3).
The overall reduction time is, however, insignificant in practice.

4.6. Exact methods

In integer linear programming, the graph colouring problem on G can be formulated
as a set covering problem, where the ground set is V, the available sets are the maximal
(inclusion-wise) independent sets of G. Alternatively, it can be expressed as a set packing
problem on the same ground set, where the sets are all stable sets of G. Unfortunately,
the number of variables grows exponentially with the size of G and linear relaxations
require column generation techniques for their solution (Mehrotra and Trick, 1996). The
lower bound they give on the chromatic number may, however, be tight and effective
branch and cut (and price) algorithms can be obtained thereby. In this way, Mehrotra
and Trick (1996) show that it is possible to solve random graphs up to 70 vertices (these
results can be updated to about 90 vertices on current machines, Schindl, 2003) and
geometric graphs up to 250 vertices.

A much simpler way to colour exactly a graph without the need of dedicated software
for solving linear programming is by branch and bound (see Section 2.3.3), where each
vertex is selected and coloured with the lowest feasible colour. When no feasible colour
is available a new colour is introduced. In case the introduction of a new colour makes
the number of colours used higher than the number of colours in the best legal colouring
seen so far, the colouring is pruned and the search continues after backtracking to some
previously coloured vertex. A particular branch and bound algorithm may choose as
vertex to colour next the one with the highest saturation degree, that is, the number of
adjacent vertices differently coloured, breaking ties in favour of vertices that are adjacent

4.6 Exact methods 101

Comparison on random graphs of size from 40 to 100

B&B (sec.)

Ex
−D

SA
TU

R
(s

ec
.)

0.0
1 1

10
0

72
00

0.01

1

100

7200
edge density = 0.1

0.0
1 1

10
0

72
00

edge density = 0.5

0.0
1 1

10
0

72
00

edge density = 0.9

Figure 4.1.: The exact algorithms BB-GCP and Ex-DSATUR run on random graphs of size between
40 to 100. The size grows at increments of 5 and at each size 5 graphs are solved. In the graph,
scales are logarithmic. At density 0.1 many graphs are omitted because not solved within the
given time limit by BB-GCP. At density 0.5, graphs with large size (95 and 100) are omitted
because they are not solved by both algorithms within 2 hours.

to the most as yet uncoloured vertices. We call this branch and bound algorithm, which
was actually proposed by Johnson et al. (1991), BB-GCP.

Another very famous and simple exact approach for graph colouring is the Brelaz’s
modification of Randall-Brown’s exact colouring algorithm (Brélaz, 1979). The algorithm
is a backtracking searching technique with forward checking (see Section 2.3.3 on page
20). We focus on the implementation of Mehrotra and Trick (1996), in which two basic
improvements suggested by Brélaz (1979) and corrected by Peemöller (1983), are also
included. In this method, first a large clique (the larger the better) is determined and its
vertices are permanently coloured; then, the remaining vertices are considered sequen-
tially selecting first those adjacent to the largest number of differently coloured vertices.
We denote this algorithm, which is available on line, Ex-DSATUR.8 The performance of
Ex-DSATUR is comparable to that of the column generation approach described above
and introduced by the same authors, therefore we can reasonably confine ourselves to
include in our study only Ex-DSATUR.

In Figure 4.1, we compare BB-GCP and Ex-DSATUR on random graphs of size {40,
45, . . . , 95, 100} and density p = {0.1, 0.5, 0.9}. For each size-density pair, five graphs
were generated with different random seeds and on each of these graphs the two algo-
rithms were run with a time limit of 2 hours.

The behaviour of the two algorithms is similar for density 0.5 and 0.9. For density 0.1,
Ex-DSATUR outperforms BB-GCP, which exhibits large variability. The reason for this
result is due to the fact that the random graphs generated with size less or equal than
100 and low edge density have very likely ω(G) equal to χ(G) or χ(G)− 1. A graph
for which ω(G) = χ(G) is called 1-perfect and can be easily coloured, provided that
a maximal clique can be found efficiently (Coudert, 1997). Finding a maximal clique
allows to fix the colours of its vertices and to abort the search as soon as a colouring
of cardinality ω(G) is found. Similarly, with ω(G) close to χ(G) the pruning of the
search tree can be very effective. BB-GCP has, instead, large and variable run time
because many colourings are equally good and all must be explored. For graphs in

8M. Trick. “Network Resources for Coloring a Graph”. October 1994.
http://mat.gsia.cmu.edu/COLOR/color.html (February 2005).

http://mat.gsia.cmu.edu/COLOR/color.html

102 Graph Colouring

which ω(G) < χ(G), Ex-DSATUR does not outperform BB-GCP because the search must
exhaustively enumerate all potential colourings that would improve on χ(G), which
takes exponential time. A further observation is that graphs of edge density 0.5 result
for both algorithms harder to solve than graphs of edge density 0.9.

In addition to this, we studied the two algorithms on a range of Uniform and Geomet-
ric random graphs generated by the algorithm of Culberson et al. (1995). In Figure 4.2
we show how the characteristics of such graphs vary in relation to the edge probability
and the vertex distance in the plane. The characteristics represented are the average
degree, the standard deviation, and the range of vertex degree. The graphs are all of
size 30, and statistics are normalised over the size; when increasing instance size, the
patterns remain equal. In general, we note that Geometric graphs exhibit higher vari-
ability of the vertex degree than Uniform random graphs. From the box-plots in the
lower part of Figure 4.2, that represent the computation time of the two exact algo-
rithms on 5 graphs per graph parameter, we observe that BB-GCP has strong problems
with low density graphs while Ex-DSATUR does not appear to be influenced by any of
the characteristics of these graphs (at least for size 30). For BB-GCP, the threshold of the
vertex degree corresponding to graphs that are not easily solvable is shifted higher in
Geometric graphs indicating that probably other characteristics of the graph influence
the hardness with respect to this algorithm.

Other exact algorithms for graph colouring with performances similar to the algo-
rithms described here exist in the literature. The best algorithm according to the results
of the DIMACS benchmark suite presented at the DIMACS Computational Symposium
held in 2002 is the multistage branch and bound algorithm by Caramia and Dell’Olmo
(2004). Apparently this algorithm can even solve some graphs of size 500 with compu-
tation times around 15 minutes. Integer programming formulations are presented and
solved by Diaz and Zabala (2002) and Gomes and Shmoys (2002). This latter contribu-
tion is particularly interesting. Three different encodings of the problem are compared:
a CSP formulation, an integer programming set packing formulation, and a SAT formu-
lation; two exact solution approaches are used for solving the three formulations: a CSP
based approach for the CSP and IP formulation, and a SAT approach for the SAT for-
mulation. The comparison is accomplished only on the structured Quasigroup instances
and no method is found to uniformly dominate the others. However, encoding GCP as
a CSP problem or as a SAT problem can be non manageable for large graphs due to
the amount of memory used to make explicit all the constraints. Furthermore, Hoos
(1999b) shows that encoding CSP in SAT problem is not a very successful approach.
Apparently, therefore, encoding problems into other problems which entail an increase
in the number of variables is less appealing than using algorithms that directly exploit
the domain knowledge of the problem itself.

Vasquez (2004) developed an exact algorithm for solving Queens graphs. He exploits
the intrinsic structure of these graphs and obtains new state-of-the-art results. Herrmann
and Hertz (2002) proposed another general approach based on the attempt to determine
the smallest possible induced subgraph which has the same chromatic number as the
original graph. This algorithm is particularly well suited when a k-colouring is known
for a given subgraph and it has to be proved that no (k− 1)-colouring exists.

This section allows us to conclude that in the general case looking for an exact an-
swer to the GCP for graphs of size larger than 100 vertices may be extremely expensive

4.7 Construction heuristics 103

Graph Parameter

No
rm

al
ise

d
va

lu
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0

0.2

0.4

0.6

0.8

Uniform

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Geometric

st. deviation
range
average

Finding chromatic number

Graph Parameter

Se
co

nd
s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
100
200
300
400
500
600

Uniform
BB−GCP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Geometric
BB−GCP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100
200
300
400
500
600

Uniform
ExDSATUR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Geometric
ExDSATUR

Figure 4.2.: Uniform and Geometric random graphs of size 30. The first plot (upper part)
reports the statistics for 5 graphs generated in correspondence of each graph parameter: the
edge probability for uniform graphs and vertex distance in the plane for geometric graphs. The
second figure represents the computation time required to colour the graphs using one of the
two exact algorithms introduced in this section. The range of graphs which are hard for BB-GCP
appear larger on Geometric graphs. It is not clear, however, which other characteristic of the
graphs, besides their density, makes the graphs harder to solve for BB-GCP.

in terms of computation time and the use of approximate solution methods becomes
necessary.

4.7. Construction heuristics

Construction heuristics build feasible colourings in an incremental way. They start from
an empty assignment and iteratively colour the vertices until all vertices are coloured.

Sequential heuristics are based on the greedy heuristic, that is, at each construction step
a vertex is coloured with the lowest feasible colour. Given a set of empty colour classes
{C1, . . . , Ck}, where k = |V|, and a permutation π of {1, . . . , |V|}, the greedy algorithm
assigns at iteration i the vertex π(i) to the colour class with the lowest possible index
such that the partial colouring obtained after colouring the vertex π(i) remains feasible.
This procedure is formalised in Algorithm 4.1.

104 Graph Colouring

Function greedy_algorithm(G(V, E), π);
k = |V|;
C1 = {vπ(1)}, C2 = ∅, . . . , Ck = ∅;
for i = 2, . . . , |V| do

l = min{k : ∀vj ∈ Ck, (vπ(i), vj) /∈ E};
Cl = Cl ∪ {vπ(i)};

end
Let k = max{h : Ch 6= ∅};
return the k-colouring, i.e. k and C1, . . . , Ck;

Algorithm 4.1: Greedy construction heuristic.

Clearly, the result of the greedy heuristic depends on the permutation π. The randomly
ordered sequential heuristic (ROS) uses a random permutation. Yet, better criteria can be
used and the vertex order which determines π can be static, i.e., computed once at the
beginning, or dynamically, i.e., recomputed for each subgraph Gi+1 = Gi \ vi with vi
being the last vertex coloured.

Static sequential methods are dominated by dynamic ones as shown by Johri and
Matula (1982). One of these dynamic orders is the DSATUR heuristic derived from the
Ex-DSATUR algorithm of Brélaz (1979). Contrary to the exact method it does a unique,
greedy construction and it ends when all vertices are coloured. No clique number is
searched and no backtracking is performed. In DSATUR, the vertices are first arranged
in decreasing order of degree and a vertex with maximal degree is inserted in C1. Then,
at each construction step, the next vertex to be inserted is chosen according to the satura-
tion degree. The vertex with the maximal saturation degree is chosen and inserted into
the colour class with the lowest possible index such that the partial colouring remains
feasible. Ties are broken preferring vertices with the maximal number of adjacent, still
uncoloured, vertices; if ties still remain, they are broken randomly.

The recursive largest first (RLF) heuristic of Leighton (1979) looks at the problem from
the partitioning perspective. RLF iteratively constructs a colour class C by first assigning
to it a vertex v with maximal degree from the set V ′ of still uncoloured vertices. Next,
all the vertices in V ′ that are adjacent to v are removed from V ′ and inserted into a set
U, which is initially empty; U is the set of vertices that cannot be added anymore to
colour class C. Then, while V ′ is not empty, iteratively a vertex v ∈ V ′ is chosen that
has the maximal number of edges with vertices in U; v is added to C and all vertices
in V ′ adjacent to v are moved to U. These steps are iterated until V ′ is empty and
the same steps are repeated with the residual graph consisting only of vertices in U.
Algorithm 4.2 shows the details of this procedure.

DSATUR and RLF are particularly popular heuristics and the best performing reported
in the literature. Moreover, DSATUR and RLF are representative of the two different
strategies for colouring a graph, as pointed out by (Culberson, 2001): the heuristics
that colour a graph by iteratively selecting a vertex according to the number of colours
already assigned to the adjacent vertices; and the heuristics that colour a graph by
selecting large independent sets and using vertex degree information. De Werra (1990)
analyses the theoretical properties of these sequential methods and shows that DSATUR

and RLF are exact methods for bipartite graphs.

4.7 Construction heuristics 105

Function RLF(G(V, E));
k = |V|;
C1 = ∅, C2 = ∅, . . . , Ck = ∅;
U = V, i = 1; %U is the set of uncoloured vertices

while U 6= ∅ do
V ′ = U, U = ∅;
Let v ∈ V ′ be a vertex for which |AV′(v)| is maximal;
Ci = Ci ∪ {v};
U = AV′(v), V ′ = V ′ \ AV′(v); %

U set of uncoloured vertices
which cannot be placed in V

while V ′ 6= ∅ do
Let v ∈ V ′ be a vertex for which |AU(v)| is maximal;

%
the edges in U
are minimised

Ci = Ci ∪ {v};
U = U ∪ AV′(v), V ′ = V ′ \ AV′(v);

end
i = i + 1;

end
k = i− 1;
return the k-colouring, i.e. k and C1, . . . , Ck

Algorithm 4.2: Recursive Largest First heuristic

Experimental analysis. We compare the three construction heuristics DSATUR, RLF,
and ROS. We do not expect ROS to be competitive, yet we include it in the analysis
since it is the simplest method to construct a colouring, and hence the minimal require-
ment for any other algorithm is to do at least better than it. We run each heuristic
10 times on all benchmark instances introduced in Section 4.4. We are therefore in a
“several runs on various instances” experimental design (see Section 3.6.6). The need for
collecting replicates arises by the fact that in the three heuristics ties are at some point
broken randomly and hence their result is stochastic. Numerical results are reported in
Appendix C.1.1. Here, we show the analysis of the results by means of the rank-based
Friedman test for all-pairwise comparisons (Equation 3.19 on page 67). The plots for the
95% simultaneous confidence intervals of the all-pairwise comparisons are reported in
Figure 4.3 (for a description on how to read this plot we refer back to page 58). With
3 algorithms and 10 runs per algorithm the average rank for a solution produced by
one of the heuristics is a number in [0, 30]. We give preference to this test only because
we deem easier to understand average ranks than the number of colours averaged over
the instances. The other two methods, Tukey’s HSD and permutation test, were also
applicable in this case.

RLF clearly performs better than DSATUR in most instance classes, and both algo-
rithms are always by a large margin better than ROS. RLF is not significantly better than
DSATUR only on the Full Insertions, the Insertions, and the Course Scheduling (School)
graphs. We remark that in the Latin square graphs and in the Course Scheduling only
two graphs are available and statistical inference is less meaningful. The results on the
Course Scheduling instances are however interesting for the understanding of the mech-
anism of the analysis procedure. The test based on ranks of Figure 4.3 tells indeed that

106 Graph Colouring

 All−pairwise comparisons

average rank

RLF
DSATUR

ROS
DSJC1 (5 instances)

5 10 15 20 25
DSJC5 (5 instances) DSJC9 (4 instances)

RLF
DSATUR

ROS
FullIns (14 instances) Insertions (9 instances) Flat (6 instances)

RLF
DSATUR

ROS
Jac (5 instances) Latin (2 instances) Leighton (9 instances)

5 10 15 20 25

RLF
DSATUR

ROS
Queens (12 instances) School (2 instances)

5 10 15 20 25

Wap (7 instances)

Figure 4.3.: Simultaneous confidence intervals for all-pairwise comparisons on construction
heuristics. Each algorithm was run 10 times per instance.

differences are not significant. A similar test based on permutations (see Section 3.5),
where results are not transformed into ranks, indicates, instead, that DSATUR is signif-
icantly better. Looking in-depth at the numerical results we have that DSATUR attains
median results of 15 and 27 colours on the two instances, whereas RLF attains 25 and
25 colours. Clearly permutation tests weight more the gain 15-25 than 25-27 while rank
tests loose this information. On the random graphs with edge density 0.1 we have an op-
posite effect: the permutation test procedure does not distinguish anymore differences
between DSATUR and RLF while the Friedman test does. The same inference, holds,
instead in all other cases.

From the point of view of the computation time, although RLF and DSATUR have the
same time complexity O(|V|3), RLF is in practice more costly. The complexity of the
ROS heuristic is instead O(|V|2). Klotz (2002) proposes a variant of RLF that works in
O(|V|2). After the first iteration, a vertex u ∈ V to be added to class Ci is chosen to be
the one with the highest number of vertices which are adjacent to both u itself and the
last coloured vertex v (i.e., arg maxu∈V |A(u) ∩ A(v)|). In practice, however, this method
performs worse than DSATUR.

In the upper plot of Figure 4.4 we show the relation between the effective computation
time and the size of an instance. The instances used are all instances from the DIMACS
repository. For the largest instance with 10000 vertices, RLF takes a median time of
about 18.5 seconds to colour the graph with 101 colours while DSATUR takes 3 seconds
to colour it with 103 colours and the ROS heuristic less than 1 second using 106 colours.
The superimposed lines are polynomial smoothed regression lines. The graph is in
logarithmic scale, therefore, if the computation time were polynomial to the size of the
instance, we would see that the points lay on a straight line. Evidently, while this could
seem the case for ROS and DSATUR, it is not the case for RLF, that must be influenced
by other features of the graph. The density of the graph and the final number of colours

4.7 Construction heuristics 107

100 200 500 1000 2000 5000 10000
0.01

0.1

1

10

The influence of size

Graph size |V|

Se
co

nd
s

RLF
DSATUR
ROS

The influence of number of colors

Number of colours

Se
co

nd
s

200 400 600
0
5

10
15
20
25

edge density 0.1

200 400 600

edge density 0.5

200 400 600

edge density 0.9

RLF
ROS
DSATUR

Figure 4.4.: On the upper part, the scatter plot shows the relation between computation time and
graph size for the three construction heuristics. A point corresponds to the median time reported
on 10 runs on the instances of the DIMACS repository. Axes are in logarithmic scales and the
superimposed lines are smoothed polynomial regression lines. Size alone does not explain the
behaviour of RLF. On the lower part, scatter plots for the computation time of the heuristics and
the number of colours found on instances of three different edge densities. A point corresponds
to one single run on one of the 370 randomly generated instances of size 1000.

are possible candidates for having a significant impact.
The influence of these features is shown in the lower plot of Figure 4.4. Apparently,

both edge density and colouring number help to explain the behaviour of RLF whose
computation time grows with increasing density and increasing number of colours.
ROS’s and DSATUR’s run time, instead, remain, at least on these instances unaffected
by these features. The graphs for this second experiment were created using the gener-
ator by Culberson et al. (1995). They consisted in 370 graphs of size 1000 with different
structural characteristics. The generator allows to hide in the graph an arbitrary colour-
ing number which becomes an upper bound for the chromatic number of the generated
graph. Clearly, the number of colours which is possible to hide in a graph is not totally
independent from edge density and hence one of these two variables could be enough
to explain high computation times for RLF, together with instance size.

In conclusion, the results here presented indicate that the RLF heuristic remains con-
stantly the best in terms of quality maintaining reasonably low computation times. For
these reasons, we will adopt it for generating the initial solution to all SLS algorithms
that we will study in Section 4.10. Culberson et al. (1995) pointed out that there are
cases in which the initial colouring can negatively bias the final performance of a local
improvement algorithm, independently from its quality. Nevertheless, we were unable

108 Graph Colouring

to find a confirmation to this conjecture in our study.

Benchmark instances which are easy. We use the RLF construction heuristic and the
graph reduction rules of Section 4.5 to distinguish between easy and hard instances in
the DIMACS instance set. More specifically, we consider a graph to be easy if at least
one of the following conditions occurs:

Condition 1: The reduction by means of Rule 1 and Rule 2 renders the graph a null
graph, that is, a graph without vertices and edges.

Condition 2: The RLF heuristic produces an upper bound that is equal to the known
chromatic number.

Condition 3: The lower bound ω̂G for ωG attained heuristically and the upper bound
for χG produced by RLF coincide, that is, the solution returned by RLF is optimal.

Condition 4: One of the conditions 2 or 3 is satisfied after the graph reduction.

Based on this definition, 45 of the 125 instances of the DIMACS repository are classi-
fied as easy. The remaining 80 instances are classified as hard and will be object of the
experiments in Section 4.11. Few instances, 18 easy and 3 hard ones, are also found to be
disconnected graphs. Statistics on all the instances are given in Table C.1 of Appendix
C.1.1.

For determining the clique number ω̂G in Condition 3 we used two heuristics that are
among the state-of-the-art algorithms for solving the clique problem: a variant of the
“semi-exhaustive greedy” scheme for finding large independent sets described by John-
son et al. (1991)9 and the reactive tabu search from Battiti and Protasi (2001)10. We took
the best outcome of the two.

Among the hard instances, graph reduction is effective only for the WAP and Full
Insertions instances, while many other graphs are unaffected. Intuitively, algorithms
produce better results in terms of quality and time when run on reduced graphs. This is
confirmed experimentally also for the algorithms of our study. However, given that the
reduceable graphs are few and that we aim at making our results comparable to those
of the literature, where graph reduction was never used, we decided not to apply this
preprocessing step before solving the hard graphs.

4.8. Iterative Improvement for graph colouring

There are three main approaches with corresponding different local search methods
for solving the chromatic number problem: 1) considering a sequence of k-colouring
problems with decreasing k, 2) operating on complete colourings with the number of
colours free to vary, and 3) extending partial k-colourings. We will mainly focus on the
first approach. For the second approach we will consider only one algorithm while for
the third approach we will consider a semi-exhaustive method. Local search methods
are possible in all the three cases.

9Available through FTP at ftp://dimacs.rutgers.edu/pub/dsj/clique. (February 2005)
10A. Villani. “InterTools – Interactive Tools through the Internet: Max Clique”. 1996.

http://rtm.science.unitn.it/intertools/clique. (February 2005)

ftp://dimacs.rutgers.edu/pub/dsj/clique
http://rtm.science.unitn.it/intertools/clique

4.8 Iterative Improvement for graph colouring 109

Solving a sequence of kkk-colouring problems. An initial k I is determined by a construc-
tion heuristics. For each k < k I a k-colouring problem is then solved with local search
methods by formalising it as an optimisation problem. The set of candidate solutions S
comprises all (complete) colourings C of the graph G (feasible and infeasible). The set
S is therefore defined as the Cartesian product S = Γ× Γ . . .× Γ = Γ|V|, and |S| = k|V|.
In fact, two colourings that differ only for a permutation of the labels associated with
the colours are to be considered equal and the number of distinct complete colourings
could be reduced to k|V|/k!. However, in practice, the reduction of S does not take place
since there is no efficient method to implement it.

The evaluation function is usually defined as the number of edges that create conflicts
in a colouring:

f (C) = ∑
i∈Γ
|ECi(Ci)|, C ∈ S .

The goal is to find a solution C∗ such that f (C∗) = 0.
An alternative choice for the evaluation function would be the number of vertices

involved in a conflict: f ′(C) = |Vc|. The two evaluation functions are not in a one-to-
one correspondence. Indeed, because of Remark 4.2, it holds that

f (C) = ∑i∈Γ |ECi(Ci)| = 1
2 ∑

i∈Γ
∑

v∈Ci

|ACi(v)|

and we can derive that, in general,

f ′ = |Vc| = ∑
i∈Γ
| ⋃

v∈Ci

ACi(v)| 6= 1
2 ∑

i∈Γ
∑

v∈Ci

|ACi(v)| = ∑
i∈Γ
|ECi(Ci)| = f .

Hence, the two evaluation functions could yield different performance in the local
search. In the literature however the first evaluation function is the mostly used and we
focus on it.

When a feasible colouring is found, the next decision problem is defined by reducing
the number of colours available by one and reapplying local search. This is done until
for a certain number of colours k a feasible colouring cannot be found. Then, the best
feasible colouring identified uses k + 1 colours, and the outcome of the search is χ̂G =
k + 1.

Varying the number of used colours. In this case the number of colours used may
increase and decrease at run time. The number of colours returned, χ̂G, is the lowest
number of colours for which a feasible colouring was found during the search. An
evaluation function that leads the search towards colourings with fewer colours and
towards feasible colourings was introduced by Johnson et al. (1991) and is given by:

f (C) = −
K

∑
i=1
|Ci|2 +

K

∑
i=1

2|Ci||Ec
Ci
|, ∀C ∈ S . (4.1)

It can be proved that local optima with respect to this function correspond to feasible
colourings. Nevertheless, the search can be biased towards unbalanced colour classes
and the optimal solution does not necessarily use the minimal number of colours. How-
ever, these drawbacks appear to have little importance in practice (Johnson et al., 1991).

110 Graph Colouring

Extending partial kkk-colourings. In this case the number of colour classes is again fixed
to a target value k, and a solution C = {C1, C2, . . . , Ck, CI} is a partial feasible colouring
together with a single improper class CI containing all vertices that are not part of the
partial feasible colouring. The goal is extending the partial colouring to the vertices in
CI . The evaluation function could be f (C) = |CI |, which has to be minimised to zero.
Better performances were, however, shown by (Morgenstern and Shapiro, 1990) with

f (C) = ∑v∈CI

(
1 +

d(v)
d(G)

)
in which vertices are weighted according to their degree. This evaluation function does
not bias the search towards skewed distribution of classes.

4.8.1. Neighbourhood structure

We introduce six neighbourhood structures for local search on the GCP. Six of them find
application in solving the k-colouring problem, while the last one is applied when k is
left variable. While the first and the last neighbourhood structures presented are well
known in the literature, all the others are original contributions of this thesis.

Definition 4.1 (one-exchange) The neighbourhood N1(C) is the set of colourings C ′ ob-
tained from C by changing the colour of exactly one vertex that is involved in a conflict.
Formally,

N1(C) = {C ′ : ∃i ∈ Γ and ∃v ∈ Vc : C′ϕ(v) = Cϕ(v) \ {v} and C′i = Ci ∪ {v} and

C′l = Cl ∀l ∈ Γ \ {i, ϕ(v)}}

Definition 4.2 (Swap) The neighbourhood N2(s) is the set of colourings C ′ obtained
from C by swapping the colour of a vertex involved in a conflict with the colour of
another vertex. Formally,

N2(C) = {C ′ : ∃v ∈ Vc and u ∈ V : C′ϕ(v) = Cϕ(v) \ {v} ∪ {u}
and C′ϕ(u) = Cϕ(u) \ {u} ∪ {v}
and C′l = Cl ∀l ∈ Γ \ {ϕ(v), ϕ(u)}}

Definition 4.3 (Pair swap) The neighbourhood N3(C) is the set of colourings C ′ ob-
tained from C by swapping the colour of a pair of adjacent vertices, which belong to
a same colour class, with the colours of two other vertices that are each adjacent to one
of the vertices of the pair and belong to mutually different colour classes. Formally,

N3(C) = {C ′ : ∃u, v ∈ Vc and ∃w, x : w ∈ AV(u), x ∈ AV(v), ϕ(w) 6= ϕ(x) :

C′ϕ(u) = Cϕ(u) \ {u, v} ∪ {w, x},
C′ϕ(w) = Cϕ(w) \ {w} ∪ {u},
C′ϕ(x) = Cϕ(x) \ {x} ∪ {v},
C′l = Cl , ∀l ∈ Γ \ {ϕ(u), ϕ(w), ϕ(x)}}

An example of pair swap is given in Figure 4.5.

4.8 Iterative Improvement for graph colouring 111

u

v

x

w

u

v

x

w

Figure 4.5.: A pair swap exchange. The colour of two vertices, currently in conflict, is exchanged
with the colours of two adjacent vertices.

PSfrag replacements

Cϕ(v1)

Cϕ(v1)

Cϕ(v2)

Cϕ(v2)

Cϕ(vm)

Cϕ(vm)

v1
v1

v2v2v2

vm

vm

(a) (b)

Figure 4.6.: The black vertices are the vertices involved in the cyclic and path exchange. (a)
Cyclic exchange. (b) Path exchange.

The next two neighbourhoods we introduce are the very large scale neighbourhoods
(VLSN) based on cyclic and path exchanges. In Figure 4.6, we represent a colouring as
vertices grouped into colour classes.

A cyclic exchange of length m is a sequence of vertices (v1, . . . , vm) that moves vertex vi
from subset Cϕ(vi) to subset Cϕ(vi+1) and vm to subset Cϕ(v1). A cyclic exchange does not
change the cardinality of the subsets involved. In a path exchange, instead, the sequence
of exchanges is not closed and the colour classes of the first and the last vertex in the
sequence modify their cardinality. A path exchange can be seen as a generalisation of a
one-exchange while a cyclic exchange can be seen as a generalisation of a swap.

Definition 4.4 (Cyclic exchange) The neighbourhood N4(C) is the set of colourings C ′
obtained from C by a cyclic exchange of vertices in the colour classes. Formally,

N4(C) = {C ′ : ∃V ′ = v1, v2, . . . vm ⊆ V, ϕ(vi) 6= ϕ(vj), ∀i, j ∈ {1, · · · , m} :

C′ϕ(vi+1) = Cϕ(vi+1) \ {vi+1} ∪ {vi}, ∀i ∈ {1, · · · , m− 1},
C′ϕ(v1) = Cϕ(v1) \ {v1} ∪ {vm},
C′l = Cl , ∀l ∈ Γ \ {ϕ(v1), · · · , ϕ(vm)}}

Definition 4.5 (Path Exchange) The neighbourhood N5(C) is the set of colourings C ′

112 Graph Colouring

obtained from C by a path exchange of vertices in the colour classes. Formally,

N5(C) = {C ′ : ∃V ′ = v1, v2, . . . vm ⊆ V, ϕ(vi) 6= ϕ(vj), ∀i, j ∈ {1, · · · , m} :

C′ϕ(vi+1) = Cϕ(vi+1) \ {vi+1} ∪ {vi}, ∀i ∈ {1, · · · , m− 2},
C′ϕ(vm) = Cϕ(vm) ∪ {vm−1}
C′ϕ(v1) = Cϕ(v1) \ {v1}
C′l = Cl , ∀l ∈ Γ \ {ϕ(v1), · · · , ϕ(vm)}}

It is important to note that the cyclic and path exchanges are not limited in length
(except for being shorter than k). In this aspect, our VLSN is different from other two
similar methods that work on large neighbourhoods: variable depth methods and ejec-
tion chains (see also 2.4.2). To the best of our knowledge, no variable depth search
method has been devised for the graph colouring problem, while ejection chains were
applied by González-Velarde and Laguna (2002), but the length of the step was limited
to 3 successive one-exchanges.

Avanthay et al. (2003) analyse several other fancy neighbourhood structures that work
with the k-colouring approach. However, none entails significant improvements over
one-exchange neighbourhood when used in SLS algorithms and we avoid to consider
them here.

Finally, we introduce a neighbourhood that may be used when dealing with feasible
colourings and varying the number of colours, as introduced on page 109.

Definition 4.6 (Kempe exchange) The neighbourhood N6(C) is the set of colourings C ′
obtained from C by a Kempe chain exchange. A Kempe chain is a set of vertices that
form a maximal connected graph in the subgraph G′ of G induced by the vertices that
belong to two (disjoint) sets Ci and Cj of the partition C. We recall that a connected
graph is a graph where any two vertices are connected by a path. A Kempe chain
exchange applied to a feasible colouring produces a new feasible colouring (a Kempe chain
neighbour) by changing the colour of the vertices that belong to a specified Kempe chain
K. An example of a Kempe chain is given in Figure 4.7. Formally, the neighbourhood is
defined as:

N6(C) = {C ′ : ∃ K ⊆ (Ci ∪ Cj), i 6= j : C′i = (Ci \ K) ∪ (Cj ∩ K),

C′j = (Cj \ K) ∪ (Ci ∩ K),

C′l = Cl , ∀l ∈ Γ \ {i, j}}

Note that feasibility is maintained and, therefore, the application of a Kempe chain is
only reasonable for solving the GCP by varying the number of colours. In this case, the
evaluation function given by Equation 4.1 simplifies to the first term.

Neighbourhood structures for graph colouring that may be used in the partial colour-
ings approach have been studied by Morgenstern and Shapiro (1990). They introduce
the i-swap which consists in removing some vertex v from the improper class CI (that
they call impasse class), adding it into a proper colour class Ci, and moving all vertices

4.8 Iterative Improvement for graph colouring 113

C Cji

Figure 4.7.: Two Kempe chains (maximal connected components) are available between colour
classes Ci and Cj and are indicated by the thick and dashed line. In a Kempe chain interchange
the vertices belonging to a Kempe chain are swapped between the two colour classes.

adjacent to v in Ci to CI . They also generalise Kempe chains to s-chains, which ex-
pand the size of the neighbourhood such that more moves are made available when the
quality of a solution is good. Successively, Morgenstern (1996) proposes a method that
alternates i-swaps with s-chains and runs on a distributed computational environment.
Finally, Blöchliger and Zufferey (2003) propose the use of i-swaps within a Tabu Search
algorithm. These results are interesting and indicate that, similar peak performance may
be attained by such an approach working on partial colourings.

4.8.2. Neighbourhood examination

Many of the SLS algorithms that we analyse use a best improvement search strategy
where ties are broken randomly. The evaluation of a solution is done through incremen-
tal updates to increase the speed of the neighbourhood examination. Next, we describe
how the examination is done in each neighbourhood.

One-exchange neighbourhood. Given a colouring C that uses k colours, the size of the
neighbourhoodN1 is (k− 1) · |Vc|. Since it depends on the number of vertices in conflict,
the size is variable during the search. If vertex v moves from Ci into Cj, the evaluation
function after an exchange can be computed as f (C ′) = f (C)− |ACi(v)|+ |ACj(v)|. If we
keep as additional data structure a matrix ∆ of |V| × k elements, where we record for
all i, v the values |ACi(v)|, the evaluation of each neighbour can be done in O(1). The
initialisation of the matrix is done once at the beginning in O(|V|2). At each iteration,
the matrix is updated and the entries that need to be considered are only those cells
corresponding to the vertex that moved into a different colour class and the vertices
adjacent to it. Hence, the worst case complexity for updating ∆ is O(|V|), but in practice
it is much lower. In previous applications of tabu search (Fleurent and Ferland, 1996),
the update of a similar data structure required O(k|V|). In Algorithm 4.3 we give the
algorithmic details of the initialisation and the update of ∆.

Swap neighbourhood. Every swap can be seen as a composition of two one-exchange
(with the opportune adjustments, see Appendix A), and, the data matrix ∆ can be used

114 Graph Colouring

Function Initialise_∆(G,ϕ);
∆ = 0;
for each v in V do

for each u in AV(v) do
∆(v, ϕ(v)) = ∆(v, ϕ(v)) + 1;

end
end

Function Update_∆(G,ϕ,v,Ci) %Ci is the old colour class of v
for each u in AV(v) do

∆(u, ϕ(v)) = ∆(u, ϕ(v)) + 1;
∆(u, cold) = ∆(u, cold)− 1;

end

Algorithm 4.3: Pseudo-code for the initialisation and update of the matrix ∆.

for the evaluation of neighbours. Examining all possible swaps of neighbourhood N2

has a worst case complexity of O(|Vc||V|) and the size of the neighbourhood is variable
depending on |Vc|.

Pair swap neighbourhood. Also in this case the evaluation of a neighbour can be
obtained by composition of one-exchange moves, and, hence, using again the matrix
∆. The complete exploration of neighbourhood N3 entails a worst case complexity of
O(|V|4). In practice, keeping a list of conflicting edges Ec the complexity can be reduced
to O(|Ec| × |V|2).

Cyclic and path exchange neighbourhood. The cyclic and path exchange neighbour-
hoods have exponential size. Ahuja et al. (2001b) showed that the problem of finding the
best neighbour within a cyclic exchange neighbourhood can be modelled as the prob-
lem of finding the minimal cost cycle that uses at most one vertex from each subset in
a new directed graph G′ = (V ′, D′), called the improvement graph, induced by the graph
G = (V, E) and the current colour partition C = {C1, . . . , Ck}. The set of vertices of
G′ is V ′ = {1, . . . , n}, each vertex in V ′ corresponding to exactly one vertex vi ∈ V.
The improvement graph contains the arc (i, j) if vj ∈ Cϕ(vj) in C and ϕ(vi) 6= ϕ(vj),
that is, if vi and vj belong to different colour classes. The set of vertices V ′ is split
into k subsets T1, . . . , Tk, induced by C; the elements of Th are in one-to-one corre-
spondence with the elements of Ch, ∀h = 1, . . . , k. The cost associated to an arc (i, j)
with i ∈ Tϕ(vi) and j ∈ Tϕ(vj) is the cost of inserting vertex i into and removing ver-
tex j from Tϕ(vj). It can be easily computed using the same data matrix ∆ defined for
N1 : ci,j = |ACϕ(vj)

(vi)| − |ACϕ(vj)
(vj)|.

Thompson and Orlin (1989) showed that there is a one-to-one correspondence be-
tween the cyclic exchanges in G, with respect to C, and the subset-disjoint cycles in
the improvement graph G′. Clearly, an improving cyclic exchange will correspond to a
subset disjoint cycle of negative cost. Finding such a cycle corresponds to solving an all-
pairs shortest path problem (Ahuja et al., 2001b), which can be done by an exact algorithm
based on dynamic programming ideas. The complexity of the algorithm is O(n22k|D′|),
where |D′| is the number of arcs of the improvement graph, as described in Ahuja et al.

4.9 Analysis of neighbourhood structures for local search 115

(2001b). The dynamic program is therefore unlikely to be applicable to large graphs.
Nevertheless, some heuristic criteria can be adopted to prune the search and make the
algorithm more efficient. We discuss them in Section 4.9.3 together with the difficulties
that arise, instead, in using the same approach for finding also path exchanges.

After each cyclic or path exchange the update of the auxiliary data matrix ∆ is done
by considering the exchanges as a composition of one-exchanges. Hence, the updating
procedure has a worst case complexity of O(k|V|)), when the exchange involves one
vertex from each colour.

Kempe chain neighbourhood. Finding the best Kempe chain entails the examination
of all possible (k

2) pairs of colour classes in the k-colouring. Once a pair is identified, all
connected components are considered, that are subsets of the union of the two colour
classes. Since each class is proper, in each connected component vertices belonging to
the two colour classes are interleaved. In practice, the search proceeds by considering
for each vertex in one colour class all adjacent vertices in the other class that are not
already included in the current connected component. The cost of this search is high
and leads to conjecture that Kempe chains should work better on dense graphs where
the colour classes tend to be small (Johnson et al., 1991). To speed up this examination,
some auxiliary data structure can be kept in order to avoid the examination of a pair
of colour classes Ci and Cj if they were discovered to contain a full Kempe chain, i.e.,
(K = Ci ∪Cj) in some previous steps; any full Kempe chain can be discarded, as it corre-
sponds to simply changing the index of two colour classes and does not have any effect.
However, this speed-up does not reduce the worst case complexity of the neighbour-
hood examination and, in practice, N6 is only effective with simulated annealing, which
does not require an exhaustive examination of the neighbourhood. We will use Kempe
chains only in the approach with k variable. In this case, given that each neighboring
colouring is a feasible (proper) colouring, the evaluation function of Equation 4.1 for a
neighbour C ′ ∈ N6 is computed by f (C ′) = f (C) − |Ci|2 − |Cj|2 + |C′i |2 + |C′j|2, which
can be done in constant time, provided that the number of vertices moving from one
class to the other in the Kempe chain is memorised during the construction of the chain
itself.

4.9. Analysis of neighbourhood structures for local search

In this section, we investigate the behaviour of the neighbourhood structures described
when used inside an Iterative Improvement algorithm with best improvement strategy.
We restrict the attention to the k-colouring problem.

4.9.1. Analytical results

In the Appendix A we report the details of an analytical study aimed at understanding
whether the use of cyclic and path exchanges is profitable. In particular, we show that
there exist configurations in the search space that are not solvable by one-exchanges but

116 Graph Colouring

that are solvable by a cyclic or a path exchange. More specifically, we show that every
Iterative Improvement in which the neighbourhood N1 is enlarged with the union of
neighbourhoods N2, N3, N4 or N5 yields better quality performance than an Iterative
Improvement based solely on N1. The best combination of neighbourhoods is the union
of cyclic and path exchanges N4 ∪N5, as it allows to solve all configurations solved by
other reasonable combinations of neighbourhoods and some more that would not be
solved otherwise (note that path exchanges include also one-exchanges).

Nevertheless, some issues remained open. We were, for instance, unable to show
whether the combination of path and cyclic exchanges also dominates any combina-
tion with pair swap neighbourhood. Moreover, the analytical results do not provide
any quantitative insight on which of the cyclic and path exchanges are more profitable
for the search. In this section, we try to resolve these issues by an empirical analysis
and we investigate the use of possible pruning rules for an effective exploration of the
neighbourhood N4 ∪N5.

4.9.2. Computational analysis on small size graphs

We denote each Iterative Improvement algorithm by II and indicate in the index the
neighbourhood that characterises it. We study the following neighbourhoods: N1,
N1 ∪N2, N1 ∪N2 ∪N3, N1 ∪N4, N2 ∪N5, N4 ∪N5, and N3 ∪N4 ∪N5, which are also
addressed in the Appendix A. Here we examine whether more complex neighbourhoods
guarantee an increase in the capability of solving the problem independently from their
computational cost. To this end, we first test the algorithms on very small graphs.

The very small graphs are generated as follows. For a given set of vertices V, with
|V| = n, we generate the set G(n) of all connected non-isomorphic graphs on V. Then,
for each graph G ∈ G(n), we solve the k-colouring problem with k fixed to χ(G). All pos-
sible distinct (or inequivalent) candidate colourings ŜG of each graph G ∈ G(n), feasible
and infeasible, are used as an initial solution for an Iterative Improvement algorithm.

In Table 4.2, we report for each n the number of graphs having chromatic number
k, i.e., the size of the set G(n, k) = {G ∈ G(n) : χ(G) = k}. The union of these sets
through k yeilds G(n) (whose size gives rise to the sequence of numbers of connected,
non-isomorphic graphs which can be found on the “On-Line Encyclopedia of Integer
Sequences”11 and on the links therefrom). The set of non-isomorphic connected graphs
were generated with the publically available program geng.12 The number of distinct
colourings of a graph G(n, k) ∈ G(n, k) using l colours corresponds to the number of
partitions of an n-set into l non empty parts and is given by the Stirling’s number of
second kind S(n, l) (Graham et al., 1994). In parenthesis we report the number of distinct
colourings that use 2 ≤ l ≤ k colours, i.e., ŜG(n,k) = ∑k

j=2 S(n, j). The total number of
distinct colourings is then obtained as

|ŜG(n)| =
K

∑
k=1
|G(n, k)| · |ŜG(n,k)|

11N.J.A. Sloane. “The On-Line Encyclopedia of Integer Sequences.” June 2005.
http://www.research.att.com/~njas/sequences/ (June 2005).

12Brendan McKay. 1984-2004. http://cs.anu.edu.au/~bdm/nauty/ (December 2003).

http://www.research.att.com/~njas/sequences/
http://cs.anu.edu.au/~bdm/nauty/

4.9 Analysis of neighbourhood structures for local search 117

χ(G) n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
2 1(3) 3(7) 5(15) 17(31) 44(63) 182(127) 730(255)
3 1(4) 2(13) 12(40) 64(121) 475(364) 5036(1093) 80947(3280)
4 1(14) 3(50) 26(186) 282(714) 5009(2794) 149551(11050)
5 1(51) 4(201) 46(854) 809(3844) 27794(18001)
6 1(202) 5(875) 74(4110) 1940(20647)
7 1(876) 6(4138) 110(21109)
8 1(4139) 7(21145)
9 1(21146)

|G(n)| 2 6 21 112 853 11117 261080
|ŜG(n)| 7 61 756 14113 421555 22965511 2461096985
Sample 7 63 756 14113 40000 40000 40000

Table 4.2.: For different chromatic numbers (rows) the table reports the number of connected,
non-isomorphic graphs of size up to 9 (columns). Moreover, in parenthesis, it is given for each
one of such graphs the number of distinct colourings which use 2 or more colours derived by
the Stirling’s triangle for subsets. The last three rows report the sum of the graphs |ŜG(n)| =

∑G∈G(n) |ŜG|, the total number of distinct colourings ŜG(n), and the size of the sample from
ŜG(n) used for our experiments.

where K is the largest chromatic number for graphs of that size. Already for graphs of
n = 7, 8, 9 the size of ŜG(n) becomes very large and, therefore, we consider a sample of
size 40.000 initial colourings from |ŜG(n)|.

Let ŜII (G) be the set of all distinct colourings that are infeasible colourings and are
local optima for an algorithm II on a graph G. This set can be attained by running
II once starting from each colouring of ŜG.13 In Table 4.3 we report the sum of the
size of ŜIIG over all graphs of a given order G(n), i.e., the value |ŜIIG(n)| = ∑G∈G(n) |ŜIIG |.
Since ŜIIG ⊆ ŜG, the smaller the size of the set ŜIIG(n) is the more feasible colourings
the algorithm II finds, and, hence, the better it performs. Computation times for all
algorithms are negligible, given the very small size of the graphs.

Observing the results of Table 4.3 the following conclusions can be drawn.

• The introduction of swaps, pair swaps, cyclic exchanges, or path exchanges (N2,
N3, N4, or N5, respectively) in combination with one-exchange (N1) is profitable
and the use of pair swaps N3 combined with one-exchange and swaps (N1 ∪N2) is
preferable to the use of one-exchange combined with cyclic exchanges (N1 ∪N4).

• The best neighbourhood combination is N4 ∪N5, i.e., cyclic and path exchanges.

• The use of pair swaps in combination with cyclic and path exchangesN3∪N4∪N5

does not bring any advantage (at least on the small graphs considered) and given
that it entails an even further increase in the complexity of the algorithm it may be
avoided.

13Each iterative improvement algorithm II can be seen as a many-to-one function from the domain ŜG
to the set of local optima ŜIIG . It takes a starting solution and returns a local optimum. In fact, given
that II can make stochastic choices for breaking ties between solutions that are equally good, it is a
multi-valued function. When we run II from all solutions in ŜG then we are certain to obtain at least
once all solutions in ŜIIG . When, instead, we run it from a sample of solutions in ŜG, then the set of
solutions found is only a subset of ĈIIG .

118 Graph Colouring

ŜIIN1
G(n) ŜIIN1∪N2

G(n) ŜIIN1∪N2∪N3
G(n) ŜIIN1∪N4

G(n) ŜIIN2∪N5
G(n) ŜIIN4∪N5

G(n) ŜIIN3∪N4∪N5
G(n)

3 0 0 0 0 0 0 0
4 1 1 0 1 0 0 0
5 10 10 2 9 0 0 0
6 83 76 27 58 4 4 4
7 532 484 150 312 15 15 15
8 348 315 83 175 12 11 11
9 134 117 29 52 1 1 1

Table 4.3.: For each graph order and neighbourhood structure, the table reports the size of the
set |ŜIIG(n)|, that is, the number of solutions in |ŜG(n)| that are infeasible colourings and at the
same time local optima. For n from 7 to 9 the value is an estimate because, given that we use a
sample from G, not all solutions in |ŜIIG(n)| are effectively counted (this explains why the reported
size decreases).

• It is relevant to note that the neighbourhood N4 ∪N5 is able to solve only one local
optimum which was not solved by the neighbourhood union of path exchanges
and pair swaps (N2 ∪N5) while it introduces a large margin of improvement over
the neighbourhood union of one-exchanges and cyclic exchanges (N1 ∪ N4). We
recall that N4 allows swaps and that N5 allows one exchanges as degenerate cases.
Therefore, this result indicates that path exchanges rather than cyclic exchanges
are the main reason of the large improvement due to the neighbourhood N4 ∪N5.

4.9.3. Neighbourhood examination and heuristic rules for its speed-up

The size of the neighbourhoods N4 and N5 is exponential and therefore their use is
unfeasible unless we do not find a way to examine them efficiently. In this section we
describe our method. We first give account of an exact algorithm by dynamic program-
ming proposed by Ahuja et al. (2001b) for exploring N4. Then we propose several ways
of truncating the examination, such that the algorithm becomes an efficient heuristic.
This work is a further development of the algorithm presented by Dumitrescu (2002).

The exact algorithm makes use of the idea of subset disjoint paths, that is, paths that
visit every subset Ti of the improvement graph G′(V ′, D′) at most once (see page 114 for
the definition of the improvement graph). It is clear that the path can be closed to form
a subset disjoint cycle by an arc that connects the last and the first vertex of such a path.
This arc always exists given the way the improvement graph is constructed.

We denote a path in the improvement graph by p = (i1, . . . , il), where i1 is the start
vertex of p, denoted by s(p) and il is the end vertex of p, denoted by e(p). We associate
a binary vector w(p) ∈ {0, 1}k with the path p, where wj(p) = 1 if and only if p visits
the subset Tj. The cost of p, denoted by c(p), is the total cost of the arcs in the path, i.e.,
c(p) = ∑l−1

j=1 cij,ij+1 .
We say that the path p1 dominates the path p2 if s(p1) = s(p2), e(p1) = e(p2), c(p1) ≤

c(p2), w(p1) ≤ w(p2), and the paths do not coincide. This definition will help us to
discard paths that are not promising. We call a treatment of a path the extension of that
path along all outgoing arcs. After a treatment, a path is marked as treated. At any
time, only paths that have not previously been treated are selected for treatment. We

4.9 Analysis of neighbourhood structures for local search 119

Function SDNCC(G’(V’,D’));
Let P = {(i, j) : (i, j) ∈ D′, c(i, j) < 0}%all negative cost paths of

length 1

Mark all paths in P as untreated;
Initialise the best cycle q∗ = () and c∗ = 0;
for each p ∈ P do

if (e(p), s(p)) ∈ D′ and c(p) + c(e(p), s(p)) < c∗ then
q∗ = the cycle obtained by closing p and c∗ = c(q∗);

end
end
while P 6= ∅ do

Let P̂ ⊆ P be the set of the cheapest LAB_LIM untreated paths;
P = ∅;
while ∃ p ∈ P̂ untreated do

Select some untreated path p ∈ P̂ and mark it as treated;
for each (e(p), j) ∈ D′ s.t. wϕ(vj)(p) = 0 and c(p) + c(e(p), j) < 0
do

Add the extended path (s(p), . . . , e(p), j) to P as untreated;
if (j, s(p)) ∈ D′ and c(p) + c(e(p), j) + c(j, s(p)) < c∗ then

q∗ = the cycle obtained by closing the path (s(p), . . . , e(p), j);
c∗ = c(q∗);

end
end

end
for each p′ ∈ P subject to w(p′) = w(p), s(p′) = s(p), e(p′) = e(p) do

Remove from P the path of higher cost between p and p′;
end

end
return a negative cost cycle q∗ of cost c∗

Algorithm 4.4: An algorithm that finds subset disjoint negative cost cycles.

describe the details of the algorithm for finding subset disjoint negative cost cycles SDNCC

in Algorithm 4.4.
If the parameter LAB_LIM is set large enough, the algorithm SDNCC is exact. Given

the correspondence between the vertices of G′ and the vertices of G, the output cycle q∗

contains the ordered sequence of vertices for a cyclic exchange in G and c∗ is its cost.
The algorithm uses a well known lemma from Lin and Kernighan (1973) which estab-

lishes that if a sequence of edge costs has negative sum, there is a cyclic permutation of
these edges such that every partial sum is negative. This allows to restrict the dynamic
programming recursion as follows:

1. A label of length one is created only for negative edges.

2. A label of length larger than one is extended with a new edge only if the partial
sum of the costs associated with the edges remains negative.

The application of this rule does not cause the omission of any promising subset

120 Graph Colouring

disjoint negative cost cycle.

We use Algorithm 4.4 also for searching for improving path exchanges, that is, to
examine N5. Unfortunately, because of how we construct the improvement graph, the
cost of a subset disjoint path in the improvement graph does not correspond to the cost
of a path exchange in the real graph. An adjustment is required. Given the subset
disjoint path p = (i1, . . . , il) in G′, which corresponds to p̃ = (vi1 , . . . , vil) in G, the
evaluation function of a neighbour C ′ obtained from C after a path exchange given by p̃
is: f (C ′) = f (C) + c(p)− |ACϕ(vi1

)(vi1)| − |AC′
ϕ(vil

)
(vil)|, where C′ϕ(vil

) = Cϕ(vil
) ∪ {vl−1}.

In order to find the best (most improving) cyclic or path exchange in neighbourhood
N4 ∪ N5 we must then modify Algorithm 4.4 such that it checks also the cost of paths
whenever it checks the cost of cycles. The output q∗ is then the best path or cycle found,
and c∗ is its cost in G.

However, while the use of the lemma from Lin and Kernighan (1973) guarantees that
the cyclic exchange of minimal cost will not be missed, the same is not true for path
exchanges. Indeed, given that the cost of subset disjoint paths in Algorithm 4.4 does
not correspond to the cost of path exchanges in G, discarding subset disjoint paths of
length one that have non negative cost in the dynamic programming recursion may
entail missing subset disjoint paths. In order to make the Algorithm 4.4 exhaustive also
for path exchanges, we must therefore modify it to treat also subset disjoint paths of
non negative cost of any length.

The number of subset disjoint paths of various length grows exponentially and if the
graph and the number of subsets of the partition of V ′ are large, their examination be-
comes quickly intractable. We decided, therefore, to study the introduction of heuristic
truncation rules to limit the search.

Rule 1. Only subset disjoint negative paths are treated as from lemma of Lin and
Kernighan (1973). In other terms, we trade the optimality of path exchanges in
favour of the contribution of the lemma in pruning the search.

Rule 2. Only a limited number of subset disjoint paths for each length of a path is
treated. This is achieved by restricting the parameter LAB_LIM. In this way the
computational complexity of the algorithm is reduced to O(|V|2). This, however,
entails that the output of the algorithm will no more be necessarily an optimal
solution neither for the cyclic exchanges.

Rule 3. Before running Algorithm 4.4 for finding cyclic or path exchanges, the neigh-
bourhood N1 is examined, as this can be done very quickly. Then, Algorithm 4.4
is run only if the best neighbour found in N1 has the same quality as the current
solution. The other two possible cases are treated in this way:

1. if the best neighbour in N1 is an improving solution, then it is accepted and
the search proceeds to the next iteration;

2. if the best neighbour in N1 is a worsening candidate solution, then the search
ends and the current solution is deemed to be a local optimum.

Empirically, we observed that situation 2 occurs much more rarely than the case
in which the best solution leaves the cost unchanged.

4.9 Analysis of neighbourhood structures for local search 121

0 100 200 300 400 500

15

20

25

30

35

40

45
DSJC125.5

0 100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

3.0

DSJC125.5

Ti
m

e

0 100 200 300 400 500

4

6

8

10

12

14

16
DSJC125.5

Ite
ra

tio
ns

0 100 200 300 400 500

20

25

30

35

40

45

50

queen16_16

0 100 200 300 400 500

2

4

6

8
queen16_16

Ti
m

e

0 100 200 300 400 500

6

8

10

12

14

16

18
queen16_16

Ite
ra

tio
ns

PSfrag replacements

f
(C

)
f
(C

)

LAB LIMLAB LIMLAB LIM

LAB LIMLAB LIMLAB LIM

Figure 4.8.: Two representative cases to study the influence of the parameter LAB_LIM on IIN5 .
The plots consider instances DSJC125.5 (upper now) and queen16_16 (lower now) with k fixed to
17. Reported are the median the solution quality, f (C), the run time and the number of iterations
necessary to reach a local optimum. Times are expressed in seconds. A smooth regression line
is superimposed.

In order to find a good setting for LAB_LIM, we tested the effect of different values for
LAB_LIM on IIN1∪N4 for some instances of the DIMACS suite. We show the behaviour
obtained on two representative cases, instances DSJC125.5 and queen16_16, in Figure
4.8. For each local optimum found we plot its quality, the computation time and the
number of iterations needed to reach it. We observe that as LAB_LIM increases slightly,
the number of iterations to reach local optima decreases, but the time increases strongly.
The solution quality has, instead, an apparent asymptotic behaviour. The analysis sug-
gests that a reasonable trade off between solution quality and running time is obtained
for values of LAB_LIM between 50 and 100.

Next, we investigate the effect of the truncation rules for IIN4∪N5 on the small size
graphs solved in Section 4.9.2. We consider the following cases:

Exhaustive: No truncation rules are used and therefore the solutions returned by Algo-
rithm 4.4 are exact.

Truncated, Variant 1: Rules 1, 2, and 3 are all active.

Truncated, Variant 2: All the three Rules are active but Rule 1 is modified such that sub-
set disjoint paths of length larger than 1 which have cost zero are also maintained
(thus reducing the omission of subset disjoint negative paths).

Truncated, Variant 3: All three Rules are active but Rule 3 is modified such that Algo-
rithm 4.4 is run also when the best neighbour in N1 is a non-improving neighbour.

122 Graph Colouring

Exhaustive
Truncated,

Variant 1
Truncated,

Variant 2
Truncated,

Variant 3

n |ŜIIG(n)| |ŜIIG(n)| |ŜIIG(n)| |ŜIIG(n)|
3 0 0 0 0
4 0 1 1 1
5 0 9 9 9
6 4 52 57 52
7 15 260 289 260
8 11 134 146 134
9 1 54 45 54

Table 4.4.: Comparison of truncation rules in the exploration of neighbourhood N4 ∪ N5. The
size of the set of distinct local optima is used to indicate the capability of solving the problem.

We report the results of our experiments in Table 4.4. In fact, we do not expect to see
an impact of Rule 2 with LAB_LIM equal to 50 or 100, because the size of subset disjoint
paths in Algorithm 4.4 is not very large with these graph and good paths are hardly
missed. The other rules have, instead, a considerable effect.

We may draw the following conclusions. The deterioration of the results caused by
the application of the heuristic truncation rules is relevant and it is mainly due to the
omission of promising subset disjoint negative cost paths. The three variants considered
do not introduce substantial differences in the performance. The application of the three
rules in their standard version, as in Variant 1, has, therefore, to be preferred, because
the contribution to the pruning of the search space is higher. Finally, complementary
experiments, omitted here, confirmed the belief that the heuristic truncation rule with
the strongest influence impact on a loss of solutions is Rule 1. Nevertheless, this rule has
also the strongest impact on the size of the neighbourhood to explore and for graphs
with large size this contribution is primarily important (as we will see in Table 4.6).

The contribution of each neighbourhood

In Table 4.5 we report the number of times moves in a particular neighbourhood are
observed. For neighbourhoods obtained by the composition of other neighbourhoods
we assume that ties between moves of equal value are broken in favour of the neigh-
bourhood that comes first in the order. Moreover, for neighbourhoods N4 and N5 we
take into account if the path exchanges and the cyclic exchanges are degenerate one-
exchanges or swap exchanges, respectively. For the cyclic exchange neighbourhood N4

and for the path exchange neighbourhood N5 we also report in parenthesis the maximal
length for an exchange, that is, the number of edges in the corresponding cycle or path
in the improvement graph. For N4 ∪N5 we report the results for the exhaustive versions
and for the truncated version of Variant 1.

It is evident from the table that paths are more used than cycles. In exhaustive search,
the number of paths or cycles performed are less than in the truncated version, which
indicates that a thorough exploration of the neighbourhood allows to reach faster (in
terms of the number of moves) a feasible solution. Moreover, the comparison of the third
and fourth column (that is, if path exchanges are examined before cyclic exchanges)
indicates that many situations solved by cyclic exchanges can be solved also by path
exchanges (see results relative to the row forN4). We add that introducingN3 inN4∪N5

4.9 Analysis of neighbourhood structures for local search 123

n IIN1∪N4 IIN2∪N5 IIN4∪N5 IIN5∪N4 IIN4∪N5
exhaustive exhaustive exhaustive exhaustive truncated

3 5 5 5 5 5
4 55 55 55 55 49
5 462 462 462 462 408

N1 6 5094 5094 5094 5094 4058
7 74119 74122 74122 74122 54859
8 85023 85024 85024 85024 60255
9 95641 95641 95641 95641 66301
3 – – – – –
4 – – – – 3
5 – – – – 20

N2 6 7 7 7 7 241
7 55 55 55 55 2843
8 33 33 33 33 2566
9 17 17 17 17 2266
3 – – – – –
4 – – – – –
5 1(3) – 1(3) – 3(3)

N4 6 19(3) – 19(3) – 138(4)
7 197(3) – 197(3) – 3036(4)
8 141(4) – 142(4) 1(3) 4042(5)
9 65(4) – 65(4) – 4541(6)
3 – – – – –
4 – 1(2) 1(2) 1(2) –
5 – 10(2) 9(2) 10(2) 5(2)

N5 6 – 81(2) 62(2) 81(2) 165(3)
7 – 562(3) 365(3) 562(3) 3916(4)
8 – 306(2) 165(2) 306(2) 5690(4)
9 – 116(3) 51(3) 116(3) 7536(5)

Table 4.5.: Number of moves chosen from each neighbourhood. In parenthesis the maximal
length registered for cyclic and path exchanges (note that a cyclic exchange of length 3 cor-
responds to {v1, v2, v3, v1} and entails that 3 vertices change colours, while a path exchange of
length 3 corresponds to {v1, v2, v3, v4} and also entails that 3 vertices change colours, as v4 serves
only to determine the arrival colour for v3.

was useless because no move from N3 was then taken (this confirms the result discussed
in Section 4.9.2).

A final note is on the length of cyclic and paths exchanges accepted during the itera-
tive improvement process. Even with the small graphs presented here, with exhaustive
search cyclic exchanges change colours to even 4 vertices at a time and path exchanges
to 3. This result is relevant because it gives further evidence that searching well beyond
the first neighbourhood is profitable, as an improving exchange can be found only mov-
ing many vertices. If truncation rules are adopted, the length of the chosen cycles and
paths increases because easier (i.e., shorter) exchanges may be missed.

Larger graphs

We already mentioned that according to an important result of Erdős (1961) the chro-
maticity of a graph appears as a global phenomenon rather than being only locally
characterised. What exactly causes high chromaticity still remains a mystery (Diestel,
2000). This suggests that results on small graphs are not enough to predict a good be-
haviour of an algorithm. We therefore applied the iterative improvement algorithms
also to larger random graphs, in particular the instances DSJC125.∗, from the DIMACS

124 Graph Colouring

benchmark suite.
The size of these instances still makes feasible an exhaustive examination of the neigh-

bourhoods. The chromatic number of these graphs is still unknown; then we vary k
starting from a reasonable high value down to the best known value in the literature.
At each k we run an Iterative Improvement starting from 1000 distinct initial colourings
which are maintained the same over all algorithms.

The results are given in Table 4.6 for different neighbourhoods. The performance is
identified by the rate of success in finding feasible colourings starting from the 1000
initial colourings (%), by the median number of conflicting edges in the final infeasible
colourings (f̃), and by the median CPU time for each single run of Iterative Improvement
in seconds. Better performance in the quality of the final solution is indicated in the first
place by a higher success rate and in the second place by a low f̃ .

These results confirm those for the small graphs. In particular, the Iterative Improve-
ment with the exhaustive examination of N4 ∪ N5 clearly outperforms all other alter-
natives; however the CPU times are the largest and limit the field of applicability of
this choice to graphs of limited size. The results of the truncated versions are, however,
interesting since they remain competitive with the exhaustive examination, above all on
graphs of small density and on high density graphs when the value of k is low. More-
over their running time is only about 10% of the time of the exhaustive methods. Finally,
among the three variants of the truncation rules, we have confirmation that Variant 1 is
the best choice as the other two have the only effect of worsening time performance.

In conclusion, we gave enough evidence to justify the focus in the remainder of the
chapter to only one version of very large scale neighbourhood: the structure N4 ∪ N5

with examination pruned by heuristic rules as indicated by Variant 1. The study so far
was limited to iterative improvement with best improvement strategy. As the next step
we will test the use of the cyclic and path exchange neighbourhood in more complex SLS
algorithms and give an in-depth experimental comparison to state-of-the-art algorithms.

4.10. Stochastic Local Search algorithms

Simple Iterative Improvement algorithms typically show poor performance for the GCP
when compared with more complex Stochastic Local Search algorithms. Our analysis
focuses ultimately on the latter methods and in what follows we describe known and
new SLS algorithms that we studied. The methods are divided into the same three
different solution approaches that we discussed for Iterative Improvement: solving a
sequence of k colouring problems, varying the number of colours used, and extending
partial colourings. In this latter approach we consider only one algorithm that tries to
exploit the potential of exhaustive techniques.

In the presentation, we dedicate a subsection for each algorithm to explain the main
rules of the algorithm and the parameter settings. The general policy adopted is to give
preference to algorithms with fewer parameters and, where possible, to link parameters
to instance features or adjust them dynamically. Besides this, we also gave preference to
the robustness of the algorithm thus allowing them to use only one parameter setting
over all instances. For known algorithms, preference is given to the parameters sug-

4.10 Stochastic Local Search algorithms 125

ρ k IIN1
IIN1∪N2

IIN4∪N5
IIN4∪N5

IIN4∪N5
IIN4∪N5

Exhaustive Variant 1 Variant 2 Variant 3

% f̃ sec. % f̃ sec. % f̃ sec. % f̃ sec. % f̃ sec. % f̃ sec.

0.1 5 0 23 0 0 18 0 0 13 165 0 13 15 0 13 61 0 12 63
6 0 10 0 0 6 0 12 2 152 12 2 12 14 2 48 13 2 49
7 2 4 0 12 2 0 88 1 134 87 1 5 91 1 37 90 1 37
8 29 1 0 64 1 0 100 1 119 100 1 3 100 1 29 100 – 30
9 74 1 0 93 1 0 100 – 107 100 – 1 100 – 26 100 – 26
10 93 1 0 99 1 0 100 – 99 100 – 0 100 – 23 100 – 23

0.5 17 0 36 1 0 31 1 0 17 232 0 17 19 0 17 61 0 16 66
18 0 29 1 0 25 1 0 11 225 0 11 19 0 11 61 0 11 65
19 0 23 1 0 19 1 0 6 220 0 6 17 0 6 58 0 6 64
20 0 18 1 0 14 1 12 3 213 6 3 15 3 3 55 3 3 60
21 0 14 1 0 11 1 56 1 204 33 1 12 16 2 53 16 2 56
22 0 11 1 0 8 1 87 1 193 61 1 10 33 1 50 33 1 55
23 0 8 1 0 6 1 96 1 180 81 1 8 53 1 49 53 1 54
24 0 6 1 2 4 1 99 1 174 90 1 6 68 1 47 69 1 50
25 1 4 1 7 3 1 100 1 166 96 1 4 82 1 46 81 1 49

0.9 30 0 77 1 0 70 1 0 55 242 0 55 28 0 55 8 0 55 95
31 0 72 1 0 64 1 0 50 238 0 50 26 0 50 8 0 50 96
32 0 66 1 0 59 1 0 45 238 0 45 26 0 45 81 0 45 96
33 0 62 1 0 54 1 0 40 238 0 40 27 0 40 86 0 40 104
34 0 57 1 0 49 1 0 36 237 0 36 26 0 36 89 0 36 108
35 0 53 1 0 45 1 0 32 237 0 32 27 0 32 91 0 32 111
36 0 49 1 0 41 1 0 28 233 0 28 27 0 28 93 0 28 114
37 0 44 1 0 37 1 0 25 231 0 25 26 0 25 94 0 24 117
38 0 41 1 0 34 1 0 21 229 0 21 26 0 22 94 0 22 118
39 0 37 1 0 31 1 0 18 225 0 18 26 0 19 96 0 19 119
40 0 34 1 0 29 1 0 16 225 0 16 24 0 17 94 0 17 120
41 0 31 1 0 26 1 0 13 219 0 13 23 0 15 95 0 15 122
42 0 29 1 0 24 1 0 11 218 0 11 23 0 12 95 0 12 124
43 0 26 1 0 22 1 0 9 242 0 9 23 0 10 99 0 10 130
44 0 25 1 0 20 1 0 7 247 0 7 24 0 9 97 0 9 131
45 0 23 1 0 18 1 0 5 249 0 5 24 0 8 100 0 8 133
46 0 21 1 0 16 1 6 3 195 1 3 24 0 6 100 0 6 135
47 0 20 1 0 14 1 18 2 185 4 3 23 0 5 100 0 5 137
48 0 19 1 0 12 1 35 2 184 10 2 21 1 5 101 1 5 140
49 0 17 1 0 11 1 50 2 176 19 2 20 2 4 100 2 4 141
50 0 15 1 0 9 1 63 1 172 22 2 19 3 3 102 4 3 142

Table 4.6.: Results on the instances DSJC125 with edge density: 0.1, 0.5, 0.9. The table reports
for each of the three graphs, at different k values, the performance for solving the relative k-
colouring problem. The indicators for the performance are: the % rate of success in finding
a feasible colouring; the median number of conflicting edges f̃ ; and the median CPU time
expressed in hundredth of seconds to complete a single run.

gested by the respective authors. For new algorithms, instead, preliminary experiments
are performed for tuning the corresponding parameters. We do not go into the details of
these preliminary experiments. The methodology described in Chapter 6 could be used
for such a task. Nevertheless, we point out the cases where the performance is highly
variable with respect to algorithm’s parameters, trying to shed light on their relationship
with the features of the graphs.

4.10.1. Solving a sequence of k colouring problems

SLS algorithms in this class solve the chromatic number problem by maintaining k fixed
and decreasing it each time a feasible colouring for that k is reached. We start all algo-
rithms in this class from the number of colours kRLF returned by the RLF heuristic. When
a feasible k-colouring is found, then a new colouring with k− 1 colours is searched in
the next stage. We distinguish two main options of how to produce the new, possibly
infeasible, (k− 1)-colouring:

1. construct a colouring from scratch, or

2. uncolour the vertices assigned to one selected colour and re-colour them by using

126 Graph Colouring

any of the remaining colours.

The first option is practicable with any of the construction heuristics described in
Section 4.7 by setting a bound to the number of usable colours and removing the con-
dition that the final colouring must be feasible. The construction heuristics can also be
used for the second option by using the rules inherent to the heuristic for re-assigning
uncoloured vertices.

Tuning. We experimentally compared these two options. For both we considered the
three construction heuristics and, in addition, restricted to the second option, a random
re-distribution of vertices. The comparison was carried out embedding the different
alternatives in the Tabu Search algorithm on the N1 neighbourhood that we will de-
scribe in the next paragraph. We observed that the second option entails a faster search,
most probably because it provides an initial solution of better quality for the next stage.
Among the four different ways of reconstructing a partition, no significant difference
could be found between a random re-distribution of vertices and a reassignment by
means of the RLF heuristic, while these two variants perform significantly better than
a re-colouring using the ROS or the DSATUR heuristic. Hence, for the algorithms we
present next, we selected the simplest method, which is the random reassignment of
colours to vertices.

Tabu Search with one-exchange neighbourhood

Tabu Search with one-exchange neighbourhood (TSN1) has been widely studied for
graph colouring (Hertz and de Werra, 1987; Fleurent and Ferland, 1996; Dorne and
Hao, 1998a; Galinier and Hao, 1999). In our re-implementation of this method we com-
ply with the last reference. At each local search iteration, TSN1 chooses a best non-tabu
neighbouring candidate solution from the N1 neighbourhood. If the colour class of ver-
tex v changes from Ci to Cj, it is forbidden to assign colour i to vertex v in the next tt
steps. This prohibition is broken only when such a move would lead to an improve-
ment over the best candidate solution encountered so far (aspiration criterion). The
tabu tenure, tt, for a specific vertex–colour pair (v, i) is set proportional to the size of
the neighbourhood as tt = random(10) + δ · 2 · |Ec

V | where random(10) is an integer uni-
formly chosen from {0, . . . , 10}. Hence, the tabu tenure varies dynamically at run-time
in dependence of the evaluation function value (similar dynamic tabu tenures are used
by Dorne and Hao, 1998a while they are not present in the original implementation of
Hertz and de Werra, 1987). To avoid forbidding too many moves, tt should be smaller
than the neighbourhood size. This can be achieved by setting δ to a value that is much
smaller than k. We code the tabu list as a matrix k × |V| and in each cell we record
the iteration number until which the move stays tabu. Finally, if more than one move
produces the same effect on the evaluation function, one of these is selected randomly.

Tuning. Based on some preliminary experimental investigation, described in Chiaran-
dini and Stützle (2002), we fixed δ to 0.5; the particular value of δ may affect performance
but 0.5 seems to be sufficiently robust.

4.10 Stochastic Local Search algorithms 127

Tabu Search with very large scale neighbourhood

We saw in Section 4.9 that a best improvement local search with cyclic and path exchange
neighbourhood outperforms the one-exchange neighbourhood from the solution quality
perspective. However, as also observed in Chiarandini et al. (2003), the use of SLS meth-
ods enhances considerably the performance attainable with the use of a one-exchange
neighbourhood, such that an algorithm like TSN1 becomes highly competitive.

To examine fairly the effectiveness of the cyclic and path exchange neighbourhood
we embed it into an analogous Tabu Search algorithm as the one presented above. We
call this algorithms TSVLSN. At each step, the examination of the neighbourhood N4 ∪
N5 follows the scheme of Variant 1 in Section 4.9.3 but embedded in a Tabu Search
mechanism. More specifically, first the best non-tabu move in N1 is selected in the very
same way as TSN1 . If the move improves f (C), where C is the current colouring, then the
move is applied and the tabu list is updated as in TSN1 . If the move is a non-worsening
move, then the neighbourhood N4 ∪N5 is searched using Algorithm 4.4. The algorithm
is slightly modified in order to consider a candidate list, that is, only paths and cycles
which include at least one vertex involved in a conflict. This is achieved by including
in the initial P only paths of length one where at least one of the two vertices is in
Vc. The Tabu Search mechanism is an extension of TSN1 : a path or cyclic exchange is
discarded if it entails the reassignment of a recently used colour to at least one vertex.
The tabu list is updated by considering the path or the cyclic exchange as a composition
of one-exchanges and the tabu tenure is chosen dynamically using the same formula
as for TSN1 . Yet, contrarily to TSN1 , TSVLSN does not use an aspiration criterion. This
allows to discard vertices that are tabu very soon in the search for subset disjoint paths
in Algorithm 4.4.

Tuning. We use LAB_LIM fixed to 50 for the reasons explained in Section 4.9.3. More-
over, the choice not to use an aspiration criterion was suggested by experiments that
showed that its inclusion would only increase the computation time without improving
significantly the final solution quality. The δ parameter in the definition of the tabu
tenure is maintained at 0.5 as for TSN1 .

Min-Conflicts heuristics

A variant of Tabu Search on the N1 neighbourhood is suggested by the Min-Conflicts
heuristic which has successfully been applied to the CSP (Minton et al., 1992). We
adapted this method to graph colouring as follows. The selection of a move is done in a
two-stage selection scheme. In the first step, a vertex v ∈ Vc is chosen randomly accord-
ing to a uniform distribution. In the second step, a colour is assigned to v that minimises
the number of conflicts; ties are broken randomly. This selection method is then inte-
grated into a Tabu Search mechanism by allowing in the second stage only colours that
are not tabu according to the same criterion as in TSN1 . This strategy of neighbourhood
examination reduces the complexity of examining the neighbourhood from O(k|V|) to
O(k), when using appropriate data structures. It also reduces the chances of cycling
due to the random choices involved, and therefore the tabu list can be shorter. We call
this Tabu Search extension of the Min-Conflicts heuristic MC-TSN1 . It was previously

128 Graph Colouring

 select the
second best colour

 select
best colour

 many colours
with best improvement

 only one colour
with best improvement

select one,
not most recent not most recentmost recent

randomly randomly

select best colour

colour randomly
PSfrag replacements

select v ∈ V and c ∈ Γselect v ∈ V c

c
v, c

p1 − p

wp1− wp

Figure 4.9.: Decision tree representation of the Novelty+ mechanism for selecting a neighbour
C ′ in N1(C). Deterministic and probabilistic choices are represented by black and white circles,
respectively; edges are labelled with the respective conditions and probabilities. Black boxes
indicate decision actions.

studied on few instances of graph colouring by Stützle (1998). Differently from that
implementation in our MC-TSN1 a colour change is always forced: in case no possible
colour is available one is chosen randomly. Experimental analysis suggested that this is
a profitable rule.

Tuning. A static tabu tenure of 2 was selected after some preliminary experimental
analysis that confirmed the tuning proposed by Stützle (1998).

Novelty+++

The Novelty+ algorithm is a variant of the Novelty algorithm introduced by McAllester
et al. (1997) for solving the satisfiability problem and it constitutes a high-performing
algorithm for this problem (Hoos and Stützle, 2000). In our adaptation of Novelty+

to graph colouring, which we call Nov+, the examination of the neighbourhood N1 is
carried out as follows. With a probability wp, where wp is a parameter, a neighbouring
solution is chosen completely at random (i.e., not limiting changes to involve vertices
in Vc); with a probability 1− wp a neighbourhood examination scheme, similar to the
one in MC-TSN1 , is adopted. Differently from MC-TSN1 , the colour to be assigned to
the vertex v in the neighbourhood examination is chosen as follows. If there is only
one colour providing the best improvement in the evaluation function and this colour
is not the most recent colour assigned to the vertex among all the possible colours, then
it is always selected. Otherwise, it is only selected with a probability of 1− p, where p
is a parameter called “noise setting”. In the remaining cases, the colour providing the
second best improvement is selected. If there are several colours which provide the best
improvement, one, which is not the most recent for the vertex, is randomly selected.
This selection process is also represented by a probabilistic decision tree in Figure 4.9.

Note that in the Novelty+ concept a probability p > 0 yields the same or a similar
effect as the tabu list in Tabu Search, avoiding to cycle on the same solutions. The

4.10 Stochastic Local Search algorithms 129

introduction of wp, instead, prevents the algorithm to reach stagnation behaviour, as
empirically shown by Hoos (1999a).

Tuning. In setting the parameters, we followed partially the indications reported in
the literature and fixed wp to 0.01 (Hoos and Stützle, 2000). We tuned, instead, the
parameter p setting it equal to 0.3.

Guided Local Search

Guided local search is an SLS method that tries to escape from local optima through
modifications of the objective function (see Section 2.4.3 page 30). In its application to the
GCP, which we denote GLS, we define an augmented evaluation function f ′(C) : C → R,
which consists in the original objective function f (C) plus weights wi associated to the
edges that cause a conflict. Formally,

f ′(C) = f (C) + λ ·
|E|
∑
i=1

wi · Ii(C)

where |E| is the number of edges, wi is the penalty cost associated to edge i, and Ii(C) is
an indicator function that takes the value 1 if edge i causes a colour conflict in C and 0
otherwise. The parameter λ determines the influence of the penalties on the augmented
cost function.

The penalty weights are initialised to 0 and are updated each time Iterative Improve-
ment reaches a local optimum in f ′. The modification of the penalty weights is done by
first computing for each violated edge a utility

ui = Ii(s) · 1
1 + wi

.

and then incrementing the penalties of all edges with maximal utility. We implement
GLS with an iterative improvement in N1. At each iteration of the local search, the best
neighbour according to f ′ is selected. Once a local optimum is reached, the search con-
tinues for sw non-worsening exchanges (side walk moves) before the evaluation function
f ′ is updated. The update of wi and f ′ is done in the worst case in O(k|V|2). The pa-
rameters to tune are λ and sw.

Tuning. The experimental analysis indicated in λ = 1 and sw = 20 a good setting for
these two parameters. We mention also that we tested in detail two other variants of
Dynamic Local Search: (i) a dynamic local search algorithm inspired by Hutter et al.
(2002), which implements the same idea of modifying the evaluation function based on
probabilistic decisions rather than on indications coming from an utility function, and
(ii) a further feature for Guided Local Search suggested by Mills and Tsang (2000), in
which weights are scaled by 4/5 every 200 runs of the inner Iterative Improvement.
However, these two variants did not perform significantly better than the described
GLS, and we decided to omit them because of their higher number of parameters. The
application of GLS to the GCP is an original contribution of this thesis.

130 Graph Colouring

Iterated Local Search

In an attempt to enhance further the performance of TSN1 , we used it as a sub-procedure
for an Iterated Local Search method. A first application of ILS to the GCP is due to
Paquete and Stützle (2002b). Here, we consider an improved version, introduced in
Chiarandini and Stützle (2002). For the description of the algorithm, we still have to
define the perturbation and the acceptance criterion.

On the basis of preliminary studies (Chiarandini and Stützle, 2002), we decided for
the following configuration of ILS.

Perturbation: a number kr, kr < k, of colour classes is randomly chosen and all the
vertices in the kr colour classes are re-distributed into other colour classes by means
of the ROS heuristic bounded by k, avoiding to re-insert a vertex into the same
colour class in which it was previously.

Tabu Search: After each perturbation, TSN1 is run until the best solution found does not
change for lLS iterations. The tabu list is emptied before applying the perturbation
and exchanges caused by the perturbation are inserted in the tabu list.

Acceptance Criterion: The solution to which the perturbation is applied is always the best
(infeasible) colouring found so far.

Tuning. According to preliminary experiments, we set kr = b0.35 · kc and lLS = 5 ·
|Vc| · k.

Hybrid Evolutionary Algorithm

The hybrid Evolutionary Algorithm (HEA) of Galinier and Hao (1999) has shown re-
markable results for large GCP benchmark instances. HEA starts with an initial popu-
lation P of solutions and cycles through stages of recombination and local search (no
mutation is applied). In each iteration, two partitions are randomly chosen from P and
recombined by means of the greedy partition crossover (GPX). GPX generates from two
candidate partitions C1 = {C1

1 , . . . , C1
k} and C2 = {C2

1 , . . . , C2
k} a new partition by alter-

natingly selecting colour (sub)classes of each parent. At step i of the crossover operator,
i = 1, . . . , k, GPX chooses in parent C1 (if i is odd) or in parent C2 (if i is even) a colour
class with the maximal number of vertices to become colour class Ci of the offspring;
after each step, the vertices in the set Ci are removed from both parents. The vertices that
remain unassigned are then added to a randomly chosen partition. The new partition
returned by GPX is then improved by TSN1 and is inserted in the population P replacing
the worse of the two parents.

Tuning. A problem with the computational results of HEA presented in Galinier and
Hao (1999) is that the number of iterations for TSN1 is fine-tuned not only on a specific
instance but even to the specific value k. In our re-implementation of HEA we avoid
this. We tested two alternatives: either fixing the number of iterations of TSN1 to 1000
or to 10000. Experiments clearly indicate that using 10000 iterations for TSN1 is the best
choice. The other relevant differences are the following (note that they are all tested

4.10 Stochastic Local Search algorithms 131

improvements over the original version in the context of the chromatic number prob-
lem). RLF is used to determine the initial number kRLF of colours. Hence, HEA starts
from the same number of colours as the other algorithms. The initial population is gen-
erated using the DSATUR heuristic bounded to the current k and each time a feasible
colouring is reached, the population is re-initialised from scratch for k− 1. The popu-
lation is re-initialised if the average distance between colourings in the population falls
below a threshold of 20. Note that the exact distance in the N1 neighbourhood between
pairs of colourings is the partition distance and can be computed in polynomial time by
solving a weighted bipartite matching problem, also known as linear sum assignment
problem (Gusfield, 2002; Glass and Prügel-Bennett, 2005). For this task we used the
publically available shortest augmenting path algorithm (Jonker and Volgenant, 1987)
that works fast for the size of the assignment instances we face (the size is determined
by k).

Recently, Galinier et al. (2002) presented an adaptive memory approach based on the
same ideas of HEA but which uses only a single solution instead of a population of
solutions. This algorithm, however, does not improve on the performance of HEA and it
remains unclear, whether it is more robust with respect to parameter settings; therefore,
we do not consider it here.

4.10.2. Varying the number of used colours

Simulated Annealing with Kempe chain neighbourhood

Johnson et al. (1991) studied different variants of Simulated Annealing algorithms. We
re-implement the most promising, which is based on the Kempe chain neighbourhood
(SAN6). SAN6 uses the evaluation function g(s) = −∑k

i=1(|Ci|)2. At each step of SAN6 , a
neighbouring solution is generated in three steps:

Step 1: select a non-empty colour class Ci, a vertex v ∈ Ci, and a non-empty colour class
Cj uniformly at random, such that Ci and Cj do not form a full Kempe chain;

Step 2: determine the Kempe chain Kij of colour classes Ci and Cj that contains vertex v.

Step 3: swap colours i and j for all vertices in Kij.

The neighbour is accepted if it improves over the current solution; otherwise it is
accepted with a probability that depends on the deterioration in the evaluation function
and a control parameter T called temperature. From Section 2.4.3 this probability is

paccept(T, C, C ′) =

{
1 if f (C ′) ≤ f (C)
e−

f (C′)− f (C)
T otherwise

While in the original version the initial solution of SAN6 is generated by the ROS

heuristic, here we use the initial colouring of RLF. SAN6 uses a geometric cooling sched-
ule, which is defined by (i) the initial temperature Ti; (ii) the number of iterations to
be spent at a certain temperature determined by either a cutoff parameter, Tc, that im-
poses a limit on the number of accepted neighbours, or by a temperature length, Tl, that

132 Graph Colouring

imposes a limit on the maximal number of iterations at that temperature; (iii) the de-
crease of the temperature by a standard geometric cooling: Ti+1 = ρ · Ti; and (iv) a
termination condition, which in our case is the computation time (in the original SAN6 a
different termination condition is used). The values of Tl and Tc are related to the size
of the instance. In particular, Tl = ε · |V| · k and Tc = κ · |V| · k, where ε and κ are two
parameters.

Tuning. The tuning of SAN6 exhibits a similar problem as HEA, namely, in Johnson
et al. (1991) different settings were used for different computation times and different
final solutions. In order to find the best compromise with our time limits, we run pre-
liminary experiments. Based on these experiments we could verify that the parameters
used in most of the cases by the original version to obtain peek performance do not
yield run-times that exceed our time limit. We set, therefore, Ti = 5, κ = 0.1, ρ = 0.983
and ε = 16.

We also developed a Tabu Search approach similar to TSN1 that works with k variable.
It performed, however, very similarly to SAN6 , therefore we remove it from this final
analysis.

4.10.3. Extending partial colourings: a semi-exhaustive approach

Next, we introduce a parametrised version of the RLF heuristic that exploits, where
possible, the potential of exhaustive search.

XRLF

The XRLF algorithm was also introduced by Johnson et al. (1991) and appeared to give
competitive results when relative long time was allowed. It exploits the possibilities
offered by exhaustive search. We saw in Section 4.6 that BB-GCP can solve in short
time graphs with up to 100 vertices. The concept of XRLF is to use this algorithm
after having reduced the graph to a reasonable size. Reducing the graph is done by
removing independent subsets of V, trying at the same time to minimise the number
of edges in the residual graph. This procedure is a parametrised generalisation of RLF,
which uses ideas suggested by Johri and Matula (1982). In particular, RLF is modified in
order to find independent sets C contained in the current set V ′ of uncoloured vertices
such that the size of C is maximised and the number of edges in the residual graph,
V ′ \ C is minimised. The construction proceeds by selecting, from a random sample
from V ′ of CANDNUM candidates, a vertex adjacent to the maximal number of uncoloured
non-candidates. If the number of remaining candidates for C is less than SETLIM, the
construction is done by exhaustive search with the procedure given in Algorithm 4.5.
This construction process is then repeated for TRIALNUM number of times, taking the
best result. It stops when the number of uncoloured vertices becomes smaller than a
parameter EXACTLIM. At this point, the remaining vertices are coloured with BB-GCP.
Although we saw in Section 4.6 that Ex-DSATUR is more robust than BB-GCP on graphs

4.10 Stochastic Local Search algorithms 133

Function Independent_Set(G(V,E));
return Find_Set(G,V,∅,∅,0,0);

Function Find_Set(G(V, E),U,C,C∗,c,best);
while |U| > 0 do

select some v ∈ U and let U = U \ {v};
T = {u | u ∈ Uand{u, v} 6∈ E};
cv = |{{u, v} ∈ E : v ∈ V \ C}|;
if (c + cv > best) or (c + cv = best and |C∗| < |C ∪ {v}|) then

C∗ = C ∪ {v} and best = c + cv;
end
C∗ = Find_Set(G,T,C ∪ {v},C∗,c + cv,best);

end
return C∗

Algorithm 4.5: An algorithm for finding an independent set such that the number
of edges in the remaining graph is minimised. C is a current independent set, C∗
is the best independent set found, and U is the set of vertices that can still become
member of C.

with small density, for conformity with the original version, we continue to use BB-GCP.
Further details on XRLF can be found in the original paper.

The tuning of SETLIMSETLIMSETLIM. When the current set V ′ of uncoloured vertices is smaller than
SETLIM, the exact procedure Independent_Set of Algorithm 4.5 is used to find an inde-
pendent set C∗ ⊆ V ′ such that |{{u, v} ∈ E : u ∈ C∗ and v ∈ V ′ \ C∗}| is maximum. We
report here the procedure because it was not given in the original paper. The efficiency
of this algorithm is important because it is run TRIALNUM times for almost all colour
classes in the graph and the performance of XRLF improves TRIALNUM is kept high.

The characteristics of the subgraph V ′ have a strong influence on the computational
cost of Algorithm 4.5. In Figure 4.10, left, we show the growth in time of Algorithm 4.5
for random graphs of different size and density. The search in graphs of low density is
very slow. This is reasonable considering that in the extreme case of a graph consisting
of n isolated nodes without any edge, the number of possible independent sets grows
at the order of 2n. In contrast, graphs with high density are searched almost instantly,
since for increasing density the number of possible independent sets tends to zero. If we
fix the computational cost for solving V ′ to 5 seconds on our usual machine we obtain
by linear regression the empirical formula |V ′| = (15.5ρV′ + 4.7)2. Accordingly, for sizes
of the graphs V ′ below the indicated threshold, the computation time of Algorithm 4.5
will be below 5 seconds. The value of SETLIM can therefore be linked to the density
of the graph V ′ and tuned automatically. Experimental observations revealed that this
is not enough to predict precisely the computational cost of Algorithm 4.5. Graphs in
which the vertex degree is highly variable also create problems. Unfortunately, running
the function Independent_Set on the random graphs of Figure 4.1, varying the size of
the graph among 30, 50 and 100 vertices was not helpful for deriving a better predictive
model.

In order to understand the reason for the uncommonly high computation time of In-
dependent_Set we plotted some of the graphs that originate this behaviour and looked at

134 Graph Colouring

0.010.01

0.1

1

10

100

1000
3600

20 40 80 200 400 800 1600

Uniform random graphs

+

+

+

++

+++
++

+
+
+++

+
+
+++

+++++

+

++
++

+++
+++++

+++++ +++++

+++++

+++++

+++++++++++++
++++++++++

++++++
++++++++++++++

+++++

+++++

+++++

+++++++++++++++++++++
+++++

+++++

+++++++++++++++

Size

Se
co

nd
s

p=0 p=0.1 p=0.2 p=0.5

p=0.9

+ +
+

+

+

0.0 0.2 0.4 0.6 0.8

50

100

150

200

250

300

350

Si
ze

Density

size = (15.5 × density + 4.7)2

time = 5 seconds

Figure 4.10.: On the left, the variation of computation time for Algorithm 4.5 on Uniform random
graphs of diverse size (x-axis) and edge probability p. On the right, the curve of graphs that yield
a computation time of 5 seconds.

the distributions of the vertex degree. In Figure 4.11, we show two graphs of size 40 with
almost the same density and range characteristics. The graph on the left is a Geometric
graph with edge density 0.5 and it is solved very quickly by the algorithm. The graph
on the right is, instead, one of the graphs that requires long computation time. The
histograms relative to the two graphs indicate that hard graphs are those with degree
distributions that exhibit two peaks (modes) in correspondence to the two extremes. In
these cases, the number of possible independent subsets is high. Unfortunately, we were
unable to find a measure with low computational cost to detect these “pathological” dis-
tributions. The empirical solution that we adopted is to limit the use of Independent_Set

to graphs of normalised vertex degree range below 0.2 (besides the size restriction of
SETLIM in (0, (15.5ρV′ + 4.7)2]). This upper bound on the range eliminates the “patho-
logical” graphs but also some other graphs which would be easily solved. Finally, for
densities lower than 0.1 we run Algorithm 4.5 only if the size of V ′ is smaller than 25.

Eliminating the important parameter SETLIM allows a better control on the computa-
tion time of XRLF. Nevertheless, for the instances of the benchmark suite we still had to
adjust CANDNUM and TRIALNUM on each individual instance. Finally, also EXACTLIM needs
to be adjusted. The set of parameters adopted for the instances of the DIMACS bench-
mark suite as well as with the randomly generated graphs that we introduce later, are
reported in Appendix C.1.2 of the thesis. Unfortunately trying to prevent XRLF to use
more than the time allowed we ended up having that, on many instances, XRLF, actually,
uses much less than the time allowed. Therefore, for the graphs on which results were
published, we comply with the parameters indicated by the original paper. We point
out, however, that the highly unpredictable behaviour of XRLF is a strong argument
against its use.

XRLF is based on the idea of first removing independent sets and then colouring
a reduced graph. An analogous idea has been used by other researchers substituting
the two exact algorithms that compose XRLF with approximate SLS algorithms. This
concept was already used by Hertz and de Werra (1987) whose paper is actually an-
tecedent to the introduction of XRLF. Similar examples are also provided by Fleurent
and Ferland (1996) and Dorne and Hao (1998a) who apply their newly introduced al-

4.10 Stochastic Local Search algorithms 135

Degree distribution

Fr
eq

ue
nc

y

5 10 15 20 25 30

0
2

4

Av = 0.52; Std = 0.19; Range = 0.68
Degree distribution

Fr
eq

ue
nc

y

10 15 20 25 30 35

0
2

4
6

8

Av = 0.48; Std = 0.28; Range = 0.69

Figure 4.11.: Visual comparison of the structure of two graphs with similar characteristics but
different hardness when solved by Independent_Set. The graphs are drawn using the GEM al-
gorithm of Frick et al. (1994), which attempts to achieve pleasant layouts according to the most
influential aesthetic criteria, like maintaining close connected vertices and avoiding crossing
edges.

gorithms, mainly based on hybridisations of Tabu Search and Genetic Algorithm, after
removing independent sets from the graph. This graph reduction, done heuristically
(none re-implemented the Independent_Set part), is shown to bring advantage to their
approaches both in solution quality and in computation time. However, none of them
investigated in-depth this approach which is only suggested at the end of their articles,
with results given only on one or maximally two graphs.

It would be interesting, instead, to address some issues arising from this approach
when using approximate algorithms. For example, it is not clear which should be the
value to give to EXACTLIM since, through the introduction of approximate algorithms,
it could be increased very much. More importantly, it is not clear whether the strat-
egy of removing independent sets by leaving reduced graphs of lower edge density is
a good strategy for the successive approximate algorithm or whether the opposite strat-
egy would be more appropriate. In any case, the choice of a “strategy” in doing this
may be the “right” one for some graphs but the “wrong” one for others. In this latter
case, the reduced graph can even be coloured exactly but the resulting partition of the
starting graph into sets can be far from that required by an optimal colouring. A rem-
edy could be to embed some restarting mechanism such that a new graph reduction,
different from the previous one is attained. We attempted to answer these questions in
some preliminary experiments in which we combined TSN1 with the parametrised RLF

with Independent_Set. We were, however, unable to devise any competitive algorithm to
answer the posed questions and, hence, we decided to abandon this direction.

136 Graph Colouring

4.10.4. Implementation Details

All algorithms were written in C++ using the framework organisation suggested by
Di Gaspero and Schaerf (2003a). There are two standard ways to represent a graph
G = (V, E): as a collection of adjacency lists or as an adjacency matrix. The adjacency
list provides a more compact way to represent sparse graphs. Provided that we had
enough main memory for the instances under examination (we work on a 1GB RAM
machine), we decided to maintain both data structures because the lists indicate quickly
which are the adjacent vertices for a given vertex and the matrix tells quickly if there is
an edge connecting two vertices.

Also for the colouring we maintain two representations: a vector of colours, indicating
for each vertex its colour; and a collection of sets of vertices, one for each colour. The
first derives from the mapping representation and the second from the partitioning
representation. Given the high number of operations of insertion and removal from sets
required by Stochastic Local Search algorithms and the fact that they occur in similar
amount, we implemented each set in the collection as a binary search tree. In binary
search trees, both insertion and removal require O(log n) while a simple unordered list
would require constant time for the insertion but linear time O(n) for the removal. The
saving of computation time in our context is significant.

4.11. Experimental analysis on benchmark instances

In this section we describe the details of the experimental analysis conducted for the
evaluation of the approximate algorithms. We recall that all these algorithms are stochas-
tic procedures and many published computational comparisons are inadequate because
they are based on best results. The best (or extreme) value of a distribution of stochastic
results is known from Statistics to be a biased location estimator, i.e., given the best of
a sample, the best of the population from which the sample is drawn may be different.
The comparison we present here is the first rigorous experimental analysis by means of
statistical methodologies for the GCP.

In the experiment, we consider algorithms as levels of a treatment factor and instances
as levels of a blocking factor. Each algorithm was run 10 times on each instance and the
smallest number of colours for which a feasible colouring was found in each run is the
response variable. The design reflects the “several runs on various instances” introduced
in Section 3.6.6, page 63.

For each run the termination criterion was a fixed CPU time. The amount of CPU time
is a crucial choice because it can bias the results of the evaluation and it depends on the
specific application for which graph colouring is used. We decided to adopt an interme-
diate amount of time between very short run times required by real time applications
(like memory allocation) and very long run time allowed by design applications (like
some cases of timetabling). The scenario, with which we are concerned, is the planning
scenario (see also Section 3.6) in which an answer must be obtained in a time no longer
than a few quarters of an hour. Beside this typology of application, the amount of time
was also selected in such a way that all algorithms in the comparison could be effective

4.11 Experimental analysis on benchmark instances 137

and exploit most of their potential.
After preliminary experiments, we decided to use TSN1 as the reference algorithm

and to set as time limit the time it needs to perform Imax = 104 × |V| iterations.

The time limit. The value for Imax is necessarily an arbitrary choice. In principle, SLS
algorithms could find further improvements in solution quality at any time and no pre-
cise procedure is known to predict when an algorithm becomes ineffective, that is, when
the probability of finding improvements becomes sufficiently small to be negligible.

Our choice is a compromise between two criteria: achieving high quality results and
limiting the use of computational resources. To support our decision we relied on ob-
servations of the empirical attainment curves or qualified run time distributions. In
particular, we ascertained that the Imax iterations are enough for TSN1 to reach a median
limiting behaviour. More precisely, Imax is selected such that after that threshold no fur-
ther improvement in the median attainment curve of TSN1 is observed. This behaviour is
shown for two sample instances in Figure 4.12. The dashed vertical line represents Imax

while the runs extend to, respectively 10 and 2 times Imax. It is evident that after Imax

iterations no further improvement appears in the median or in the best case, although
on instance DSJC1000.5 the last quantile attainment curve improves long after Imax. In
general terms, for all instances of the DIMACS benchmark suite improvements for TSN1

after Imax are still possible but become very rare.
The need, due to the diversity of the algorithms, for transforming the limit expressed

in number of iterations into a limit expressed in computation time, poses another prob-
lem. Being TSN1 a stochastic algorithm, the time needed to accomplish Imax iterations
is also a stochastic variable. Hence, we replicated its observation 10 times per instance.
Unfortunately, especially for the largest instances, the variance in the time required by
Tabu Search is considerable. The explanation is in the variable size of the neighbour-
hood explored, defined by Vc, and in the value of the final k. However, the replication of
the measure and the use of the median value should equitably distribute errors so that
the reproducibility of the experiment is maintained.

In Figure 4.13, we give an indication of how the computation times of TSN1 vary with
the size, the density and the number of iterations for random graphs.

Performance measurement. Each result χ̂ on a graph G is transformed into

err(χ̂, G) =
χ̂(G)− χ̂best(G)

χ̃ROS(G)− χ̂best(G)
(4.2)

where χ̃ROS(G) is the median result attained by 10 runs of the ROS heuristic on G, and
χ̂best(G) is the best known solution for G (see also Equation 3.1, page 46).

In Figure 4.14, we report the box-plots for the distributions of err(χ̂, G). We note
that it is very hard to distinguish where differences arise. The only few considerations
arising are that (i) on the Full Insertion and the Insertion graphs all algorithms perform
the same; (ii) on all classes of instances, approximate algorithms improve strongly over
the ROS heuristic.

A deeper insight into the Full Insertion graphs allows us to prove the optimality of
our solutions on these instances. This is achieved both by comparing our upper bounds
with the lower bounds found by Caramia and Dell’Olmo (2004) and by noting that,
given the large reduction which applies with the preprocessing rules of Section 4.5,

138 Graph Colouring

Iterations

Q
ua

lity

50

52

54

56

58

60

62

0 500 × 104 200 × 105 300 × 105 400 × 105 500 × 105

DSJC500.5

Iterations

Q
ua

lity

90

95

100

105

110

0 500 × 104 1000 × 104 1500 × 104 2000 × 104

DSJC1000.5

Figure 4.12.: Empirical attainment surfaces of TSN1 for 50 runs on DSJC500.5 and 20 runs on
DSJC1000.5. The empirical attainment curves represented are the median (continuous line) and
the first and last quantile levels (dotted lines). The vertical dashed lines indicate the threshold
of Imax iterations.

time ≈ (2.49n̂ − 0.98ρ + 0.29i + 10.41n̂ρ + 0.29n̂i − 0.22ρi + 1.65n̂iρ + 1.43)3

Time (sec.)

Pr
ob

ab
ilit

y

1 101 102 103 104 105
0.0
0.2
0.4
0.6
0.8
1.0

size=1000, density=0.1 size=1000, density=0.5

1 101 102 103 104 105

size=1000, density=0.9

size=500, density=0.1 size=500, density=0.5

0.0
0.2
0.4
0.6
0.8
1.0

size=500, density=0.9
0.0
0.2
0.4
0.6
0.8
1.0

size=125, density=0.1
1 101 102 103 104 105

size=125, density=0.5 size=125, density=0.9

Figure 4.13.: The variation of the computation time to perform 1× Imax (continuous line) and
10× Imax (dotted lines) iterations on random graphs of different sizes (rows) and edge densities
(columns). Represented are the empirical cumulative distribution functions of the stopping time.
Data are obtained by 50 runs (20 in the case of size 1000 and density {0.5, 0.9}) per instance. The
x-axis is in logarithmic scale. Clearly, time increases with size, edge density and Imax. The linear
regression model in the subtitle yields R2 = 0.9959. In the model, n̂ is the number of vertices in
the graphs divided by 1000, ρ is the edge density and i the multiplying factor for Imax.

4.11 Experimental analysis on benchmark instances 139

Performance measure err(χ,G)

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

DSJC.1 DSJC.5 DSJC.9 Latin

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

Leighton Flat Queens Wap

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

0.0 0.2 0.4 0.6 0.8 1.0

School

0.0 0.2 0.4 0.6 0.8 1.0

Jac

0.0 0.2 0.4 0.6 0.8 1.0

FullIns

0.0 0.2 0.4 0.6 0.8 1.0

Insertions

Figure 4.14.: Box-plots of the performance measure err(k, i).

these graphs can be solved in reasonable time (less than one hour) by exhaustive search.
Note that the RLF is already able to find the optimal solution. The only exception is
instance 3− FullIns_3 where no approximate algorithm here studied is able to find
the optimal solution. With a similar reasoning on the Insertion graphs we can compare
the the lower bounds of Caramia and Dell’Olmo (2004) and prove the optimality of our
approximations also on these graphs. Note however that no reduction applies here.
Two exceptions in this case are instances 2− insertion_4 and 4− insertion_3 where
our approximate algorithms are all deceived from the optimal solution which uses one
colour less.

With concern to the result on real life graphs, Coudert (1997) points out that it is
very hard to find graphs coming from real life applications which have ω(G) 6= χ(G). It
appears, then, that clique values close to the chromatic number also help SLS algorithms.

Transforming the data within each instance into ranks, in such a way that each result is
mapped into a value in [0, 90], we start distinguishing some pattern. We then aggregated
the ranks relative to instances of the same class and the resulting box-plots are shown
in Figure 4.15. However, the differences which arise from the box-plots should be tested
for significance and therefore we proceed with the statistical analysis of results.

Application of statistical tests. We first remove from the analysis the classes of in-
stances where no difference among the algorithms are found, i.e., the Insertions and
Full Insertions graphs. We treat the instances as a blocking factor and the class as a
categorical stratification variable of the instances. To decide upon the supposed pres-
ence of an interaction between algorithms and classes we consider the interaction plot

140 Graph Colouring

Performance measure err(χ,G)

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

DSJC.1 DSJC.5 DSJC.9 Latin

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

Leighton Flat Queens Wap

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

0 20 40 60 80

School

0 20 40 60 80

Jac

0 20 40 60 80

FullIns

0 20 40 60 80

Insertions

Figure 4.15.: Box-plots of the experimental results ranked on the instances.

of Figure 4.16. Lines are not perfectly parallel and suggest that an interaction may be
present. Yet, the plot does not tell whether the interaction is statistically significant.
Precautionally, we include the interaction term in the linear model that represents the
whole experimental design:

response = constant + effect of
blocks

+
effect of
algorithms

+ effect of
classes

+
effect of interaction
algorithms-classes

where we omit the error terms for the sake of conciseness. In order to state whether the
assumptions for a parametric analysis are met, we consider the standardised residuals
of the fitted linear model. In Figure 4.17 we try to determine visually whether errors
are independent, homoschedastic, and normally distributed. The plot on the left shows
that standard residuals are not homoschedastic. Moreover, the normal plot on the right,
shows that residuals deviate, although not excessively, from the normal distribution.

A transformation of data may help to get closer to meet the parametric assumptions.
Venables and Ripley (2002) point out a method to select automatically the best trans-
formation. The method determines the best λ and α value for the following family of
transformations:

yλ =
{

(yλ − 1)/λ λ 6= 0
log y λ = 0

and t(y, α) = log(y + α).

where y are the observed responses. The diagnostic plots for the model with the trans-
formed data in Figure 4.18 shows that the assumption of the normality of data is still
not satisfied.

4.11 Experimental analysis on benchmark instances 141

0.2

0.3

0.4

0.5

0.6

0.7

Jac
Leighton

DSJC.1

Wap
Queens

Flat
DSJC.5

DSJC.9

 Algorithms
TSVLSN
XRLF
Nov+
GLS
MinConf
HEA
SAN6
ILS
TSN1

Instance class

Pe
rfo

rm
an

ce
 m

ea
su

re

Figure 4.16.: The effect of interaction between algorithms and instance classes on the median
value of the error measure.

+++++
+++
+

+
+
+++

++++
+++++

+
+
+
+

+
+
+++ ++

+

+

+
+
+++

+
+
++

+++++
+++
+

+
+
+++

+++
+

+++++
++
+
+

+++++
+
++

+

+++++
++
+

+

+++++
+

+
+

+
+++++ +

+ +
+

+++++ +
+ +
+

+++++ +
+ +
+

+++++ +
+ +
+

+++++
+

+ +
+

+++++ +
+ +
+

+++++
+

+ +
+

+++++
+

+ +
+

+++++ +
+

+
+

++++++++
++++++++
+
++++++++
+
+++++++++
++++++++
+
+++++++++
+++++++++
+++++++++
+++++++++
++++++++
+
+

+++++

++

+

+

+++++

+++

+

+++++

+

+++

+++++

+++

+

+++++

++++

+++++

++++

+++++

++++

+++++

+++

+

+++++

++++

+++++

++++

++
+
+
+

+
+ ++

+++
++

+
+ ++

+++
++

+
+ ++

++++
+

+
+

+
+

++
+
+
+

+

+
++

++
+++

+
+ ++

++++
+

+
+ ++

++++
+

+
+ ++

++++
+

+
+ ++

++++
+

+
+ ++ +++++++

++
+++++++

+
++++

+
++++++++++
+

+
++

+++++++
++

+++++++
+
++++++++
++

+++++++
+
++++++++
++

+++++++
++++++

+

++++
+++++

++++
++++

+

+

+

++
++++

+

++++
++++

+

+++

+

++++

+

++++
+++++

++++
++++

+

++++
+++++

++++
++++

+

+

+

++
++++

+ ++ ++++++
+ ++ +++++++

++ ++++++
+ ++ ++++++
+ ++ ++

+
++++ ++ +++++++ ++ +++++++

++ ++
++++

+ ++ ++++++
+ ++

++ ++++++++
+

++++++++
+

+++++
++++++++++++
+

+++++++++++++++++
+

++++++++
+

++++++++
+

+++++
+

++++++++++++
+++++

++++

+++++
++++

+++++
++++

+++++
++++

+++++
++++

+++++
++++

+++++
++++

+++++
++
+
+

+++++
++
+
+

+++++
++++

+++++ +
+

+
+++++
+ +
+ +++++++

+
+ +++++++

+
+ +++++++

++ +++++++
+

+
+

++++++
+

+ +++++++ +
+

+
+++++
+ +
+

+++++++
+

+
+

+ ++

+
++
+

+ +
+
++

+++
+

+
+
++
+

+++
+

+ +
+
++

+
++
+

+ +
+
++

+++
+

+ +
+++

+++
+

+
+++
+

+++
+

+ +
++
+

++++
+

+++
+

+++
+

+
+
++
+

+
++
+

+ +
+
++

++++
+ +
+

+
+++++
+ +
+

+
+++++
+ ++

+

+++++
+ ++

+

+++++
+ ++

+
+++++
+ ++

+

+++++
+ ++

+
+++++
+ ++

+

+
++++

+ ++
+

+++++
+ ++

+
+

+++

+

+

+

+
+

+

+++

+

+

+
+

+

+
+++++

+

+
+

+

+++++

+

+
+

+
+

++++

+

+
+

+
+

++++

+

+
+

+

+++

+

+

+

+
+

+

+++

+

+

+
+

+
+

+++

+

+

+
+

+

+
+++++

+

+
+

+

+++++
+

+
+

+
+++++

+

+

+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+

+

+
+++++

+

+

+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+

+

+
+++++

+

+
+

+
+++++

+

+

+

+
+++++

+

+

+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+

+

+
+++++

+

+
+

++++++
+

+

+

+
+++++

+

+
+

+

+++++
+

+
+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+
+

+
+++++

+

+

+

+
+++++

+

+

+

+
+++++

+

+
+

+
+++++

+

+
+

+

+

+

++

+
+

+ ++
++ ++

+
+

+
++

+

+

++

+
+

+ ++
+

+

++

+
+

+ ++
+

+
++

+
+

+
++

+
+

++

+
+

+ ++
++
++

+
+

+
++

+
+

++

+
+

+
+

+
+

+

++

+
+

+
+

+
++ ++

+
+

+
+

+++ ++
+

+

+
++

++ ++
+

+

+
+

+
++ ++
+

+

+
++

++ ++
+

+

+
++

++ +++

+

+
+

+
++ +++

+

+
+

+
++ ++
+

+

+
+

+
++ +++

+

+
+

+
++ ++
+

+

+
++

++ +++

+

+
+

+++ ++
+
+

+
++

++ ++
+
+

+
++

++ ++
+
+

+
++

++ ++
+

+

+
++

+
+

++
+
+

+
+

+
++ ++
+
+

+
+

+
++ ++
+
+

+
+

+
++ ++
+
+

+
+

+
++ ++
+
+

+
+

+
++ ++
+

+

+
++++

+++

+

+

+

+++
+++

+

+

+

+++
+++

+

+

+

+
++
+++

+

+

+

+
++
+++

+

+

+

+++
+++

+

+

+

+
++
+++

+

+

+

+
++
+++

+

+

+

+
++
+++

+

+

+

+++
+++

+

+

+

+ ++
++

++
+

+
+

++
++

+
+

+
+

+

++
++

++
+

+

+

++
++

+

+
+

+
+

++
++

+

+
+

+
+

++
++

+
+ +

+

+

++
++

+

+
+

+
+

++
++

++ +
+

+

++
++

++
+

+

+

++
++

+
+ +

+

+

++
++

+
+

+
+

+++ ++
+
+

+
+

+++ ++
+
+

+
+

+
+

+
++

+
+

+
+

+++
++

+
+

+
+

+++ ++
+
+

+ +
+

++ ++
+
+

+
+

+++
++

+
+

+
+

+++
++

+
+

+
+

+++
++

+
+

+
+

++++++
+

+++
+++++

+
+++

+++++ +

++
++++++

+
++
++++++

+
+++

+++++ +
+
+
++++++ +
++
+

+++++ +

++
++++++

+
++
++

+
+++ +

++
+

+++++
+

++
++++++

+
+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++
+

++++
+

++

+
+
+
+++ +

++

+
+++
++ +

++

+
+++++ +

++

+
+
++
+
+ +

++

++
++
++ +

++

+
+
++
++

+

+
+

+
+
++++

+

++
+

+

++
++

+

++

+
+++++

+

++
+

+
++++

+

++
+

+
++++

+
++

++
++++

+

++

+
+++++

+

++

++++++
+

+
+
+

+
++
++

+

+
+

+
+++++

+

+
+
++

++++ +

++

+
+++++

+

++

+
+++++

+

++

++++++
+

+++
+
++++

+
++
+

+
+++
+

+
+++

+
+++
+

+
+++

+
++++

+
+++

+++++

+
+++

+
++++

+
+++

+
++++

+
++
+

+++
++

+
+++

+
++++

+
+++

+++
++

+
+
+
+

+
++++

+++
+

+++
++

+++
+

+++
++

+
+++

+
++++

+++
+

+
++++

+
++
+

+
++++ +

++
+

+++
++

+
++
+

+
++++

+
+++

+
++++

+
++
++++++ +

+++

+++++

+
+

+

+

+++++

+
+++

+++++

+
++

++++++

+
+++

+++++

+

+

++

+++++

+

+

+

+

+++++

+
+++

+++++

+

+

+

+

+++++

+
++

+

+++++ +
++

+

+++++

+

++

+

+++++

+
+++

+++++

+
+

+

+

+++++

+
+

+

+

+++++

+
+++

+++++

+
+

+

+

+++++

+
+

+

+

+++++

+

+

++

+++++ +
++

++++++ +
+

+

+
+++++

+
+++

+++++ +
+++

+++++ +
+++

+++++

+
++

+
+++++

+
++

+
+++++

+
+++

+++++ +
+

+

+
+++++

+
+++

+++++ +
++

+
+++++

+
+

+++++++
++
+++++++
+

+
+++++++
++
+++++++
+

+
+++++++
+

+
+++++++
++
+++++++
++
++++++

+
++
+++++++
++
+++++++

+
+

+++++++
++
++++++

+
++
+++++++
++
++++++

+
++
++++++

+
++
++++++

+
++
+++++++
++
++++++

+
++
++++++

+
+

+
++++++

+
++
+++++

++
++
++++++

+
++
+++++++ ++
++++++

+
++
+++++++ ++
++++++

+
++
+++++

++
++
++++++

+
++
++++++

+
++
++++++

+
++
++++++

+
++
+++++

++
++
++++++

+
++
++++++

+
++
+

+
+++
++

++
++++++

+
++
++++++

+
++
++++++

+
++
++++++

+
++
++

+++++
++
+

+
++
+
++

++
+

++++++
++
++

++
++
+

++
+++

++++
++
+

++
++
++

++
++++

+++
++
+

++++++
++
+

++
+++
+

++
++

+
++
++

++
++

+
+++
+ +
+

++
+
+
+++ +

+
+

+++
+
++ +
+

+
+++
+
++ +
+

++
+++++ +

+
+

+
+
++++ +

+
+

++++++ +
+

++
+++++ +

+
+

+++
+
++ +
+

+
+++
+
++ +
+

++
+++++ +

+
++

+++++ +
+

+
++++++ +

+
+

++++++ +
+ +++++++ +
+

++
+++++ +

+

+++++++ +
+

++
+++++ +

+ +
+
+++++ +

+
+

++++++ +
+ +

+
+++++

++
+

++++++
++

+

++++++
+

+

+
++++++

++

+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++

+

++++++

++

+
++++++

+

+
+

++++++

+

+
+

++++++

+

+
+

++++++

+

+
+

++++++

+

+

+

++++++

+

+

+

++++++

+

+
+

++++++

+

+
+

++++++

+

+
+

+
+++++

++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++
+

++++++
++

+

++++++
++
+

++++++
++

+

++++++
++

+

++++++
++

+

++++++
++
+

++++++
++

+

++++++
++
+

++++++
++

+

++++++
++
+

+ +++++
++
+++++++
++
+

++++++
++
+++++++
++
+++++++
++
+++++++
++
+++++++
+

+

+
++++++

++
+++++++
++
+++++++
++
++

+++
+

+
+

+
+

+

+++

+
+

+
++

+
+++

+
+

+++

+

+

+

+++ +
++

+

+
+
+
++

++
+ +

+

++

+

+

+

+

+

+

+
+
+
+

+ ++
+

+

+++

+
+

+++

+

+
++

+

+
++
+

+
+
++
+

+
+
++

+ ++++
+

+++ +++++
+

+++
+

+++
+

+
+++

+

+++
++

+++
+

++++
+

+
++

+
++++

+
+
++

+
++++

+
+
++

+
++
+++

+++ +
++++

+
+++

+

++++
+

+++ +
+
++
+

+

+
+
+

+

+

+++
+

++
+ +

++
+

+

+
+

+

+
+

+
+
++

+

+

+
+

+

+++
+

+

+
+
+

+

+
+
+
+

+

+

+

+ +++
+
++

+
++

+

+
+
+
+

+

+
++

+
+
+
+
+

+

+
+

+

+

+
++
++

+
+
+

+

++++
+

+++

+

++++
+

+++ +
++++

+

+++ +
+++
++

++
+

+
+++
++

+++ +
++++

+
+++

+

++++
+

+++
+

+++
++

+++
+

++++
+

+++ +
++++

+
+++

+
++
+++

+
+
+

+

+++
++

+
+
+ +

+++
++

+++

+

++
++

+

+++ +
++
++

+
+
+
+

+

++++
+

+++
+

++
+++

+
++

+
++
++

+
+++

+

+++
++

+
+
+

+

+++
++

+++

+
+
+
+++

+
++

+

+
+
+

+

+ +++ ++
+
+
++

+++ +
++
+
++

+
++ +

+
+
+
+

+
++
+ +

++
+++

+++ +
++
+
+

+ ++
+

+
++
+
+

+
+
++ ++

+
+
++

+
++

++

+
+

+
+

+
+
+ +

++++
+

+++
+

+++
++

+++ +
+++
++

+++
+

++
++

+
+++

+

+++
++

+++
+

+
+
++

+
+++

+
++++

+
+++

+
+
+++

+
+++

+

++++
+

+++
+

+++
++

+++

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

0.0 0.2 0.4 0.6 0.8

−0.4

−0.2

0.0

0.2

0.4
err ≈ alg + class + inst + alg × class

Fitted

Re
sid

ua
ls

++++ +
+++

+

+
+

++ +
++++

++++ +
+

+
+

+

+
+

+++++
+

+

+
+

++ +
+

+
++

++++ +
+++

+

+
+

++ +
+++

+

++++ +
++

+
+

++++ +
+

+ +

+

++++ +
++

+

+

++++ + +
+

+
+

+++++ +
+ +

+
+++++ +

+++
+++++ +

+ +
+

++ +++ +
+ +

+
+ ++++ +

+ +
+

+++++ +
+ +

+
+++ ++ +

+ +
+

+ ++++ +
++

+
+++++ +

+
+

+
+++++++ +

+ + ++++++
+

+ +++++++
+

+ + ++++++ +
+ +++ ++++

+
+ + ++++++ +
++++++++ +
+ +++ ++++ +
+ + ++++++ +

+ + ++++++
+

+
+++++

++

+

+

+++++

+++

+

+++++

+

+++

+++++

+++

+

+++++

++++

+++++

++++

+++++

++++

+++++

+++

+

+++++

++++

+++++

++++

++
+

+
+

+
++ +

+++
++

+
++ +

+++
++

+
++ +

++++
+

+
+

+
+

++
+

+
+

+

+
+ +

++
+++

+
++ +

++++
+

+
++ +

++++
+

+
++ +

++++
+

+
++ +

++++
+

+
++ +++++++ +

++
++++++ +

+
++++

+
+ ++++ +++++

+
+

+ + +++++ ++
+ + ++++++ +
+

+++++++ +
++

++++++ +
+

+++++++ +
+ + ++++++ +
+ +

++++

+

++ ++
+++++

++ ++
++++

+

+

+

++
++++

+

++ ++
++++

+

++ +

+

++++

+

++ ++
+++++

++ ++
++++

+

++ ++
+++++

++ ++
++++

+

+

+

++
+++ + ++++++++ + ++++++++ ++ ++++++ ++ +++++++ ++ +++++
+

++++ ++++++ +++ +++++++ ++ ++++
+++ + ++++++++ + +++

++++++++ ++
+

++++++ ++
+

+++++ +++ ++++++++ +
+

++++++ ++ +++++++++
+

++++ ++ ++
+

++++++++
+

+++++ +
+ + +
+++++ +++ + +++++

++++

+++++
++++

+++++
++++

+++++
++++

+++++
++++

+++++
++++

+++++
++++

+++++
++

+
+

+++++
++

+
+

+++++
++++

++ +++ +
+

+
+ ++ ++ ++
+ ++ ++++ + +
+ +++++ ++ +
+ ++ ++++ + +++++ ++ ++ +
+

+
+ +++ ++ +
+ +++++ ++ +
+

+
+ ++++

++
+

+++ ++++ +
+

+
+ +++++++ +++++++++++++++++++++++++ +++++++++ ++++ +++++++ +++++++++ ++ +++++++++++++++++++++++++++

+
++

+

++
+

++

+++
+

+
+

++
+

+++
+

++
+

++

+
++

+

++
+

++

+++
+

++
++ +

+++
+

+
+++

+

+++
+

++
+ + +

++++
+

+++ +

+++
+

+
+

++
+

+
++

+

++
+

++

++++
++

+
+

+++++
++

+
+

+++++
++

+
+

+++++
++

+
+

+++++
++

+
+

++++ +
++ +

+

++++ +
++

+
+

+++++
++

+
+

+
++++

++ +
+

+++++
++

+
+

+

+++

+

+

+

+
+

+

+++

+

+

+
+

+

+
++++ +

+

+
+

+

++++ +

+

+
+

+
+

+++ +

+

+
+

+
+

+++ +

+

+
+

+

+++

+

+

+

+
+

+

+++

+

+

+
+

+
+

+++

+

+

+
+

+

+
++++ +

+

+
+

+

++++ +
+

+
+

+
++++ +

+

+

+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+

+

+
++++ +

+

+

+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+

+

+
++++ +

+

+
+

+
++++ +

+

+

+

+
++++ +

+

+

+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+

+

+
++++ +

+

+
+

+ ++++ +
+

+

+

+
++++ +

+

+
+

+

++++ +
+

+
+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+
+

+
++++ +

+

+

+

+
++++ +

+

+

+

+
++++ +

+

+
+

+
++++ +

+

+
+

+

+

+

++

+
+

++ +
++++

+
+

+
+ +

+

+

++

+
+

++ +
+

+

++

+
+

++ +
+

+
++

+
+

+
+ +

+
+

++

+
+

++ +
++

++

+
+

+
+ +

+
+

++

+
+

+
+

+
+

+

++

+
+

+
+

+
++ ++

+
+

+
+

+++++
+

+

+
+ +

++++
+

+

+
+

+
++++

+

+

+
+ +

+ +++
+

+

+
+ +

+++++

+

+
+

+
+ ++++

+

+
+

+
+ +++

+

+

+
+

+
+ +++ +

+

+
+

+
++++

+

+

+
+ +

+ +++ +

+

+
+

+ + +++
+

+

+
+ +

+ +++
+

+

+
+ +

+ +++
+

+

+
+ +

+ +++
+

+

+
+ +

+
+

+ +
+

+

+
+

+
+ +++

+
+

+
+

+
+ +++

+
+

+
+

+
++++

+
+

+
+

+
+ ++ + +

+

+
+

+
+ +++

+

+

+
+ + + +

++ +

+

+

+

+ + +
++ +

+

+

+

+ + +
++ +

+

+

+

+
+ +

++ +

+

+

+

+
+ +

++ +

+

+

+

++ +
++ +

+

+

+

+
+ +

++ +

+

+

+

+
+ +

++ +

+

+

+

+
+ +

++ +

+

+

+

+ + +
++ +

+

+

+

++ +
++

++
+

+
+

+ +
++

+
+

+
+

+

+ +
++

++
+

+

+

+ +
++

+

+
+

+
+

+ +
++

+

+
+

+
+

+ +
++

+
+ +

+

+

+ +
++

+

+
+

+
+

+ +
++

+++
+

+

+ +
++

++
+

+

+

+ +
++

+
++

+

+

+ +
++

+
+

+
+

+ ++++
+

+

+
+

++ +++
+

+

+
+

+
+

+
++

+
+

+
+

++ +
++

+
+

+
+

+++++
+

+

++
+

+ +++
+

+

+
+

++ +
++

+
+

+
+

++ +
++

+
+

+
+

+++
+ +

+
+

+
+

+++ ++ +
+

+++
++ ++ +

+
+++

++ ++ ++

++
+++ ++ +

+
++

+++ ++ +
+

+++
++ ++ ++

+
+

+++ ++ ++
++

+
++ ++ ++

++
+++ ++ +

+
++

++
+

++ ++
++

+
+++++

+
++

+ +++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++

+++++
+

+++
+

+ +++
+

++

+
+

+
++++

++

+
+++

+++

++

+
+++ +++

++

+
+

+ +
+

++

++

+ +
+ + +++

++

+
+

+ + ++
+

+
+

+
+

+ +++
+

++
+

+

+ + ++
+

++

+
+++ ++

+

++
+

+
++ ++
+

++
+

+
++ ++

+
++

++
++++

+

++

+
+++ ++
+

++

++++++
+

+
+

+

+
++ ++

+

+
+

+
+++ ++
+

+
+

++
++ +++

++

+
+++ ++
+

++

+
+++ ++
+

++

++++++
+

+++
+

++ ++
+

++
+

+
++ ++

+
+++

+
++ ++

+
+++

+
++ ++

+
+++

+++++

+
+++

+
++++

+
+++

+
++++

+
++
+

+++ ++
+

+++
+

++ ++
+

+++
++ + ++
+

+
+

+
+

++ ++
+++

+

++ + ++
+++

+

++ + ++
+

+++
+

+++ +
+++

+

+
+++ +

+
++

+

+
+++ ++

++
+

++ + ++

+
++

+

+
++ ++

+
+++

+
+++ +

+
++
+++++++

+++

+++++

+
+

+

+

+++++

+
+++

+++++

+
++

+ +++++

+
+++

+++++

+

+

++

+++++

+

+

+

+

+++++

+
+++

+++++

+

+

+

+

+++++

+
++

+

++++++
++

+

+++++

+

++

+

+++++

+
+++

+++++

+
+

+

+

+++++

+
+

+

+

+++++

+
+++

+++++

+
+

+

+

+++++

+
+

+

+

+++++

+

+

++

++++++
++

++++++
+

+

+

+
+++++

+
+++

+++++
+

+++
+++++

+
+++

+++++

+
++

+
+++++

+
++

+
+++++

+
+++

+++++
+

+

+

+
+++++

+
+++

+++++
+

++

+
+++++

+
+

+++++++
+ +

+++++++
+

+
+++++++
+ +

+++++++
+

+
+++++++
+

+
+++++++
+ +

+++++++
+ +

++++++
+

+ +
+++++++
+ +

+++++++
+

+
+++++++

+ +
++++++

+
+ +

+++++++
+ +

++++++
+

+ +
++++++

+
+ +

++++++
+

+ +
+++++++

+ +
++++++

+
+ +

++++++
+

+
+

++++++
+

+ +
+++++

++
+ +

++++++
+

+ +
+++++++ + +
++++++

+
+ +

+++++++ + +
++++++

+
+ +

+++++
++

+ +
++++++

+
+ +

++++++
+

+ +
++++++

+
+ +

++++++
+

+ +
+++++

++
+ +

++++++
+

+ +
++++++

+
+ +

+
+

+++
++

+ +
++++++

+
+ +

++++++
+

+ +
++++++

+
+ +

++++++
+

+ +
++

+++++
+ +

+
+

++
+

++
+ +

+
++++++

+ +
++

++
++

+
+ +

+++
++++

+ +
+

++
++

++
+ +

++++
+++

+ +
+

++++++
+ +

+
++

+++
+

+ +
++

+
++

++
+ +

++
+

+++
+ +

+
++

+
+

+++ +
+

+
+++

+
++ +

+
+

+++
+

++ +
+

++
+++++ +

+
+

+
+

++++ +
+

+
++++++ +

+
++

+++++ +
+

+
+++

+
++ +

+
+

+++
+

++ +
+

++
+++++ +

+
++

+++++ +
+

+
++++++ +

+
+

++++++ +
+ +++++++ +
+

++
+++++ +

+

+++++++ +
+

++
+++++ +

+ +
+

+++++ +
+

+
++++++ +

+ +
+

+++++
+ +

+
++++++

+ +

+

++++++
+

+

+
++++++

+ +

+

++++++
+ +

+
++++++

+ +
+

++++++
+ +

+
++++++

+ +
+

++++++
+ +

+
++++++

+ +

+

++++++

+ +

+
++++++

+

+
+

++++++

+

+
+

++++++

+

+
+

++++++

+

+
+

++++++

+

+

+

++++++

+

+

+

++++++

+

+
+

++++++

+

+
+

++++++

+

+
+

+
+++++

+ +
+

++++++
+ +

+
++++++

+ +
+

++++++
+ +

+
++++++

+ +
+

++++++
+ +

+
++++++

+ +
+

++++++
+ +

+
++++++

+ +
+

++++++
+ +

+
++++++

+ +

+

++++++
+ +

+
++++++

+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+
++++++

+ +

+

++++++
+ +

+
++++++

+ +

+

++++++
+ +

+
++++++

+ +
+++++++

+ +
+

++++++
+ +

+++++++
+ +

+++++++
+ +

+++++++
+ +

+++++++
+

+

+
++++++

+ +
+++++++

+ +
+++++++

+ +
++

+++
+

+
+

+
+

+

+++

+
+

+
++

+
+++

+
+

+++

+

+

+

++++
++

+

+
+

+
++

++
++

+

++

+

+

+

+

+

+

+
+

+
+

+++
+

+

+++

+
+

+++

+

+
++

+

+
++

+
+

+
++

+
+

+
++

+++++
+

++ +++ +++
+

+++
+

+++
+

+
++ +

+

+++
++

+++
+

++++
+

+
++

+
+++ ++

+
++

+
+++ ++

+
++

+
+ ++++

++++
++++

+
+++

+

++++
+

++++
+

++
+

+

+
+

+

+

+

+++
+

++
++

++
+

+

+
+

+

+
+

+
+

++
+

+

+
+

+

+++
+

+

+
+

+

+

+
+

+
+

+

+

+

++++
+

++

+
++

+

+
+

+
+

+

+
++

+
+

+
+

+

+

+
+

+

+

+
++

++

+
+

+

+

++++
+

+ ++

+

+ +++
+

++++
+ +++

+

+ ++
+

+ ++
++

++
+

+
+ ++

++
++++

+++ + +
+++

+

++++
+

+++
+

+ ++ + +
+ +
+

+
++++

+

++ +
+

+++ + +
+++

+
+ ++ ++
+

+
+

+

+++ ++
+

+
++

+++ ++
++

+

+

+ +++
+

++++
+ +++

+
+

+
+

+

++++
+

+++
+

++
+ ++

+
++

+
+ ++ ++
+++

+

+++ ++
+

+
+

+

+++ ++
++

+

+
+

+
+++

+
++

+

+
+

+

+

++++ ++
+

+
++

+++ +
++

+
++

+
+++

+
+

+
+

+
++

++
++

+++
+++ +

++
+

+
+++

+
+

++
+

+
+

+
++ ++

+
+

++

+
++

++

+
+

+
+

+
+

++
+ +++

+
+++

+
+++ ++

+ +
++

+++ ++
+++

+
+ +++

+
+ ++

+

+++ ++
+++

+

+
+

+ ++
+ +
+

+
++++

+
+++

+
+

++ ++
+++

+

++++
+

+ ++
+

+++
++

+++

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

++++ +
+

+
+

+

−4 −2 0 2 4

−0.4

−0.2

0.0

0.2

0.4
Normal Q−Q Plot

Sa
m

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

Figure 4.17.: Diagnostic plots for checking the assumptions of parametric ANOVA. Despite an
R2 = 0.9583 in the linear model, the assumptions of normality are not met, as mainly seen from
the strong non-normal tails in the plot on the right.

We consider, therefore, non-parametric analyses. In this case, we simplify the analysis
studying separately the results on each instance class. This simplification also avoids
biases due to the different number of instances available on each class. In Figure 4.19,
we report the simultaneous confidence intervals as obtained by Tukey’s HSD method
(Equation 3.15, page 64), by CSP synchronised permutations (see Algorithm 3.6, page
68), and by the rank test of Friedman (Equation 3.19, page 67). In addition to this,
we report in Figure 4.20 the results of the graphical representation of Hsu (1996) which
permits to gain statistical power in the comparisons by allowing the confidence intervals
to assume different widths (this may be seen as a workaround for the violation of the
assumption of homoschedasticity of the results among the algorithms).

We first discuss the relationships among the different statistical tests, since the results
are sometimes contradicting. Then, in the next paragraph, we discuss the conclusions
for the comparison of the algorithms.

The first observation is that the three test methodologies produce in some cases a
different inference. A significant difference arises on the class of the Flat graphs where
Nov+ receives a much better evaluation with permutation and parametric tests than with
the rank-based test. This result is due to the fact that with the rank transformation the
distance between the colourings found by algorithms is lost (on graph flat1000_60_0,

142 Graph Colouring

2.0 2.5 3.0 3.5 4.0 4.5

−6000

−5950

−5900

−5850
lo

g−
Li

ke
lih

oo
d

λ

+++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++
+

+ +
+

+++++ +
+ +
+

+++++ ++ +++++++ ++ +
+

+++++ ++ +
++++++ ++ +
+

+++++ ++ +
+

+++++ +
+ +
++++++ ++ ++

+++++ +
+ +
+ +++++++ +++++++++ +

++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +++++++++ +
++++++++ +
++++++ +++++++++ +++

+
+++++ +++++++++ +++

+
+++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++++ +++++ ++ +++++++ ++ +++++++ ++ +++++++ ++

+
++++++ +
+

+++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ ++ +++++++ +++++++++ +
++++

+
+++ +++++++
+

+ +++++++++ +++++++++ +
++++++++ +++++++++ +
++++++++ +++++++++ +++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++++ +++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ ++ +++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +

+
+++++++ +++++++++ +++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++

+
++++++ ++
+
++++++ +++++++++ ++ +++++++ ++ +++++++
++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ ++ +++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++

+
++
+

+
+
+
+++++

+
+ +++

++++
+

+
+++++++

+
+

+++++++
+

+
+++++++

+
+ +++

++++
+

+
+
++++++++ +++
++++

+
+ +++

++
++
+

+
++++

+++++ ++ ++++++
+ ++ +
+++++
+ ++ +
+++++
+ ++ +
+++++
+ ++ +
+++++
+ ++ +
+

++++
+ ++ ++++++
+ ++ +
+

++++
+ ++ +
+++++
+ ++ +
+++++++++

+
++++++++ +++++++++

+

++++++++
+

++++++++
+

++++++++
+

++++++++
+

++++++++
+

++++++++ +++++++++
+

++++++++ +++++++++

+

++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +
+

+

++

++
+ ++++++

++

+ +++

+

++

++

+ +++
+

++

++

+ +++
+

++

++

+ ++++
++

++

+ ++++++

++

+ +++
+

++

++

+ +++

+

++

++

+ ++++++

++

+ +++++++

+
+ +++++++

+

+ +++++++

+
+ +++++++

+
+ +++++++

+
+ +++++++

+
+ +++++++

+

+ +++++++

+
+ +++++++

+

+ +++++++

+

+ +++++++
+

+ +++++++
+

+ +++++++
+

+ ++
+++++
+

+ +++++++
+

+ +++++++
+

+ +++++++
+

+ +++++++
+

+ +++++++
+

+ +++++++
+

+ ++++++++ +

+

+++++++ +
+

+++++++ +
+

+++++++ +
+

+++++++ +
+

+++++++ +
+

+++++++ +
+

+++++++ +
+

+++++++ +

+

+++++++ +

+

+ ++++
++ + ++
++++
++ + +

+
++++
++ + +

+
++++
+

+ + ++
++++
+

+ + ++
++++
++ + +

+

++++
+

+ + ++
++++
++ + ++
++++
++ + +

+
++++
++ + +

+
+++++
+

+ +++++++
+

+ +++++++
+

+ +++++++
+

+ +
++++++

+
+ +++++++

+
+ +++++++

+
+ +++++++

+
+ +
++++++

+
+ +++++++

+
+ +
++++++ + ++++++++ + ++++++++
+

++
+

+++++ + ++
+

+++++ + ++++++++
+ +

+
+

+++++
+ ++++++++
+

++
+

+++++ + ++
+

+++++
+ ++
+

+++++ + ++
+

+++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ +
++

+
+++++ +

++
+

+++++ +

++
+

+++++ +

++
+

+++++ +

++
++++++ +

++
+

+++++ +

++
+

+++++ +
+++

+++++ +
++

+
+++++

+
+++

+++++ +
+++

+++++
+ ++
++++++

+
++

+
+++++ +

++
++++++ +
+++

+++++ +
+++

+++++ +
++++++++ +

++
+

+++++ +
++

+
+++++ +

++
+ +++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++

++++++ + ++++++++ + ++++++++
+

++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++
+ ++++++++ + ++++++++ + ++++++++ + ++
++++++ + +++

+++++ + ++
++++++ + +++

+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++
+++++ + +++ +++++

+
+
+++++++
+++++++++
+

+
+++++++
+++++++++
+

+
+++++++
+

+
+++++++
+++++++++
++++++++

++++++++++
+++++++++

+
+
+++++++
++++++++

++++++++++
++++++++

+++++++++
+++++++++
++++++++++

++++++++
+++++++++
++
+
++++++

++++++++
++++++++++
++++++++++++++++++
++++++++++++++++++
++++++++

++++++++++
+++++++++
+++++++++

+++++++++
++++++++

++++++++++
+++++++++
+++++

+++
++++++++++
+++++++++
+++++++++
+++++++++
++++++++++++

+
+
++
+
+++++++++++++++
++
++++++++
+++++++++
++
++++++++
+++++++++++++++++
++++++++
+
++
+++++++++++
+

+++++
++++

+++++
+++

+
+++++

+++
+

++++
+++++

+++
+
+++++

+++++++++
++++

+++++
+++++

+++
+

+++++
+++

+
++++++++

+
++++

+++++
+++++++++
+++++++++
+
++++++++

++++
+++++

+
++++++++

++++
+++++

+
+

++
+++++

+++++++++
+
+

+
++++++++++++++++++++++++

+
+++
++++++++++++++++++++++++++++++++++++++ ++ +++++++

++++++++++++++++++
+++++++++
+++++++++
+++++++++
++++++++

+
+++++++++
+++++++++
+++++++++
+++++++ +++ ++++++ +++ +

+++++ +++ ++++++ +++ ++++++ +++ +
+++++ +++

+
+++++ +++ ++++++ +++ ++++++ +++ +
+++++ +++ +

+++++ +++
+

+++++ +++ ++++++ +++ ++++++ +++ ++++++ +++
++++++ +++
++++++ +++
+

+++++ +++
++++++ +++ ++++++ +++
++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ +

+++++ +++ ++++++ +++ +
+++++ +++ ++++++ +++

+ +++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ +
+++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++
+

+ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ +
+++++ +++ +
+++++ +++ ++++++ +++ ++++++ +++ +
+++++ +++ +
+++++ +++ +
+++++ +++ ++++++ +++ + +++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +
++++++++ +++++++++ +++++++++ +++++++++ +

−0.35 −0.25 −0.15

−0.4

−0.2

0.0

0.2

0.4
(err3 − 1) 3 ≈ al + cl + inst + al × cl

Fitted

Re
sid

ua
ls

++++ ++++++ +++ +++++++++ ++ ++++ +++ + ++ +
++ +++ ++ +++++++ ++++++ +++ +++++++++ +++ ++++++ ++ ++
+++++ +++ +
+ ++++ + +
+ +

+
++++ + +

+ +
+

++++ + ++++ ++++ + ++ +
+

++ ++ + ++ +
+ + +++ + ++ +
+

++++ + ++ +
+

+++ + + +
+ +

+ + +++ + ++++
++++ + +

+ +
+ +++++++ ++ + ++++++ +

+ +++++++ +
+ + ++++++ +
+ +++ ++++ +

+ + +++ ++ + +
+ ++++ +++ +
+ + ++ ++++ ++ + +++ +++ +

+ + +++ +++ +
+ ++++ ++++ + ++++ ++++

+
++++ ++ +++ ++++ ++++

+
++++ +++++ ++++ +++++ ++++ +++++ ++++ +++++ ++++ +++++ ++++ +++++ ++ ++ ++ ++ ++++ +++ ++ ++++ +++ ++ +++++ ++ +

+
+++ ++ ++

+
+ +++ ++++ ++ +++++ ++ ++ +++++ ++ ++ +++++ ++ ++ +++++ ++ ++ +++++++ +++ ++++++ ++

++++
+

+ ++++ +++++
+

++ + +++++ +++ + ++++++ ++
+++++++ +++ ++++++ ++
+++++++ ++ + ++++++ ++ + ++++ +++++ ++++ +++++ ++++ ++ +++ ++++ +++++ ++++ ++++ +++++ +++++ ++++ +++++ ++++ +++++ ++++ +++++ ++++ ++ ++++++ + ++ ++++++ + ++ ++++++ ++ + +++++ ++ ++ +++++ ++ ++ ++++ ++++ + +++++ +++ + ++++++ ++ + ++++++ + ++ ++++++ + +++ ++++++++ ++ +

++++++ ++ ++++++ +++ +++++++++ +
++++++ ++ +++++++++ +++++ ++ ++ +++++++++

+
+++++ +++ ++++++ +++ +++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++

+
+++++ + ++

+
+++++ + ++++++++ +++ ++ ++++ +++ ++ ++++ + ++ ++++++ + ++ ++ ++++ ++++++ +++ +++ ++ ++++ +++ ++++++ +++ ++ ++++ +++ +++ +++ + ++ ++ +++++++ ++++++++++++++++++ +++++++ ++ +++++++ ++++ +++++++ +++++++++ ++ +++++++ ++++++++++++++++++++

+
++

+

+
+

+
+++++
+

+ +++
++++

+
+

++ ++ +++
+

+
++ +++++

+
+

+++ ++++
+

+ +++
++++

+
+

+
+ + +

+++ +++ ++ ++++
+

+ +++
+ +

++
+

+
++ + + +++ +

+ + ++ +++++
+ + ++

+++++
+ + ++

+++++
+ + ++

++++ +
+ + ++

++++ +
+ + ++

+
+++ +

+ + ++ +++++
+ + ++

+
++++

+ + ++
+++++

+ + ++
++++ ++ ++ +

+
+++ ++++ +++++++ ++ +

+

+++++ ++ +
+

+++++ ++ +
+

+++++ ++ +
+

+++ ++ ++ +
+

+++++++ +
+

+++++++ +++++++ ++ +
+

++++++ +++++++++ ++ ++++++++ + ++++++++ + +++++++ ++ +++++++ ++ ++++++++ + +++++++ ++++++++++ + ++++++++ + +++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ +++++++ ++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ +++ ++++++ + +

+

++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ +++ ++++++ +++ ++++++ + ++ ++++++ + ++
+

+

++

+ +
+++ ++ ++

+ +

+++ +

+

++

+ +

+++ +
+

++

+ +

+++ +
+

++

+ +

+++ ++
++

+ +

+++ ++ ++

+ +

+++ +
+

++

+ +

++ + +

+

++

+ +

++ + ++ ++

+ +

++ +++++ +

+
+++ +++ + +

+

+++ ++++ +

+
+++ ++++ +

+
+++ +++++

+
++ + + ++++

+
++ + ++++ +

+

++ + + ++++

+
++ + ++++ +

+

+++ + +++ +

+

++ ++ +++ +
+

+++ + +++ +
+

+++ + +++ +
+

+++
+ +++ +

+

+++ + ++ + +
+

+++ + +++ +
+

++ + + +++ +
+

+++ ++++ +
+

++ + + ++ + +
+

++ + + +++ +
+

+++ + ++++ +
+

+

+ + ++++ +
+

+
+ + ++++ ++

+
+ + ++++ +
+

+
+ + ++++ +
+

+
+ + ++++ +

+
+

+ + ++++ +
+

+
+ + ++++ +
+

+
+ + ++++ +
+

+

+ + ++++ +
+

+

++ +++
++++ +

+ +++
+ +

++
+

+ +++
++++
+

+ +++
+

+ ++ +
+ +++

+
+ ++ +

+ +++
++ ++

+

+ +++
+

+ ++ +
+ +++

++++ +
+ +++

++++
+

+ +++
++++
+

+ +++ +
+

++ +++++ +
+

++ ++ +++ +
+

++ ++ +++ + +
++

++ +++ +
+

++ +++++ +
+

+ + ++ +++ +
+

++ ++ +++ +
+

++
++ +++ +

+
++ ++++ + +

+
++

+++++++++ + ++++++++ + +++++
+

++
+

++++++++
+

++++++++ + +++++
++

+
+

+++++
++++ +++++
+

++
+

++++++++
+

+ ++++
+++

+
++ ++++++

+
++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ + ++ ++++++ ++++++ +

++
+

++ ++++

++
+

++++++

++
+

++++++

++
+

+++ +++

++
+++++++

++
+

+++++ +

++
+

+++++ +
+++

+++++ +
++

+
+++++

+
+++

+++++ +
+++

+++++
+ ++

++++++
+

++
+

+++++ +
++

++++++ +
+ ++

++ +++ +
+ +

+
+++++ +

+++++++++

++
+

+++++ +
++

+
+++++ +

++
++++++ +++ ++ ++ ++ ++++ + ++ +++++ ++ ++ +++++ ++ ++ ++ +++ + ++++++++ + + ++++ +++ + + ++++ +++

++++ ++ +++ ++ ++ ++ +++ +++ + ++ +
+ +++ ++ ++ + +++ ++ + ++ + +++ ++ + ++ +++ ++ ++++ + +++ + ++++ ++++ + ++++

++++ ++ + ++++++ + ++ ++ +++ ++ ++++ +++
+ ++++++++ + +++++++ +

+++++++++ + +++++++++
++++++++ + +++++++ + + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ + ++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++ + +++++
+

+
+++++++
+++++++++
+

+
+++++++
+++++++++
+

+
+++++++
+

+
+++++++
+++++++++
++++++++

++++++++++
+++++++++

+
+

+++++++
+ +++++++

++ ++++++++
+ +++++++

++ +++++++
++ +++++++
++ ++++++++

+ +++++++
++ +++++++
++

+
++++++

++ ++++++
+++ +++++++

++ ++++++++ + +++++++
++ ++++++++ + +++++++
++ ++++++
+++ +++++++

++ +++++++
++ +++++++
++ +++++++
++ ++++++
+++ +++++++

++ +++++++
++ ++ +

+++
+++ +++++++

++ +++++++
++ +++++++
++ +++++++
++ +++ ++++++ +

+
+

++
+

+++ ++ +++++++ +++
++

++ ++ ++++
+++++ ++ ++

++
+++ +++++
++++ ++ +++++++ ++ ++

+++ ++ +++
+

++
+++ +++ +

+++ + +
+++ +

+
+++ +

++ +++
+ ++ +

++ +++
+ ++ +

+++ +++++ +
++ +

+
++++ +

++ ++++++ +
+++ +++++ +
++ +++

+ ++ +
++ +++

+ ++ +
+++ +++++ +

+++ +++++ +
++ ++++++ +
++ ++++++ +
+

+++++++ +
+++ +++++ +

+
+++++++ +

+++ +++++ +
+

+
+ +++++ +

++ ++++++ +
+

+
+

++++++ ++ +++++++ + ++++++++
+

+ +++++++ + ++++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ + ++++++++ ++ +++++++++ +++++++++ +++++++++ +++++++++ ++++++++
++++++++++ +++++++++ +++++++++ +++++++++ +++++++ +

++++++++ ++ +++++++ +
++++++++ +
++++++++ +
++++++++ +
++++++++
+

+ +++++++ +
++++++++ +
++++++++ +
++++++ ++ +++++++ +++++

++++ +++++++++ ++++ +++++ +++ ++
+++ ++++ +

+
++++ ++++ +++++ +++++ +++ ++++ ++
++++ +++++
+++++ ++ +

+
+ ++++ +++++++

+ + ++ +++++ +
+ +++ +++++ + + ++ ++++ ++ + ++ ++++ ++ + ++ +
+ ++++ +++

++++++ +++ ++++++ +++
+++++ +++ + +++++ +++ ++ ++++ +++ ++ ++++ +++ ++ ++++ +++ ++ ++++ +++ ++

++++ +++++ ++++ +++++
++++ +++++ ++++ ++++

+++++++ +++ + +++++++ ++ +++ ++ ++ ++ ++ ++ ++ +++ ++ ++ +++ ++++ ++ ++++ +++++
+++ ++ ++ ++ + ++ ++++++++ + ++++ ++ +++ +

+ ++ +
+ + +++ +++ +
+ + ++ ++++ ++ +++++ +++++++ ++ ++++ + +++ +++++++++ ++ + +

+ + ++++ ++ ++ +++ + +++ +
+ + ++ ++++ ++ ++++ ++++ +++++ ++++ +++++

++++ +++++
++++ +++++ ++++ +++++ ++++ +++++
++++ +++++
++++ +++++
++++ +++++ ++++ +++++ + +++ + +++++++ +++ ++ ++++ ++ +++++ +++ ++ ++++++ ++ ++++++ + +++ ++ +++++ + +++++ ++ ++ ++++ ++++++ ++++++ ++ ++++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++
+++++++ ++ +++++++ ++ +++++++ ++ +++++++ ++

−4 −2 0 2 4

−0.4

−0.2

0.0

0.2

0.4
Normal Q−Q Plot

Sa
m

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

+++
+

++++

+
+

+

+
+

+++++

+++
+

++

+

+

+
+

+

+
+

+

++

+

+
+

+

+
+

++

+

++

+++
+

++++

+
+

+

+
+

++++

+
+++

+

+++

+

+

+++
+

++

++

+
+++

+

+++

+

+

+++
+

+
+

+

+

+

++++
+

+

+

+

+

++++ +
+

++

+

++++
+

+

+
+

+

++
++

+
+

+
+

+

+
+++

+
+

+

+

+

++++
+

+

+

+

+

+++ + +

+

+
+

+

+
+++
+

+

++

+

++++
+

+

+

+

+

++++++
+

+

+
+

+++++
+

+

+
++++++

+

+

+
+

+++++
+

+

+
+++

++++

+

+
+

+++
++ +

+

+
++++

+++
+

+
+ +

+
+++

+

+

+
+

+
++

+++

+

+
+

+
++

+++

+

+

+++
+

+
++

+
+

+++
+

+
+++

+

+++
+

+

+
+++

+++
+

+
+++

+

+++
+

+
++++

+++
+

+
++++

+++
+

+
++++

+++
+

+
+++

+

+++
+

+
++++

+++
+

+
++++ ++

+

+

+

+

++ +
+++

++

+

++ +
+++

++

+

++ +
++++

+

+

+

+

+
++

+

+

+

+

+

+ +
++

+++

+

++ +
++++

+

+

++ +
++++

+

+

++ +
++++

+

+

++ +
++++

+

+

++ ++++++
+

+

++

+++++
+

+

+

+
+++

+

+
++++
+++++

+

+

+

+
+++++

++

+

+
+++++

+

+

+

+
+++++

+

+

++

+++++
+

+

+

+
+++++

+

+

+

+
+++++

+

+

+

+
+++

+
+

++++

+++
+

+

++++

+++
+

+

+

+

++

+++
+

+

++++

+++
+

+

+++

++++
+

+

++++

+++
+

+

++++

+++
+

+

++++

+++
+

+

++++

+++
+

+

+

+

+++++
+

+
+

++++
++

+
+

+
++

++++
++ +

++++
+

++
+

+
++++

+
++

+
+

+++

+

++++ +
++

+++
+++ +

++

++++
++ +

+++

+++
+

+
+

++

++++
+

+
+

+

++
+++++

+

++

+

++++++

+
+

+

+++++

+
++

+
++++++++

+

+++++
+

+
+

+++++++++

+

++++
+

+
+

+

+

++++++++

+

+++++

+

++

+

+++++
+

++

+

+++
+

+ ++++
+++

+
+ ++++
+++

+
+ ++++
+++

+
+ ++++
+++

+
+ ++++
+++

+
+ ++++
+++

+
+ ++++
+++

+
+ ++

+

+
+++

+
+ ++

+

+
+++

+
+ ++++++

++
++

+

+

+
++

++

+
+

+
+

+
++++

+

+

+
++++++

+

+

+
+

+
++++

++
++

++
+++

++

+

+

+
++++

++

+
++++++

++

+

+

+
++++

+
+

+

+

++
+++

+

+

+

+

+
+++++++

+
+++++++++++++++++

+

++++++ +
+

+++++++ ++++
+++++++

+

++++++++
+

+
+++++++

+

+++++++++
+++++++++
+

+

++

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+++

+

+

+

+

++ +

+
+

+

+

+

+

+

+
+

++

+

+

+

++

+

+
++

+

+
++

+

+

+
++

+

+

+

+
+

+

+++
+

++

+
+

+
+

++

+

+

+

+
+

+

+

++

+

+

+

+

+
+

+

++
+

+
+

+

+

+++++

+

+

+

+

+

++++

+

+

+

+

+

+
+++

+

+

+

+

+

+
++

+

+

+

+
+

+

+++

+

+
+

+
+

+

+
++

+

+

+

+

+

+
++++

+

+

+

+

+

++++

+

+

+

+

+

++++

+

+

+

+

+

+++
+

+
+

+ +

+

+++
+

+++ +++++++
+

+ +

+

+++++
+

+ +

+

+++++
+

+ +

+

+++++
+

+ +

+

+++
+

+
+

+ +

+

+++++++ +

+

+++++++ +++++++
+

+ +

+

++++++

++

+++++++

+

+ +++++++
+ + +++++++
+ + +++++++

+

+ +++++++

+

+ +++++++
+ + +++++++

++

+++++++
+ + +++++++
+ + +++++++

++

+

++++++
+

+
+

++++++
++

+

++++++
+

+
+

++++++
+

+
+

++++++
++

+

++++++
+ +

+

++++++
++

+

++++++
+

+
+

++++++
++

+
++++++

+
+

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+

+
+

++++++
+

+
+

++++++
+ +

+

++++++
+ +

+

+

+

++

+
+

++
+

+
+

++

+
+

+
++

+

+

++

+
+

+++

+

+

+
+

+
+

+++

+

+

+
+

+
+

++
+

+

+

++

+
+

+++

+
+

++

+
+

+

++

+

+

++

+
+

+

+
+

+

+

++

+
+

+
+ +

+
+

++

+
+

+
+ +++
++

+

+

+
++

+++
+

+

+

+

+
+

++++
+

+

+
++

++++
+

+

+++

+++++

+

+
+ +

+
+

+++

+

+

+
+

++++
+

+

+

+ +

+
+

++
+

+

+
+ +

++++
+

+

+

++

+
+++

+

+

+

+ ++
+

++
+

+

+
++

+
+

++
+

+

++
+

+
+

++

+

+

+

++

+ +
++

+

+

+

++

+

+

+
+

+

+

+

++

+
+

++
+

+

+

+
+

+
+

++
+

+

+

++

++++
+

+

+
+

+

+
+

+
+

+

+

+

+
+

+
+

++
+

+

+
++

+
+

+++

+

+

+

+
+

+

+++

+

+

+

+
+

+

+++
+

+

+

+

+
+

+++

+

+

+

+

+
+

+++

+

+

+

+
+

+

+++

+

+

+

+

+
+

+++

+

+

+

+

+
+

+++

+

+

+

+

+
+

+++

+

+

+

+
+

+

+++

+

+

+

+
+

+

++

+
+

+

+

+

+
+

++

+

+

+

+

+

+
+

++

+
+

+

+

+

+
+

++

+

+

+

+

+

+
+

++

+

+

+
+

+

+
+

++

+

+

+
+

+

+
+

++

+

+

+
+

+

+
+

++

+
+
+

+

+

+
+

++

+
+

+

+

+

+
+

++

+

++

+

+

+
+

++

+

+

+
+

+++++

+

+

+

+

+
+

+++

+

+

+
+

+

+

+

++

+

+

+

+

+
+

+

++

+

+

+
+

+
+++

+

+

+

+
+ +

+
+++

+

+

+

+

+
+

+

++

+

+

+

+

+
+

+

++

+

+

+
+

+
++

+
+

+

+

+

+

+
++++++

++
+ ++++++

++
+ +++++

+

++

+

++++++

++

+

++++++

++
+ +++++

+

+

+

+

+++++

+

++

+ +++++

+

++

+

++++++

++

+

+

+

+++

+

++

+

++ ++++

++

+

++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+ ++ ++++

++
+

+

++++
+

++

+

+
+

++++

++

+

+++
+++

++

+

++++++

++

+

+
++

+

++

++

++
+++++

++

+

+
++++

+

+

+

+

+
++++

+

++

+

+

++++
+

++

+

+++++

+

++

+

+
++++

+

++

+

+
++++

+

++

+

+
++++

+

++

+

+++++

+

++

+

+++++

+

+

+

+

+
+ +++

+

+

+

+

+++++

+

+

+

+

+
+++++

++

+

+++++

+

++

+

+++++

+

++

+

+++++

+

++
+

+

+

+

+

+

+

++

+

+

+

+

++
+

++
+

+

+

+

++
+

++
+

+

+

+

+

+

+

+

+
+

+++++
+

++
+

+

+

+++

+

+

+
+

+

+

+++

+

+

+

+
+++

+

+

+

++
+

+

+

+

+

+

+

++
+

++ +

++

+

+

+

+
+

+

+

+

+

+
+

+

+
++ +

+

+

+
+

+

+
++ +

+

+

+

++
+

+

+

+++

+
+

+

+
+

+

+++

+

++

+
+

+

+++

+

+

+

+
++ +

+++

++

+
+

+

+

+

+

+

++
+

+

+

+++

+

+

+

+
+++++

+
++

+

+++++

+

+

+

+

+++++

+

++
+

+++++

+

+++

+++++

+

++
+

+++++

+

+
+

+

+++++

++
+

+
+++++

+

++
+

+++++

+

++
+

+++++

+

++

+
+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

++
+

+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

+++++

+

++
+

++++
+

+

+

+

+++++
+

+
+

+

+++++
+

+

+

+

+++++
+

+
+

+

+++++
+

+

+

+

+++++
+

+

+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++

+
+

+
+

+++++
+

+
+

+

+++++
+

+

+

+

+++++
+

+
+

+

+++++

+
+

+
+

+++++
+

+
+

+

+++++

+
+

+
+

+++++

+
+

+
+

+++++

+
+

+
+

+++++
+

+
+

+

+++++

+
+

+
+

+++++

+
+

+

+

+++++

+
+

+
+

++++

+
+

+
+

+
+++++

+
+

+
+

+++++
+

+
+

+
+++++

+
+

+
+

+++++
+

+
+

+
+++++

+
+

+
+

++++

+
+

+
+

+
+++++

+
+

+
+

+++++

+
+

+
+

+++++

+
+

+
+

+++++

+
+

+
+

++++

+
+

+
+

+

+++++

+
+

+
+

+++++

+
+

+
+

+

+++

+
+

+
+

+

+++++

+
+

+
+

+++++

+
+

+
+

+++++

+
+

+
+

+++++

+
+

+
+

+

++++
+

+
+

+

+

++

+

+
+

+
+

+

+++++
+

+
+

+
+

++

++

+
+

+
+

++

+++
+

+
+

+

++

++

+
+

+
+

+
+++

++
+

+
+

+

+++++
+

+
+

+

++

+++

+
+

+
+

+

+

++

+
+

+
+

+
+

+

+++

+

+

+
+

+

+

+

++
+

+

+
+

+++

+

+
+

+

+
+

+++

+

+
+

+

+
+

+

++++
+

+

+
+

+

+

+++
+

+

+
+

+++++
+

+

+
+

+

++++
+

+

+
+

+++

+

+
+

+

+
+

+++

+

+
+

+

+
+

+

++++
+

+

+
+

+

++++
+

+

+
+

+++++
+

+

+
+

+++++
+

+

+

+
+++++

+

+

+
+

+

++++
+

+

+

+
+++++

+

+

+
+

+

++++
+

+

+

+

+

++++
+

+

+
+

+++++
+

+

+

+

+

++++
+

+
+

+

+++++
+

+
+

+
+++++

+
+

+

+

+++++
+

+
+

+
+++++

+
+

+
+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+
+++++

+
+

+

+

+++++
+

++
+

+++++
+

++
+

+++++
+

++
+

+++++
+

++
+

+++++
+

++

+

+++++
+

+++

+++++
+

++
+

+++++
+

++
+

+++++
+

++
+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
++

+++++
+

+
+

+

+++++
+

+
++

+++++
+

+
++

+++++
+

+
++

+++++
+

+
+

+

+++++
+

+
++

+++++
+

+
+

+

+++++
+

+
++

+++++
+

+
+

+

+
++++

+
+

+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+

+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

+

+++++
+

+
+

++++++
+

+++

+

++++
+

+++++
+++

+

+++
+++++

+

++ +
+

+

++
+++

+
+

+

++++
+

+++
+++++

+

+++
+

+++
++

++ +

+

++++
+

+++

+

+++

++
++

+

+

+
+

+++

+++++++

+
+

++

++++
+

+

+
+++

+

+++

+
+

+
++

+

++
+

+

+
+

++

+

++
+

+

+
+

++

+

+
+++

+
+++

+

+++

++
+++

+
+++

++

+

++

+

++++
+

+
+ +

+++++
+

++ +

+

++++
+

+
+ +

+

++++
+

+
+ +

+

++++
+

++ ++
++++

+

+
+ +

+

++++
+

+++
+

++++
+

+++

+

++++
+

++++
++++

+

+++

+

+++

+++
++

+
+

+
++++++

+

+
+

+

+
++

++
+

+
+

+

+

+

+

+

++

+
+

+

+

+

+++

+

++
+

+
+

++++ +++

++

+

++
+

+
+

+
+

+

+
+

+
+

++
+++++

+
+

++
+

+
+

+++
+

+
++

+

+

+

+

+

+
+++

+

+

+

+

+

+

+++
+

+

++

+

++
++++

+++

+

+
++++

+

+

+

+
+++++

++++
++

+

+

+
+

++
+

+
++

+

+
+++ +

+

++
+

+

+

+

+ +
+++

+

+

++

+

+

++++
+

++++
++++

+

+++

+

++++
+

+++

+

++++
+

+
++

+

++++
+

+++

+

++++
+

+++

+

++++
+

+++

+

++++
+

+
++

+

++++
+

+
++

+

++++
+

+
++

+

+
+

+

+
+

++++
+++

+
++

+
+

+

+

++
+

+

++++

+
++

+
++

++++

++
+

+

+++++

+

+
+

++
+

+
+

+++

+
+

++++

+

+
+

+
+

+++

+ ++++++
+++

+++

+

+

+++

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

++++++
+ +

+

+++++++ +

+

−4 −2 0 2 4

−0.05

0.00

0.05

0.10
Normal Q−Q Plot

Sa
m

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

Figure 4.18.: The effect of data transformations on the linear model. The first plot on the left
shows the linear model likelihood function which is maximised for a λ value close to 3 (vertical
lines show an approximate 95% confidence interval for good values of λ). The next three plots
are diagnostic plots for the model with the transformed data. The model yields R2 = 0.947 and
seems to improve both the spread of residuals and the normality of data, if the scales of plots
are maintained as in Figure 4.17. However, in a different scale (fourth plot on the right) data are
far from approximating the normal distribution.

Nov+ finds solutions with 64-65 colours while all other algorithms do not go below 87
colours; this fact has a strong influence on the average error measure). Other differences
concern the presence or not of statistical significance in the comparisons.

In general, permutation tests result less powerful than the other two methods because
the intervals are always larger. This may indicate that Algorithm 3.6 is too conservative
and, indeed, this is also the outcome of the study in the Appendix B. A further explana-
tion may also be that the assumption of homoschedasticity is violated. Since Algorithm
3.6 searches for the confidence intervals that satisfy all the comparisons, the algorithms
with highest variance bias negatively the whole analysis (we recall that homoschedas-
ticity is assumed by all three test methodologies). The representation of Figure 4.20
allows permutation tests to become the most powerful. In Appendix B, we show that,
for homoschedastic distributions, the procedure for obtaining the plots of Figure 4.20
has the same type I error rate as the other methods of Figure 4.19. Comparing the per-
mutation tests in the two representations we observe that larger confidence intervals are
due to few algorithms whose performance are not among the best. However, since both
permutation and rank-based tests are based on the same assumptions, we base the fol-
lowing final comments on the rank-based results of Figure 4.19. The choice about which
analysis procedure is more appropriate depends ultimately on the final application of
the algorithm and hence on the real context. If there was a cost assigned to each colour
then probably it would be better to rely on the inference produced by permutation tests.
Our choice for the rank-based test is due to the fact that we do not have a cost associated
to the number of colours and, typically, the interest in the graph colouring literature is
rather on which algorithm “wins” more frequently.

Conclusions for the comparison. The following conclusive statements can be made.

• There are differences in the relative order of the algorithms through the classes of
instances; therefore, it is not possible to declare one method as the only best one.

4.11 Experimental analysis on benchmark instances 143

 All−pairwise comparisons

0.40 0.45 0.50

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
DSJC.1 (5 Instances)

0.40 0.45 0.50

Permutations
DSJC.1 (5 Instances)

30 40 50 60

Ranks
DSJC.1 (5 Instances)

0.64 0.66 0.68 0.70 0.72

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
DSJC.5 (5 Instances)

0.64 0.66 0.68 0.70 0.72

Permutations
DSJC.5 (5 Instances)

20 30 40 50 60 70 80

Ranks
DSJC.5 (5 Instances)

0.70 0.71 0.72 0.73

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
DSJC.9 (4 Instances)

0.70 0.71 0.72 0.73

Permutations
DSJC.9 (4 Instances)

30 40 50 60 70

Ranks
DSJC.9 (4 Instances)

0.55 0.60 0.65 0.70

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
Flat (6 Instances)

0.55 0.60 0.65 0.70

Permutations
Flat (6 Instances)

30 40 50 60 70 80

Ranks
Flat (6 Instances)

0.35 0.40 0.45 0.50

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
Leighton (9 Instances)

0.35 0.40 0.45 0.50

Permutations
Leighton (9 Instances)

30 40 50 60 70

Ranks
Leighton (9 Instances)

0.50 0.52 0.54 0.56

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
Queens (12 Instances)

0.50 0.52 0.54 0.56

Permutations
Queens (12 Instances)

35 40 45 50 55 60

Ranks
Queens (12 Instances)

0.40 0.45 0.50 0.55

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
Wap (7 Instances)

0.40 0.45 0.50 0.55

Permutations
Wap (7 Instances)

20 40 60 80

Ranks
Wap (7 Instances)

0.0 0.1 0.2 0.3

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

ANOVA
Jac (5 Instances)

0.0 0.1 0.2 0.3

Permutations
Jac (5 Instances)

40 50 60 70 80

Ranks
Jac (5 Instances)

Figure 4.19.: Confidence intervals for the all pairwise comparisons of approximate algorithms
for the GCP. The confidence intervals for three test methodologies are given: parametric based
on average error measure (left column), permutation based on average error measure (central
column), and rank based on average rank (right column).

144 Graph Colouring

0.40 0.45 0.50 0.55

0.40

0.45

0.50

0.55

HEA

MinC
on

f

Nov
elt

y
XRLF

ILSTSN1

GLS

TSN3

DSJC.1 (5 Instances)

0.64 0.66 0.68 0.70 0.72

0.64

0.66

0.68

0.70

0.72

TSN1

MinC
on

f
GLS

TSN3

HEA
ILS

XRLF

Novelty

DSJC.5 (5 Instances)

0.70 0.71 0.72 0.73 0.74

0.70

0.71

0.72

0.73

0.74

ILS

MinC
on

f

Nov
elt

y
TSN3

TSN1

HEA

GLS

XRLF

DSJC.9 (4 Instances)

0.50 0.55 0.60 0.65 0.70

0.50

0.55

0.60

0.65

0.70

Nov
elt

y
TSN1ILS

TSN3
HEA
GLS

MinConf

XRLF

Flat (6 Instances)

0.35 0.40 0.45 0.50

0.35

0.40

0.45

0.50

GLS
TSN1

Nov
elt

y
XRLF

ILS
HEAMinConf

TSN3
Leighton (9 Instances)

0.50 0.52 0.54 0.56 0.58

0.50

0.52

0.54

0.56

0.58

ILS
TSN1

GLS
TSN3

XRLF
HEA

MinConf

Novelty

Queens (12 Instances)

0.35 0.40 0.45 0.50 0.55 0.60

0.35

0.40

0.45

0.50

0.55

0.60

MinC
on

f
HEA

Nov
elt

y
XRLF

GLS

ILSTSN1

TSN3

Wap (7 Instances)

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

HEA
TSN1

Nov
elt

y
XRLF

GLSILS
MinConf

TSN3

Jac (5 Instances)

Figure 4.20.: Confidence intervals for permutation tests in the all-pairwise comparison procedure
with the graphical representation introduced in Section 3.8, page 71. The names of the algorithms
are alternated between the x- and y-axis. The best algorithms are those whose names are close
to the origin of the graph. Statistical inference on differences is carried out by checking whether
a segment representing the minimal significant difference between two algorithms crosses the
−45◦ line. Intervals that do not entail statistical significance are represented in grey.

4.12 Further analyses 145

• On the random graphs TSN1
, ILS, and HEA are the most competitive algorithms.

On these graphs, HEA’s performance worsens with respect to the other algorithms
when density increases. TSN1

is significantly worse than HEA only on graphs of
density 0.1 while it is significantly better for density 0.9. Worth to note is that
ILS performs significantly better than TSN1

only on the density 0.1 graphs. This
better performance is the minimal requirement for these two algorithms to make
a contribution since both are constructed upon TSN1

.

• On the Flat graphs, HEA is the best algorithm, although its results on the instances
of size 1000 vary considerably (see numerical data in the Appendix C.1.4).

• On the Leighton graphs, ILS and GLS are the best algorithms and they do not differ
significantly.

• The most evident difference in performance through the classes is the one of GLS

which is the best algorithm for the WAP class and the Leighton class, while it is
worse than other algorithms in almost all the other classes.

• On the Jacobian Estimation graphs, there are 6 algorithms with almost the same
performance.

• TSVLSN is never competitive in any class of graphs; rather, it ranks always among
the worst algorithms.

• On all classes, XRLF performs poorly. It is competitive only on the Queens graphs
where it achieves the best median results, although its performance are not sig-
nificantly better than those of ILS and HEA. XRLF performs poorly also on the
random graphs DSJC.5 although, as reported in Appendix C.1.4, it solves the in-
stance DSJC.1000.5 with 86 colours which is the best result on that instance. We
put emphasis on this result because many comments in favour of this algorithm
appeared in the literature are based mainly on its performance on this instance.

We conclude with a final comparison with exhaustive search. Branch and bound (Ex-
DSATUR) on the instance DSJC1000.5 finds an initial 115-colouring but does not improve
it in the next 1102 seconds which is the time limit for that instance. All the approximate
methods in our study find, by a large margin, a better colouring. Also the incomplete
randomised backtracking method with forward checking proposed by Prestwich (2002a)
performs poorly on this instance, yielding a best result of 97 colours, which is still far
from our results.

All numerical results for the individual instances and comparisons with benchmark
results are reported in Appendix C.1.4.

4.12. Further analyses

4.12.1. On the time dependent profile

So far, we compared solution quality on a fixed time limit. Nevertheless, as described
in Section 3.8.1, page 75, a more thorough analysis of performance should take into

146 Graph Colouring

account also run time.
In Figure 4.21, we plot the median empirical attainment curves of the solution quality

over run time for some meaningful cases. In many of the other instances the profiles
are mostly overlapping and, therefore, not indicative of any significant differences in
algorithm behaviour. In the instances presented, the final colouring found by all algo-
rithms is never optimal; hence, the curves are not bounded from below and a “flat” line
indicates that the algorithm is not able to find a better solution in the available computa-
tion time. The time is normalised on the maximal time allowed for the specific instance
(see Appendix C.1.4 for the precise value of the time limit). We can draw the following
conclusions.

• In general, the chosen time limit allows algorithms to exploit their potential and
be effective. Curves tend indeed to become “flat” towards the end of the run,
indicating that further improvements in solution quality are unlikely to happen.

• HEA is an exception. Its curve does not reach a “flat” trend and the time limit ap-
pears to be too restrictive for this algorithm above all on the large random graphs.
To test this conjecture, we run HEA on instance DSJC1000.5 with the best set of pa-
rameters suggested by the authors (Galinier and Hao, 1999). We report the results
in Table 4.7. We note that in the long term HEA is able to improve considerably
the results, finding an 84-colouring. TSN1 , in contrast, is not able to go beyond
an 88-colouring for this instance even allowing the same time as HEA. These re-
sults confirmed those presented by Galinier and Hao (1999) when parameters are
properly tuned.

In our specific experimental setting we chose to run HEA with a fixed number
of 10000 iterations of the embedded Tabu Search, while in the original paper, it
was varied in relation to the actual value of k and reached 16000 iterations for the
smallest values of k. Our choice was a compromise between the need to use a large
number of iterations which allows TSN1 to solve rapidly instances if k is large and
the need to test an algorithm in which the recombination really plays an effective
role within the given time limit. Moreover, we gave preference to robustness, that
is, not to have to change parameters for each k and for each instance.

We add that a similar long time experiment on the instance DSJC1000.5 was per-
formed for ILS but results showed that it is not even able to outperform TSN1 .

• TSN1 is the best choice if the available time is small. Indeed, no other algorithm
can do better in the first 20% of the time.

• On the instance flat1000_50_0, as also on the instance flat1000_60_0 not re-
ported in Figure 4.21, the behaviour of the algorithms is anomalous. All algo-
rithms encounter difficulties to solve colourings with about 90 colours which is
much more than the chromatic number for those graphs. The only algorithm
which succeeded in all 10 runs to find a colouring with less than 56 colours is
Nov+. TSN1 reached 50 colours in one single run but in all the others it could not
go below 86 colours. In general, for these graphs, once a range of colours between
100 and 86 is passed, Nov+ as well as other algorithms proceeded very fast to less
than 60 colours. This strange behaviour was already observed by Culberson and
Luo (1996), who identify ridges of resistance in terms of the number of colours,

4.12 Further analyses 147

DSJC1000.5
k success time (sec.) tot. iterations par. iterations crossover restart

92 5 461.69 1356000 406973 19 0
91 5 731.17 2109509 753509 58 0
90 5 1240.73 3536215 1426706 71 0
89 5 1964.33 5607288 2071073 120 0
88 5 2725.87 8007345 2400057 142 0
87 5 4066.91 11935038 3927693 223 0
86 5 6428.91 18625357 6690319 342 0
85 5 8725.42 27417444 8792087 491 0
84 4 14998.58 46398132 18980688 1338 1
83 0 36000.00 116221109 69822977 4525 3.5

Table 4.7.: Detailed results for HEA when the run time on the instance DSJC1000.5 was fixed
to 10 hours. (In our experimental design, the maximal time allowed for this instance was 1102
seconds.) The number of iterations of TSN1 before applying the GPX crossover was set to 16000
while the parameter δ was set to 0.6. The algorithm was run 5 times and almost all runs pro-
duced an 84-colouring while they failed to solve the 83 case. Reported are the median time for
producing each colouring, the total number of iterations, the number of iterations required to
solve only the specific colouring, the median number of crossover recombinations, and, finally,
the number of restarts at the current best k. Results are comparable with those of the original
paper on HEA.

where the number of iterations needed by their iterated greedy algorithm to find
a feasible colouring grows exponentially as the known chromatic number of the
graph increases. This is the case for both, Uniform and Flat random graphs, al-
though Flat graphs are harder to solve. Culberson’s analysis entails that the graph
flat_1000_76 is even harder to solve, in the sense that it requires more iterations
for passing the region where the ridge of resistance arises. This is confirmed by
our experiments in which no algorithm was able to exit in the allowed time from
the region of resistance localised approximately between 101 and 90 colours. For
these graphs therefore the time limit should be reconsidered. This result, however,
is important and must be taken into account when comparing algorithms for the
chromatic number problem. Solving only the decision version of the problem at
the known chromatic number can be misleading, since this can be much easier
than trying to approximate this value by solving a series of decision problems.
For example on the instance flat_1000_50 all algorithms of our analysis found a
50-colouring if started from less than 60 colours!

• TSVLSN is quite slow. Furthermore, no evidence arises that longer running time
could make this approach competitive.

• On the instance le450_15d, we were unable to tune XRLF in order to produce a
solution within the time limit and its first result arrived after the time limit expired.

4.12.2. On the Tabu Search in the very large scale neighbourhood

The main reason for the failure of the very large scale neighbourhood to perform better
than TSN1 is the high computational cost of the neighbourhood exploration. Figure 4.22

148 Graph Colouring

Normalised time

Nu
m

be
r o

f c
ol

ou
rs

21.0

21.5

22.0

22.5

23.0

23.5

24.0
DSJC1000.1

90

95

100

105

DSJC1000.5

230

240

250

260

270

280

DSJC1000.9

13.0

13.5

14.0

14.5

15.0
DSJC500.1

50

52

54

56

58

60

DSJC500.5

130

140

150

DSJC500.9

70

80

90

100

flat1000_60_0

110

120

130

latin_square_10

0.0 0.2 0.4 0.6 0.8 1.0

16

18

20

22

le450_15d

0.0 0.2 0.4 0.6 0.8 1.0

41

42

43

44

45
wap06a

GLS
HEA
ILS

MinConf
Novelty
SAN6

TSN1
TSVLSN
XRLF

Figure 4.21.: Empirical median attainment curves for a unified representation of run time and
solution quality performance. Given are 10 representative instances. On the x-axis, times are
normalised by the maximal time allowed to solve the specific instance.

4.12 Further analyses 149

compares the behaviour of TSN1 and TSVLSN under two different perspectives: over
time and over number of iterations. It can be observed that TSVLSN remains competitive
comparing results based on iterations but each iteration with VLSN costs much more
than an iteration using only N1. Hence, the total number of iterations performed in the
same time with TSVLSN is much less than with TSN1 . For the same time, the loss in
the number of iterations should be balanced by a higher solution quality. This appears,
indeed, to be the case, as the curve of TSVLSN is below the one of TSN1 when comparing
the number of iterations, although the gain is small. In other terms, infeasible colourings
which cannot be improved by an exchange in N1 but only by using a VLSN exchange
are not many and in any case not so many to justify the use of VLSN. This confirms the
results discussed in Section 4.9 and leads us to conjecture that the search space of graph
colouring has many well spread local optima and hence intensifying the search around
them is not useful.

4.12.3. On the Tabu Search in the one-exchange neighbourhood

The main result of the analysis is that TSN1 remains very competitive on all the instances
classes for the given time limit. However, further experiments also revealed that in
some graphs like DSJC1000.5 it was not able to go beyond 88 colours despite much
longer computation time while we know that for that graph the best known solution is
83. This may suggest that after long run time Tabu Search becomes ineffective and the
exploration remains confined to a restricted area of the search space.

An analytical study on the search landscape of Tabu Search for the k-colouring prob-
lem has been attempted by Hertz et al. (1994). The study is interesting and the com-
putations presented may be helpful for estimating the optimal size of the tabu list or
the number of iterations without improvement which should be done before stopping
the search. However, indications are restricted to graphs of limited size. The landscape
seems to change considerably according to k and the application of the same computa-
tions to large graphs becomes early infeasible.

We attempted here to detect through exploratory data analysis, whether Tabu Search
tends to visit repeated solutions for long run times. For each vertex, we counted the
number of times its colour is changed and the number of different colours assigned.
In Figure 4.23 we use Pareto charts to visualise the results on different instances and
number of colours solved. In each Pareto chart, vertices are represented on the abscissa
and are ranked from most “changed” to least “changed”. Vertical bars represent the
number of different colours assigned to each single vertex, while the line superimposed
over the bars indicates the cumulative percentage of iterations in which a colour change
occurred for the corresponding vertex. For each instance, four colours are represented,
among them the best k for which a feasible solution was found in that run and k − 1.
The number of iterations was set to 2× Imax.

The empirical data show that, apparently, colour changes are equally distributed
among the vertices for the value of k where most of the iterations are needed. Fur-
thermore, the number of different colours received by each vertex approximates the
total number of available colours. Far away to be conclusive, these observations are in
favour of the conjecture that the degree of search diversification in TSN1 is high enough

150 Graph Colouring

90

95

100

105

Nu
m

be
r o

f C
ol

or
us

*
*

*
*

*
*

*
*
*

*
*

**

Time

DSJC1000.5

10 102 103

P
S
fra

g
re

p
la

c
e
m

e
n
ts

T
SN

1
T

S
V
L
S
N

90

95

100

105

*
*

*
*
*

*
*
*

*
*

**

Iterations

1 102 104 106

DSJC1000.5

P
S
fra

g
re

p
la

c
e
m

e
n
ts

TSN1
TSVLSN

Figure 4.22.: The development of Tabu Search on N1 and VLSN over time and number of
iterations. Represented are the median empirical attainment curves across 10 runs per algorithm.

and that the algorithm does not cycle among visited solutions.

4.13. Experimental analysis on a large set of random graphs

The previous experimental analysis was limited to instances from the DIMACS reposi-
tory and the number of instances per class was quite low. The result proved by Birattari
(2004a) and discussed in Section 3.6, page 51, suggests instead that the best design for an
experiment is “one single run on various instances”. Moreover, very little is actually known
about the structure of some DIMACS instances and it is hard to link the performance of
the algorithms to some general features of the graphs.

There are some graph generators available on the Internet for generating specific
graphs. However, for many of them the maximal size of the graphs is typically lim-
ited by the combinatorial explosion of the generation process. Culberson’s publically
available random generator allows instead to create families of test graphs of large size
that vary in terms of edge density and structure. The generator also provides a good
upper bound (i.e., a k for which it is known that a feasible k-colouring exists) and, there-
fore, offers the possibility to learn more about the performance of algorithms and their
relations to graph properties.

Structure in a graph may be induced by limiting the clique size or by embedding
cycles larger than a certain length. It is also possible to impose a graph to have at least
a given number of independent sets and to influence the variability of the size of these
independent sets. The process of assuring a number of independent sets corresponds
to hiding (or pre-specifying) a colouring number in the graph, which then becomes an
upper bound to the chromatic number of the graph. The generator accepts inputs to
influence all these features. We distinguish three features in our analysis: the presence
of a hidden colouring, the variability of the size of the hidden independent sets, and the
graph type determined by the characterisation of the edge probability.

We used this generator to produce a large number of test graphs for our second
experiment. In the following we describe the generated graphs.

Hidden colouring. We distinguish between graphs without embedded colouring and
graphs with a guarantee on the upper bound to the chromatic number. For these

4.13 Experimental analysis on a large set of random graphs 151

0

1

2

3

4

5

0% 75%

k = 5

0%

25%

50%

75%

100%

0% 75%

k = 4

DSJC125.1

Vertices

Di
ffe

re
nt

 c
ol

ou
rs

Co
lo

ur
 c

ha
ng

es

0

5

10

15

0% 50% 100%

k = 19

0% 50% 100%

k = 18

0% 50% 100%

k = 17

0%

25%

50%

75%

100%

0% 50% 100%

k = 16

DSJC125.5

Vertices

Di
ffe

re
nt

 c
ol

ou
rs

Co
lo

ur
 c

ha
ng

es

0

10

20

30

40

0% 50% 100%

k = 47

0% 50% 100%

k = 46

0% 50% 100%

k = 45

0%

25%

50%

75%

100%

0% 50% 100%

k = 44

DSJC125.9

Vertices

Di
ffe

re
nt

 c
ol

ou
rs

Co
lo

ur
 c

ha
ng

es

0

5

10

15

20

0% 50% 100%

k = 22

0% 50% 100%

k = 21

0%

25%

50%

75%

100%

0% 50% 100%

k = 20

DSJC1000.1

Vertices

Di
ffe

re
nt

 c
ol

ou
rs

Co
lo

ur
 c

ha
ng

es

0

20

40

60

80

0% 50% 100%

k = 92

0% 50% 100%

k = 91

0% 50% 100%

k = 90

0%

25%

50%

75%

100%

0% 50% 100%

k = 89

DSJC1000.5

Vertices

Di
ffe

re
nt

 c
ol

ou
rs

Co
lo

ur
 c

ha
ng

es

0

50

100

150

200

0% 50% 100%

k = 228

0% 50% 100%

k = 227

0% 50% 100%

k = 226

0%

25%

50%

75%

100%

0% 50% 100%

k = 225

DSJC1000.9

Vertices

Di
ffe

re
nt

 c
ol

ou
rs

Co
lo

ur
 c

ha
ng

es

Figure 4.23.: Pareto charts for 6 runs of TSN1 on random instances of different size and density.
Vertices are represented on the x-axis and are ranked by the number of colour changes. Vertical
bars represent the number of different colours received, reported on the left y-axis, while the
superimposed line indicates the cumulative percentage of colour changes, reported on the right
y-axis.

latter graphs, the number of independent sets in the construction is decided in
relation to other features of the graph such as size and density. The alternatives
used for the generated graphs are summarised in Table 4.8.

Variability of the size of the hidden independent sets. We adopted the typology smooth
k-colourable graphs to bias the variability of the size of the colour classes. A
graph is generated by assigning each vertex to the independent set with label
bkx(ax + 1− a)c, where a ∈ [0, 1] is a variability parameter and x is a random num-
ber from the interval [0, 1). For a = 0, the size of the independent sets tends to be
nearly equal, while for a = 1 a certain variability is embedded in the graph. This
procedure allows therefore to range from Equi-partite colouring graphs to highly
variable colouring graphs by controlling just one parameter. We generated graphs
using a ∈ {0, 1}. This gave us the possibility of describing synthetically, with one
single measure the structural variability of the graph, which is deemed responsible
for differences in the hardness of GCP instances (Culberson et al., 1995),

Type of graph. We considered the following three edge probability characterisations:

Uniform graphs (independent random edge assignment). An edge between a ver-
tex pair u, v is included with a fixed probability. These graphs are denoted as

152 Graph Colouring

Gnp and Gknp, if a k-colouring is embedded.

Geometric Graphs. These graphs are created by uniformly generating n points
in the two dimensional square given by 0 ≤ x, y < 1. Vertices in the graph
correspond to the points in this square and an edge is associated to a pair of
vertices if their Euclidean distance is less or equal a value r. We denote these
graphs as Unr. The generator allows to maintain embedded k-colourings also
in geometric graphs; we denote such graphs Uknr. According to Johnson
et al. (1991), geometric graphs have “inherent structure and clustering”. For
statistics on the vertex degree of geometric and uniform graphs we refer to
Figure 4.2, page 103.

Weight Biased Graphs. Weighted graphs try to challenge algorithms that use the
clique structure to aid in obtaining colourings. They are designed to restrict
the development of larger cliques while possibly distributing edges as eq-
uitably as possible between the pairs of embedded independent sets. As a
side effect, they might have the smallest variability in vertex degrees. Pre-
vious studies have shown that these graphs are among the hardest to solve
(Culberson et al., 1995), although their statistics on vertex degree looks very
similar to those of Uniform random graphs. The graphs are generated by
first assigning vertices to independent sets. Then, a weight W is given to all
(n

2) vertex pairs, except those in the same hidden independent set, which are
assigned a weight of 0. Vertex pairs are then selected as edges with prob-
ability proportional to their weight. When an edge is added to the graph
weights are decreased in such a way that the formation of large cliques be-
comes less likely. This procedure is controlled by two parameters, α and γ,
that, according to Culberson et al., 1995, we set to 0 and 1, respectively (more
details are available in the manual of the generator14). The process terminates
when either all weights are zero, or when bp(n

2)c edges have been selected.
The edge density of the resulting graph depends on the parameters p and
W. In order to attain graphs of edge density {0.1, 0.5, 0.9} we set p to values
in {0.1, 0.5, 0.9} and W ∈ {2, 114, 404} and W ∈ {4, 230, 804} for graphs of
size 500 and 1000, respectively (for details on the choice of these values see
Culberson et al., 1995). We denote these graphs with Wnp, and with Wknp if a
k hidden colouring is embedded.

In Table 4.8, we summarise the characteristics of the 1260 graphs that we generated.
For each parameter setting we constructed 5 graphs. The control of the variability in
the size of the independent sets is possible only when the colouring number is hidden.
When no hidden colour is embedded, the variability of the independent sets is not
controlled and we denote it with “no”. Table 4.9 gives aggregate statistics on the number
of graphs considered.

14J. Culberson. “A Graph Generator for Various Classes of k-Colorable Graphs.” June 2002.
http://web.cs.ualberta.ca/~joe/Coloring/Generators/generate.html. (June 2005.)

http://web.cs.ualberta.ca/~joe/Coloring/Generators/generate.html

4.13 Experimental analysis on a large set of random graphs 153

Tot.
Size Type Density Variability Hidden colouring graphs
500 G 0.1 0 5 10 10

1 5 10 10
no – 10

0.5 0 20 30 40 50 60 25
1 20 30 40 50 60 25

no – 10
0.9 0 20 30 40 60 80 100 120 140 40

1 20 30 40 60 80 100 120 140 40
no – 10

U 0.1 0 10 20 10
1 10 20 10

no – 10
0.5 0 20 30 40 50 60 70 80 90 100 110 50

1 20 30 40 50 60 70 80 90 100 110 50
no – 10

0.9 0 100 150 200 250 300 25
1 100 150 200 250 300 25

no – 10
W 0.1 0 5 10 10

1 5 10 10
no – 10

0.5 0 20 30 40 50 60 25
1 20 30 40 50 60 25

no – 10
0.9 0 30 60 90 120 20

1 30 60 90 120 20
no – 10

1000 G 0.1 0 5 10 20 15
1 5 10 20 15

no – 10
0.5 0 20 30 40 50 60 70 80 90 100 110 120 130 140 75

1 20 30 40 50 60 70 80 90 100 110 120 130 140 75
no – 10

0.9 0 20 50 100 150 200 250 30
1 20 50 100 150 200 250 30

no – 10
U 0.1 0 20 30 40 50 20

1 20 30 40 50 20
no – 10

0.5 0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 95
1 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 95

no – 10
0.9 0 100 200 300 400 500 600 30

1 100 200 300 400 500 600 30
no – 10

W 0.1 0 10 20 10
1 10 20 10

no – 10
0.5 0 20 30 40 50 60 70 80 90 40

1 20 30 40 50 60 70 80 90 40
no – 10

0.9 0 30 90 150 220 20
1 30 90 150 220 20

no – 10

Table 4.8.: All the graphs generated. In total, 1260 graphs were generated of which 520 are of
size 500 and 740 of size 1000.

n = 500 ρ = 0.1 ρ = 0.5 ρ = 0.9
G 60 90 90
U 60 150 150
W 30 75 60

n = 1000 ρ = 0.1 ρ = 0.5 ρ = 0.9
G 90 180 180
U 120 150 180
W 30 120 60

Table 4.9.: The number of graphs per class given by size, edge density and graph typology.

ρ = 0.1 ρ = 0.5 ρ = 0.9
n = 500 60 120 180

n = 1000 155 465 720

Table 4.10.: The time limits in seconds for the instances differentiated by size (rows) and density
(columns).

154 Graph Colouring

Analysis of the termination criterion for TSN1TSN1TSN1

We first analyse the appropriateness of the termination condition for TSN1 adopted in
the previous experiment which yield the time limits reported in Table 4.10. We take into
consideration two aspects: the maximal number of iterations and the computation time
that TSN1 needs to perform this number of iterations.

In Figure 4.24, left, we plot the probability of finding a feasible colouring and an im-
provement in solution quality (i.e., a decrease in the number of colour conflicts) after a
certain number of iterations. The graph is obtained by recording the last corresponding
events occurred in a run of TSN1 on each of the 740 random graphs of size 1000. TSN1

was run on all graphs for a maximal number of 100× Imax iterations. The curves cor-
respond to the empirical survival distributions of the event “finding a colouring with
less constraint violations” or “finding a feasible colouring”. In other words, each point
indicates the probability of finding a graph where improvements in the number of con-
straint violations or in the number of colours can still occur after a certain number of
iterations, reported on the x-axis. Both kind of improvements after 50× Imax iterations
occurred on only 10 graphs, that is, with a probability lower than 0.02. The number of
colouring violations in these extreme cases was below 13 and, probably, further improve-
ments could have been possible with longer runs. Therefore, the data should be treated
more correctly as censored data and the curve be truncated. Nevertheless, for 730 of
the 740 graphs no further improvement in the solution occurred in the last 50× Imax

iterations, which lets us conjecture that further improvements will not occur on those
graphs. However, the plot also indicates, that after Imax iterations a feasible colouring
was still found for 26% of the graphs. In other terms, setting the termination criterion
to Imax corresponds to miss 26% of cases where a better colouring can still be found.
This empirical probability falls below 3% after 10× Imax. The probability of finding im-
provements in solution quality is slightly higher, 35% after Imax and 5% after 10× Imax.
In the light of these results, 10× Imax would have been a better choice for the termina-
tion criterion of TSN1 . This increase, however, corresponds on average, to an increase in
computation time of a factor of 10.

In Figure 4.24, right, we investigate the computation time corresponding to Imax iter-
ations on graphs of 1000 vertices. Clearly, the reason for uncommonly long run times
for TSN1 to perform Imax iterations is a high number of violations in the solutions since
the neighbourhood size of N1 is dynamically linked to the number of colours and the
number of vertices involved in at least one colour conflict. The plot shows the correla-
tion between the number of violations present in the final solution and the time elapsed
between the time-point when a last feasible colouring is found and when the maximal
number of iterations is passed. Evidently, long run times arise in cases where a lot of
time is spent for numbers of colours that cause many violations. Very likely, in those
cases there exists no better feasible colourings and the run could be aborted. The run
time limits of Table 4.10, which correspond to median values per edge density, appear,
therefore, reasonable because they cut out exactly those useless long run times. On the
other hand, run times of around 150, 700, and 1500 seconds for graphs of density, re-
spectively, 0.1, 0.5, 0.9 are enough for TSN1 to accomplish Imax iterations on the graphs
with only few violations, that is, for those situations where it is reasonable to use all the
iterations available. Note that the time limit adopted for graphs of density 0.9 appears
underestimated and could be the reason for some of those feasible colouring missed in

4.13 Experimental analysis on a large set of random graphs 155

0.001

0.005
0.010

0.050
0.100

0.500
1.000

0.035

0.260

last improvement
last colouring

10
3

I m
ax

10
×

I m
ax

10
0×

I m
ax

Iterations

Pr
ob

ab
ilit

y
Last improvement

+ +++ +

+
+

++
+

+

+

+

+

+

+ ++

++

+

++

+ +

+++++

++++
+

+

++++ +++

++

++++ +

+

+ + + +

+
+

+++

++
+

++

++ ++ +

++
+ +

+

++

+

+
+

++++++++ +

+

+++++++ +++++++ +++++ + ++ ++ + ++++ + ++ + +++ ++ ++ +

++

+

+

++ +

+
+

++

+++

+

+
+ + +

+

+
+

+

+

+
+

+++

++ +++

++

+
+

+

++
+
+

+

100 200 500 1000 2000 5000

1

5
10

50
100

500
1000

o

o

o

o

o

oo

o

o
o

oo
o
oo

o

o
ooo

ooooo
ooo

o
o

o
oo

o
o

o

o

ooo

o oooo

o o
o

o
o

o

o
o o

o

o

o

o

o

o o

o

o

o oo oo o

o

o oo o

oo

oo ooo oo o oooo oo oo

o ooo o

o oo o oo

o

o oo o o oo

oo

o oo o ooo

oo

o o

o
oo

o oo oo o o

o

ooo oo

o
o

o

oo oo ooo oo o oo

o

oo ooo oo o oo

o

oo
o
o
o

oo oo
o

o

oo

oo

o oo

o

o

o

o

ooo

o

o
o

o

o

o
o

o
o

o

o

o
o o

o

o
o

o
oo

o

oo
o

o

o

o

o
o

o o

o

o

o

o

o
o

o

o

o

o o

o

o

o o
oo

o

oo oo oo

oo

o

o

oo

o o

ooo

o
o

o

o

o
ooo

o

oo
ooo

o

o

ooo

ooooo
ooo

o
o

oo

o

o

o

o
o

ooo

oo

o

o

o

o o
o
oo

o

o

o

o

oo o

o

o

o

o

o

o o
o o

o

o

o o

o

o

o

o

o o oo

o

o

o o

** *
*
*

*

*

*

*

*

*** **

*

*

*

*

*

* *** *

*

*

*

*

* *
*

*
*

*
*

*

*
*

*

*
*

*

* *

**

*

**

**
**
*
*
**

*
*

*

*
*

*

*

* ** *

Density

*o
+

0.1
0.5
0.9

Tmax
0.1 Tmax

0.5 Tmax
0.9

Time (sec.)

Vi
ol

at
io

ns

Figure 4.24.: An analysis of TSN1 in relation to the termination criterion on graphs of size 1000.
TSN1 was run for 100 × Imax iterations on each graph. On the left, we show the probability
of attaining a last feasible colouring or a last improvement in solution quality in dependence
with the elapsed iteration number. On the right, we show the correlation between the number
of violations in the final solution and the time elapsed from a last improvement in terms of
constraint violations to the end of the run, i.e., the reaching of 100× Imax iterations. Both plots
are in log-log scale.

the interval [Imax, 10× Imax] of Figure 4.24, left.

Exact Algorithms

We run Ex-DSATUR on each of the 1260 instances using the same time limit allowed for
the SLS algorithms and reported in Table 4.10. In Figure 4.25, we summarise graphically
the behaviour of Ex-DSATUR. The plots give account of the time at which the best
feasible colouring is found. If the colouring is proved optimal the corresponding point
is plotted in black.

The first observation is that an exact solution is found either very shortly (in less than
10 seconds by our machine), or it is hardly found afterwards. Despite the large size,
some graphs are easily solvable by Ex-DSATUR. Chances to find solvable graphs are
highest for Geometric graphs and in particular for edge density equal to 0.5. Graphs of
type G and W are solvable exactly only for very high edge density. In addition, graphs
become harder to be solved exactly if the number of hidden colours increases.

We finally compared again Ex-DSATUR with BB-GCP. The result that Ex-DSATUR is
better is confirmed, as it solves 147 graphs against 116 of BB-GCP. Only two graphs
were solved by BB-GCP and not by Ex-DSATUR.

Construction heuristics

We compared the performance of construction heuristics considering their ranking on
each single instance. For testing the statistical significance of differences, we used again
all-pairwise comparisons based on the Friedman test. RLF is clearly, and by a large
margin, the best algorithm on Uniform and Weight Biased graphs. For these cases,
we only show the effect of edge density on the computation time of RLF for graphs
of size 1000 (Figure 4.26, top). On Geometric graphs, instead, differences in solution

156 Graph Colouring

Time (sec.)

G
ra

ph
 ty

pe

0.8 5 10 50 166

G

U

W

Size = 1000 ; Edge dens. = 0.1

0.8 5 10 100 500

Size = 1000 ; Edge dens. = 0.5

1.7 10 50 200 800

Size = 1000 ; Edge dens. = 0.9
0.2 1 10 20 65

G

U

W

Size = 500 ; Edge dens. = 0.1

0.5 1 10 50 130

Size = 500 ; Edge dens. = 0.5

0.9 10 50 150

Size = 500 ; Edge dens. = 0.9
last found proved exact

Figure 4.25.: Visual representation of the behaviour of Ex-DSATUR on the 1260 random graphs
using the time limits reported in Table 4.10. For each graph, we plot a point indicating the
computation times at which a last feasible colouring was found. If the solution is proved optimal
the point is black, otherwise the point is grey. A jitter effect is added to the y coordinates of the
data in order to make points distinguishable. The plots are logarithmic in the x-axis.

quality with respect to DSATUR are not always statistically significant and sometimes
DSATUR is better. In Figure 4.26, bottom, we report the all-pairwise comparisons with
an indication of the computation time on the y-axis. No effect on the solution quality of
the size of graphs was found; therefore, in the plots only graphs of size 1000 are given,
on which differences in computation time are more pronounced. Interestingly, there
are classes of graphs in which DSATUR performs better than RLF, but unfortunately a
clear pattern does not arise. A possible explanation is that RLF encounters difficulties
with well balanced colourings. This conclusion is suggested by the hypothesis that
these graphs have a clique number very close to the chromatic number, in which case,
the variability of the size of the independent sets is rather small and not significantly
influenced by the parameter “variability”. In addition we observe that the performance
of DSATUR with respect to RLF improves as edge density increases.

SLS algorithms

The same performance measurement adopted in Section 4.11 is also used for the analysis
of this experiment.

The influence of hidden colours. As a first step in the analysis, we investigate the
interaction plots between algorithm performance and hidden colours within each of the
38 classes of Table 4.8 where a colour is embedded. For several cases, the construction
of a graph with the pre-specified number of colours was not possible and the generator
was able to recognise the presence of a smaller upper bound (in the discussion that
follows we denote with hidden colour this true upper bound, not the attempted value

4.13 Experimental analysis on a large set of random graphs 157

0

2

4

6

8

Effect of edge density on time for graphs of size 1000 and type G and W

Edge density
0.1 0.5 0.9

 Heuristics
RLF
DSATUR

M
ed

ia
n

tim
e

(s
ec

.)

 Geometric Graphs (U)

Average rank

Ti
m

e
(s

ec
.)

0
5

10
15
20
25

ROSRLF DSATUR

density = 0.1 variability = 0 (30 graphs)

ROS
RLF

DSATUR

density = 0.5 variability = 0 (145 graphs)

0
5
10
15
20
25

ROS

RLF

DSATUR

density = 0.9 variability = 0 (55 graphs)

0
5

10
15
20
25

ROSRLF DSATUR

density = 0.1 variability = 1 (30 graphs)

ROS
RLF

DSATUR

density = 0.5 variability = 1 (145 graphs)

0
5
10
15
20
25

ROS

RLF

DSATUR

density = 0.9 variability = 1 (55 graphs)

1.0 1.5 2.0 2.5 3.0
0
5

10
15
20
25

ROS
RLF
DSATUR

density = 0.1 variability = no (20 graphs)

1.0 1.5 2.0 2.5 3.0

ROS
RLF

DSATUR

density = 0.5 variability = no (20 graphs)

1.0 1.5 2.0 2.5 3.0
0
5
10
15
20
25

ROS

RLF

DSATUR

density = 0.9 variability = no (20 graphs)

Figure 4.26.: On the upper plot the influence of edge density on the computation time of RLF and
DSATUR for Uniform and Weight Biased graphs. On the lower plot, all-pairwise comparisons of
construction heuristics on Geometric Graphs.

passed to the generator and reported in Table 4.8).
From the plots (that we do not report here) we summarise the following observations:

• In all classes, there is an interaction between algorithm performance and the num-
ber of hidden colours. However, this interaction is not strong and with few excep-
tions only one algorithm performs the best within the whole class. Given that we
assume no a priori knowledge on the graphs, we neglect the interaction algorithm–
hidden colours in the following analysis.

• With few exceptions, the best algorithms always have e(χ̂, G) = 0 which entails
that the hidden colourings are always found. Furthermore, the higher the number
of hidden colours is the less precise is this bound. As an example, for the graphs
with a hidden colouring of 600, the algorithms were able to find colourings with
even 200 fewer colours. Therefore, the number of hidden colours cannot be used
as an indicator of the hardness of solving an instance.

• On two of the 38 classes, we encounter a strange behaviour that we show in Figure
4.27. They correspond to size 1000, density 0.5, variability 0, and type of graphs G
and W.

158 Graph Colouring

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 109 117 121 124

 Algorithms

TSN1
HEA
ILS
MinConf
GLS
Nov+
SAN6
TSVLSN
XRLF

Size 1000; Type G; E. density 0.5; Var. 0
M

ed
ia

n
er

r

Hidden Colours

0.0

0.1

0.2

0.3

0.4

0.5

20 30 40 50 60 70 80 90

 Algorithms

TSN1
HEA
ILS
MinConf
GLS
Nov+
SAN6
TSVLSN
XRLF

Size 1000; Type W; E. density 0.5; Var. 0

M
ed

ia
n

er
r

Hidden colours

Figure 4.27.: Interaction plot between algorithm performance (expressed by the performance
measure defined in Equation 4.2 with χ̂best(G) lower or equal to the hidden number) and the
number of hidden colours. A hidden colour indicates that a feasible colouring with that on
a lower number of colours exists. It is expected that all algorithms find at least one such a
colouring. Nevertheless, in the region where the curves peak, no algorithm is able to find the
hidden number. This indicates that in that region instances are harder to solve for all algorithms
in analysis.

Since hidden colouring exists, it should also be possible to reach e(χ̂, G) = 0 on
all those graphs. Nevertheless, the curves peak for some values of the hidden
colourings, indicating that there are some values for k for which the instances are
much harder to solve than usual. The region which exhibits this phenomenon
arises at about 80 hidden colours for graphs of type G and between 70 and 80
for graphs of type W. It is interesting to note that this phenomenon affects also
algorithms such as SAN6 and XRLF that do not solve sequences of k-colouring
problems. Moreover, the same effect was not observed in the corresponding graph
classes of size 500.

A related phenomenon is the phase transition (or “ridge of resistance”) already ob-
served in graph colouring (Cheeseman et al., 1991; Culberson, 1992; Hogg, 1996;
Culberson and Gent, 1999, 2001; Barbosa and Ferreira, 2004). In decision problems
the phase transition is the passage from problems that are under-constrained to
problems that are over-constrained and hence unsatisfiable. In some problems a
simple parameter describing the problem structure is enough for predicting the
difficulty of solving the problem and the phase transition happens in a small re-
gion of values for this parameter. In the region of the phase transition problems
are typically harder to solve. This phenomenon has been shown also on the graph
colouring, although, given the large number of characteristics that determine the
structure of a graph, it has been impossible to link the phase transition to one
specific parameter. The measure to judge the hardness of a problem on a decision
problem is the computation time necessary to solve it.

Interaction between algorithms and strata on the instances. The second step of our
analysis consists in identifying which stratification variables defined on the instances
have an influence on algorithm performance. We report the interaction plots in Figure
4.28. As remarked in Chapter 2, interaction plots do not give a definitive answer because
they do not distinguish random variations from true interaction effects. However, they
might help in the understanding of the results. From Figure 4.28, it is hard to draw

4.13 Experimental analysis on a large set of random graphs 159

0.00

0.02

0.04

0.06

0.08

0.10

A AB
B

C
C

D
D

E E

F

F

G G
500 1000

M
ed

ia
n

er
r

Size

A
A AB B

B
C C

C

D D

D

E
E

E

F
F

F

G G

G

G W U

Type

A A AB B BC
C

CD

D
D

E

E

F

F

G G G
0.1 0.5 0.9

Edge density

A
B
C
D
E
F
G

TSN1
HEA
ILS
MinConf
GLS
Nov+
SAN6

A A

A

B B

B

C C

C

D

D

D

E E

F F

F

G G G
0 1 no

Variability of color class

Figure 4.28.: Interaction plots between algorithms and stratification variables. The worst algo-
rithms, XRLF and TSVLSN, are removed in order to gain a clearer insight on the high performing
algorithms.

relevant conclusions, since the lines of median performance tend to overlap for some
algorithms. However, the lines are not parallel and a strong effect, at least for some type
of graphs and edge density, is observable.

The parametric model. In order to understand the significance of the factors and strata
involved in the analysis, we look for a linear model with best fit and check if it is possible
to apply a parametric analysis.

We tested two models: an unbalanced model, in which all data of the experiment are
used, and a balanced model, in which only 10 instances from each of the 54 classes of
Table 4.8 are bootstrapped and the procedure is repeated several times. In both cases,
we considered a linear model which includes the algorithms and the 4 stratification
variables on the graphs: size, type, edge density, colour class variability. Initially we
included also all possible interactions among the 5 factors.

The procedure stepAIC in R performs an automated model selection by considering
the likelihood of the linear model (Venables and Ripley, 2002). The procedure attempts
to remove terms from the model by considering their significance according to the F Test.
In both models, no interaction term was removed by stepAIC and only few resulted not
significant according to the F test at the level of significance of 95%. We report a diag-
nostic synthesis of the models in Table 4.11 and Figure 4.29. The fact that interactions
terms and main effects of the stratification variables remain in the model suggests to
maintain the analysis among the instance classes separated. It must be observed that
the significance of the main effects of the stratification variables entails differences in
the entity of the improvements over the ROS construction heuristic (see the definition
of the performance measure adopted), but this information is not enough to speculate
on the hardness of solving the particular instance class. As arising from Figure 4.29,
the assumptions for a parametric analysis are violated and therefore we proceed with
non-parametric methods.

Non-parametric analysis. Due to the likely presence of interaction terms we present
in Figure 4.30 the all-pairwise comparisons of algorithms maintaining instance classes
distinct. For simplifying the presentation of the results, we assume that the size of the
graphs has no influence on the relative order of the algorithms (a verified assumption,

160 Graph Colouring

unbalanced model balanced model
R2 0.6111 0.6795
Interaction ρ(G)×Variability Algorithm×n×Variability
terms Algorithm×n×Variability Type×n×Variability
removed Algorithm ×Type×n× ρ(G) Type×n× ρ(G)×Variability

Algorithm ×Type×n×Variability Algorithm×Type×n
Type×n× ρ(G)×Variability

Table 4.11.: A synthesis of the output produced by stepAIC. For the balanced model an average
case is reported.

+
+
++ +

+
+ +

+++++ +++
+

+++++ +++ +
++

+
++ +++ +

+++++ +++
+

+++
+
+ +

+
+ ++++++ +++ +

+
++++ +++ +++

+
++ +++ +++
++

+ ++
+ +

+

++++
+

+

+

++

++++
+

+

+

++

+++

+

+

+

+

+
+

++++
+

+

+
++

++++ +

+

+
++

++++ +

+

+

++

++++ +

+

+

++

+
+
+
+

+

++ +
++++

+
+ +

+ ++
+

+++ + ++ ++
+

+++ + ++ +
+

++++
+

+

+

++

++++
+

+

+

++

++++
+

+

+

++

++++
+

+

+

++

++++
+

+

+

++

++++ +
+

+

++

++++ +
+

+

++

++++ +
+

+

++

++++ +
+

+

++

++++
+

+
+ +

+
++++

+

+
+ +

+
++++ +
++ +
+
++++ +

+
+ +

+
++++ +
+

+ +
+
++++ +

+
+ +

+
++++

+
++ +
+++

++ +

+
+

+

+
++++ +
+

+ +
+
++++ +
+

+ +
+

++++
+

+
+ +

+

++++

+

+
+ +

+

+
+++

+

+
+ +

+

++++ +
++

+
+++++ +

++
++++++

+

+
+

+

+

++++ +
++ ++

++++
++

+

+
+

++++ ++
+

+
+

++++ ++
+ +

+
++++ +

+
+

+
+

++++ +
+

+

++

+

++

+ +

+

+

++

++++ ++
+

+
+

++++ +
+

+

++++++
++

+ +
+++++ +

+
+

+
+

++++
+

+
+ +

+

++++ +
++ +

+
++++ +

++
+

+++++ +
++ ++ ++++ +
+

+ +
+ ++++ +++ ++ ++++ +
++ ++ ++++ +
++ +
+

++++ +
++ +
+

++++ +++ ++ ++++ +
++ ++ ++++ +
++ +
+

++++ +
++ +
+
++++ +

++

+

++++++++
++++++

+
++

+

+++++ +++

+

++++++
++ +++++++++ ++++++ +
++

+

++++++
++

+
+++++ +

++
+

+++++ +
++

+
+++++ +++

+
++++++

++
+

+++++
+++

+
+++++ +++

+
+++++ +
+
+

+
++++++++

+
+++++ +

++

+

++++++++
+

++++++
++

+
++++++++

+
+

++++ ++
+

+
+

++++ +++ +
+

++++ ++
+

+
+

++++ ++
+

+
+++++ ++

+
+

+++++ +++
+

+++++ +

+
+

+
+++++ +

+
+

+
+++++ ++

+
+

+++++ +++ +
+

+
+

++ +++
+

+++ ++
+
++
+

+++
++

+
+

+
+

++
+

++ +++
+

++

+

++
+
++ +

+

+++++
++ +

++
++
++ +
+

+

+
+

+
+++ ++

+

+

+++++
++ +

++
+
+++ ++

+

+

+
+

++ +
+

+

+
+

+
+

++
+
+

+
++

+
+

++
+

+

+
++

+
+

++
+
+

+
++

+
+

++ +
+

+
+

+
+++++ ++

+

+

+++++
++

+

+

+++++
++ +

+

+++++
++ ++

+++++ +
+ +

+

++++
+

++ +
+

+
+++

+
++ ++

+
+++

+
++ +
+

+
+++

+++ +++
+++

+
++ +
+

+
+++

+
++

+
+++++

+
+

+
+

+
+

+++
+

++
+

+
+

+++
+++ +

+
++++

+
++ ++++++ ++

+

+
+

++++ +++

+
+++++ +++ ++++++ +++

++++++ +
+

+

+
+

++++ +
+

+

+

+++++ +++
+

+++++ ++
+

+

+++++ +

+

+

+
++

+++ +
+

+

+
+

+
+++ +

+

+

++

++++ +++
++

++++ +++

++
+

+++ +++ ++
+

+++
++

+

++
++++ +++

++++++ +++
++

++++
+
++

+
+

++++
+
++

++
++++

+++
+

+
++++ +

++ +
+

++++ +++ ++++++ +
++ ++++++ +
++ ++++++ +
++ ++++++ +
++ +

+
++++ +++ ++++++

+
++ ++++++ +
++ +

+++++ +
++ ++++++ +++ ++++++ +++

++++++ +++ ++++++ +++ ++++++ +++ ++++++ +
++ ++++++

+
++ ++++++

+

++
+

+++++
+

++ ++++++ +++

+
+++++ +++

+
+++++

+
++

+
+++++ +++

+
+++++ +++

+
+++++ +++

+
+++++ +++ ++++++

+
++

+
+++++ +++ ++++++

+
++ ++++++ +++

+++ ++++
+
+

+

+

+
++++

+

+ +

+

+ ++++++ +

+

+
++++++ +

+

+ ++
++
+
+

+

+

+ +++
+

+

+
+

+

+ +++++
+

+

+

+ +++
++

+
+

+

+
++++++ +

++ +
++++
+

+

+
+++

+ +
++ +

+
++++ +

++ +
++++ +++

+
+

+++++ +++
+

+
++++

+
++ +

++++

+
+

++ + ++++
+ +++ +

+
+++

+
+

++ + ++++

++
+

+

+ ++++
++

++
+

++++ +
+++
+ +++++ ++

+ + +
+++ ++++ +

+
+++

+
+++ + ++++ ++++ +

+
+++

+ +
+

+ +
+

+++
+

++
+ +

+
+++

+
+++ +

+

+++ ++++ + ++++ +++
+

+

+

++
+
++
+

+
+

+

+
+ +++

++
+

+

+
+ +++

+

+

+

+

++
+++++

+

+

++ +++

+

+

+

+

+
+

+
++++
+

+

++ +++
+

+ +

+

++
+++

+
+

+

+

+
+

+++
+

+ +

+

++ +++
+

+
+

+

+++++++ +
+

+++++++ +
+

+++++++ + +
++++++++

+
++++++++ +
++++++++ +
++++++++ +
++++++++ +
++++

+++ +
++++++++ + ++++++++ + ++++++++ + ++++++

+
++ +++++++++

+

++++++++
+

+++++++
+

+

++++++++
+

++++++++
+

+++++++ +
+

+++++++ +
+

++ ++++
++

+

+
+ ++++

++

+

+
+

++++
++

+

++
++++

++

+

+
+

++++++

+

+
+ ++++

+
+

+

++
++++

++

+

+
+ ++++

++

+

++ ++++
+

+

+

++
++++

++

+

++++++++ +++++++++ +++++++++ +++++++++
+++++++++ +++++++++

+
++++++++ +++++++++ +++++++++

+
++++++++

+
++++++++ +++++++++

+
++++++++

+
++++++++

+++++
++++

+
++++++++

+
++++++++ ++++++
+++
+

++
++++++ +

++++++++
+

+
+
+

++
+
+
+

+

+ ++
++

+
+
+

+
+ +++++++

+

+ +++++++

+

+ +++++++ +
+ ++

++
+
+
+

+
+ +++++++

++ +++++++

+

+ +++++++
+

+ +++++++ +
+++ ++

+
+ + ++++ ++

+

+
+

++++ +++
+ +

+
+++ ++++ +

+
++
+

++
++ +

++++
+

+
++

+
++++ +

+
+

+
++

+++ + +++
+

++++ +
+

+
+ +

+

+++
+

+++ +++++
+

+

+
+ +

++++
+++

+ +

+
+++

++

++
+

+

+
+
+

+

+

+
+ + +

+++ +
+

++ +

+

+++ + +
++ +++++
+

+
++ +++++
+ +++

++
+++

+
+

++
+++++

+

+
++

+

++
++++

+
+
+

+
+ ++

+++++

+

+
+++++
+
+

+

+
++++

+
++

+

+
+++++++

+

+ ++++++
+

+

+
++++++
+

+

+
++

+++
++

+

+
+
+++
+

++

+

+
++++++
+

+

+++++++ +
+

+++
++++
+

+
+++++++ + ++++

++++ +
+

+++++++ +
++++++++ + ++

+++++
+ + ++++++++ +

+

+++++
++
+

+

+++++++ +
+

+++++++ +
+

+++++++ +
+

+++++++ + ++++++++ +
+

++++++
+ + ++++++

++ + +
+++++++ + +
+++++++ + +
+++++

++ +
+

+++++++ +
+

+
+ +++

+
++

+

+
+ ++++
++ ++

+
++++

+
+ +

+
+ ++++
+
+

++ + ++++
+
+

+

+ + ++++
++

++ + ++++
++

+
+ + ++++

+
+

+

+
+

++++++

+

+ +
++++++

+

++++++++ +++++++++ +++++++++
+

++++++++
+

++++++++ +++++++++ +++++++++ +++++++++ +++++++++
+

++++++++
+++++++++

+

++++++++ +++++++++ +++++++++
+

++++++++ +++++++++ +++
++++++

+

++++++++
+

++++++++
+

++++++++ +++++ +
++ +

+
++++ +

+
+ +++++
+

+
+

+
+

++++
+

+
+

+ +++++
+

+++
+

+++++ +++ +
+++++ +

+
+ ++++++ +

+
+ ++++++ +

+
+ ++++++ +

+
+ ++

+++
+

+

+

+

++

+++
+

+

+

+

+
+

+++
+

+

+

+

++

+++

+

+

+

+

++

+++

+

+

+

+

+
+

++++ +
+

+
++

++++ +
+

+
++

++++ +

+

+
++

++++ +
+

+
++

++++ +

+

+
+++++

+
+

+

+

++

+++
+

+

+
+

+
+

+++
+

+
+

+

++

+++
+

+

+
+

+
+

+++
+

+

+

+

++

++++
+ ++

++

++++
+

++

+
+

++++ +
+

+

++

++
+
+ +

+
+

++++++ +
+

+

++

++++ +
++ +

+
++++ +

+
+ +

+
++++ +
++ +

+
++++ +

+
+ +

+++++ +
+

+ +
+
++++

+
+

+ ++
+
+++ +

+
+ +

+
++++

+

+
+ +

+
+
+

++ +

+
+ +

+
++++

+
+

+ ++++++ +
+

+

++

+++++
+

+

++

+++++
+

+

++

++++ +
+

+

+
+

++++ +
+

+

+
+

++++ +
+

+

+
+

++++ +
+

+

+
+

++++ +
+

+

+

+
+++++

+
+

+
+

+++++
+

+
+

+
+

+

++ +

+

+

+
+

+

+

++ +

+

+

+
+

+++++
+

+
+

++++++ ++

++
+++++

++
++

+++++
+

+

+
+

+
+++ +

+

+
+

++
++++

++ +++
+++

+

+

+ +
+

+++++
+

+
++++++ +++ ++ ++++ +

+
+ ++ ++++ +++ ++ ++++ +
++ ++ ++++ +
++ ++ ++++ +++ ++ ++++ +
++ ++ ++++ +
+

+ ++ ++++ +++ +
+ ++++ +
+

+ +
+
++++
++++++++++++

++++++
+++++++++++++++++++++ +++++++++ +++++++

++ +++++++
+

+

+

++++++
+
+ ++++++++++++++++++++++++++++++++++++

+
++++++++

+
++++++++

+
++++++++++++++++++++++++++ +++++++++

+++++++++ ++
++++ +

++
+

++
+++ +++

+
+

+
+++ +

+
+

+
++

+++ +
+

+
+

+
+

+++ +
++
+

++
+++ +

++ ++
+

+++ +
+

+
+

+++++ +
++ +++

+++ ++
+

+
+

+
+++ ++
+

+

+
++

++ +
+

+

+

+
+

+

++ +
+

+

+
++

+

++ +
+

+ +++
+

++ +++

+
++

+

++
+

+
+ ++

++++ + +
+ +

++
++
+

+
++ +

+

++++ + +
+ +

++
+++ +

+
+ +

+

++++
+

+
+ +

+

+
+

++ ++
+

+
++

+
++ +++

+

+
+

+
++ +++

+
++

+
++ +

+

+

++
+

+
++ +++

++

++++ + ++

++

++++ +

+
+

+
+

++++ + ++
+

+

++++ + ++
+

+

++++ + ++ +
+

++++
+

++ ++++++
+

+
+ +

+
++++ +
+

+ ++
++++

+
+

+
+

+++++
+

+
+ ++++++

+

+
+ ++++++

+
++ +
+

++++
+

+
+ ++++++

+
+

+ ++++
+
+

+
++ +
+++++ ++

+

+
+

++++ +++
+

+
++++ +++

+
+++++ ++

+

++

++++ +
+

+

+

+

++++ +
+

+

+

+

++++ +++

+

+++++ +++

+

+
++++ +++

++
++++ +++

+

+++++ +
+

+

+++
+++

++
+

++

++++ +++

++
+

+++ +
++

++++++
+++

++
++++

+
++ ++

++++
+

++
++++++ +++
+

+
++++

+
++

+
+

++++
+
++

+
+

++++ +
++

+
+++++ +++ ++++++ +

++ ++++++ +
++ ++++++ +
++

+
+++++ +

++ +
+++++ +

++ ++++++
+++ ++++++ +

++ ++++++ +
++

+
++++++++ +++++++++ +

+++++
+

++ +++++++++ +++++++++ +
++++++++
+++++++++
+++++++++
+++++++

++
+

++++++++
+

+
+++++++

+++++++++
+++++++++
+++++++++
+++++++++

++
+++++++

+++++++++
++++++

+
++

+++++++++ +++++++++
++

0.0 0.4 0.8 1.2

−0.5

0.0

0.5

err ≈ alg × size × type × density × variability

Fitted

Re
sid

ua
ls

+
+

+ ++

+
++

++++ ++ ++
+

++++ ++ +++
++

+
+ ++ +++

++++ ++ ++
+

+++
+

++
+

++++++ ++ ++ +
+

+++ ++ ++ +++
+

+ ++ ++ +++
++

+ + +
+ +

+

++++
+

+

+

++

++++
+

+

+

++

+++

+

+

+

+

+
+

+ +++ +

+

+
++

+ ++++

+

+
++

+ +++ +

+

+

++

+ ++++

+

+

++

+
+

+
+

+

+++
++++

+
++

+ ++
+

+++++ +++
+

++++
+++
+

++++
+

+

+

++

++++
+

+

+

++

++++
+

+

+

+ +

++++
+

+

+

+ +

++++
+

+

+

++

+ ++++
+

+

++

+ ++++
+

+

++

+ ++++
+

+

++

+ ++++
+

+

++

++ ++
+

+
+ +

+
+++ +

+

+
+ +

+
++ ++ +

+ ++
+

++ ++ +

+
+ +

+
++ ++ +

+
+ +

+
++ ++ +

+
++

+
++++

+
+ + +

+ ++ + ++

+
+

+

+
++ ++ +

+
++

+
++ ++ +

+
++

+

+++ +
+

+
+ +

+

++++

+

+
+ +

+

+
++ +

+

+
++

+

++++ +
++

+
+++++ +

+ +
++++++

+

+
+

+

+

++++ +
++ ++

++++
++

+

+
+

++++++
+

+
+

+ +++++
+ +

+
+ ++ ++

+
+

+
+

++++ +
+

+

++

+

++

+ +

+

+

++

++++++
+

+
+

+++ ++
+

+

++++++
++

++
+++ ++ +

+
+

+
+

++++
+

+
++

+

++++ +
+ + +

+
+++ ++

+ +
+

++++ ++
++ + ++ ++ ++

+
++

++ ++++ +++ ++++ ++
+++ ++ ++ ++
+++
+

+ ++++
+++
+

+++ ++ +++ ++++++
+++ ++++++
+++
+

+ ++++
+++
+

++ +++
++

+

++++ ++ ++
+ + ++ + +

+
++

+

+++ + ++ ++

+

++++ ++
+++ + +++ + +++++++ +++

++

+

++++++
++

+
+ +++++

++
+

++++ ++
++

+
++++++ ++

+
++++ ++

++
+

+++++
+++

+
+ +++ ++ ++

+
++ ++ ++

+
+

+
++++ ++ ++
+

+++ +++
++

+

++++++ ++
+

+ +++++
++

+
+ +++++ ++

+
+

++++++
+

+
+

+ ++++ + ++
+

++++++
+

+
+

+ +++++ +
+

++ +++++ +
+

++ ++++ + +
+

++ ++++

+
+

+
++ ++++

+
+

+
++ +++++ +

+
++ ++++ + ++

+
+

+
+++++

+
+++ ++

+
+ +

+
+++

++
+

+
+

+
++

+

++++ +
+

+ +

+

++
+

+++
+

+ ++++
+++

++
++

++ +
+

+

+
+

+
+++ ++

+

+

+ ++++
+++

++
+

+++ ++

+

+

+
+

++ +
+

+

+
+

+
+

++
+

+
+

++
+

+
++

+

+

+
++

+
+

++
+

+
+

++
+

+
++ +

+
+

+
+

+ +++ + ++
+

+

+ +++ +
+ +

+

+

+ +++ +
+ ++

+

+ +++ +
+ +++

+ +++ + +
++

+

++++
+

+ + +
+

+
++ + +

+ +++
+

++ + +
+ + +

+
+

+++
++ + ++ +

+ +
+

+
+ + +

+
+

++ ++
+ +

+
+ +++ + +

+
+

+

+
+

+ ++ +
++

+

+
+

+ ++ ++ + +
+

++ ++ +
+ ++++ +++++

+

+
+

+ +++++ +

+
+ + +++++ ++ ++ +++++ +

+ ++ ++++
+

+

+
+

+ ++++
+

+

+

++ +++++ +
+

++++ +
+ + +

+

++ +++ +

+

+

+
++

+++ +
+

+

+
+

+
+++ +

+

+

++

+++ +++ +
++

++++++ +

++
+

+ ++ +++ ++
+

+++
++

+

++
+++ ++++

++++++ ++ +
++

++ ++
+

++
+

+
+++ + +

++
++
++ ++ +++

+
+

+ ++++
+++

+
+ ++++ + ++ ++ ++ ++

+++ ++ ++++
+++ ++ ++ +

+
++++ +++++

+++
+

+ ++++ +++ ++ ++ +

+
+++ ++ ++++

+++
++ ++++
+++++ ++++ + ++ ++ ++++ + +

+ + +++ ++ ++++ + ++++ ++++ ++++ ++ + ++ +++++
++ ++++++

+
++ ++++++

+

++
+

++ +++
+

++ +++ +++
+ + +

+
+ + +++
+ + +

+
+ + +++

+
++

+
+ + +++

+ + +

+
+ + ++++ + +

+
+ + +++
+ + +

+
+ + ++ ++ ++++ + ++ +

+
++

+
++ +++ ++++ + + ++ +

+
+ +++ + ++ ++++

+ + + ++++
+

+
+

+

+
++ ++

+

++

+

+++ ++ +++

+

+
++++ +++

+

+++
++

+
+

+

+

+ + ++
+

+

+
+

+

+ +++ +
+

+
+

+

++ ++
+ +

+
+

+

+
+++++++

+++
++++

+
+

+
+++

++
+++

+
++ +++

+++
+++ ++ ++

+
+

+ ++ ++ +++
+

+
++ ++

+
++ +

+ +++

+
+

++ +++ ++
+++ + +

+
+ ++

+
+

++ +++++

++
+

+

+++ ++
+ +

++
+

+ + ++ +
+++

+++ + ++ ++
++ +

+ ++++++ +
+

++ +
+

+++ + +++ ++ ++++
+

++ + ++
+

++
+

+ ++
+

++
+ +

+
+ ++

+
+ ++ +

+

++ +++ + +++ ++ ++ ++
+

+

+

++
+

+ +
+

+
+

+

+
++++

+ +
+

+

+
+++ + +

+

+

+

+ +
+++++

+

+

+ ++ ++

+

+

+

+

+
+

+
++++

+

+

+ ++ ++
+

++

+

+ + +++

+
+

+

+

+
+

+++
+

+ +

+

++++ +
+

+
+

+

+++ +++++
+

+ ++ ++ +++
+

+++++ ++++
+++++ +++

+
+++++ ++++
+++++ ++++
++++ +++++
+++++++++

+ +++
++++

+ + + +++ ++++ + ++ + ++++ ++ + + ++ ++++ + ++++
+

+ +++++++ +++
+

+++++ +++
+

++++++ +
+

+

+++++ +++
+

+++++ +++
+

++++++ ++
+

+++++ +++
+

++++++
++

+

+
+ ++++

++

+

+
+

++++
++

+

+ +
++++

++

+

+
+

+++ +++

+

+
+ + +++

+
+

+

+ +
++++

++

+

+
+ ++++

++

+

++++++
+

+

+

+ +
++++

++

+

++++++ + +
+ ++++++ + +
+ ++++++ + ++ +++ +++ + + ++++ +++ + ++ ++++ +++ +

+
++++++ + ++++ ++ ++ +++++++++ + + +
++ ++++++

+
+++ ++++ + +++ + +++ + +

+
+ +++++++

+
+++ ++++ ++++ ++++++

+
+ ++ +++ + + +
++ ++ +++ +++ +++ + ++ +

+

+ + ++++++ +
+ +++++ ++ +
+

+
+

++
+

+
+

+

+++
++

+
+

+

+
+++++ +++

+

+++++ +++

+

+++++ +++
+

+++
++

+
+

+

+
+++++ +++

++++++ +++

+

+ ++++ +++
+

+++++ +++
+

+++++
+

+ ++ +++++

+

+
+

+ +++++ +
++

+
+++++ ++ +

+
++

+
++

++ +
++++

+

+
++ +

+ +++ +
+

+
+

+ +
+++ +++ +

+
+ +++ +

+
+

+ +
+

+++
+

++ +++ +++
+

+

+
++

++++
+++

++

+
+++

++

++
+

+

+
+

+
+

+

+
+ ++

+++ +
+

+++

+

+++ + +
+ ++ ++++

+
+

+ ++ ++++
+ ++ +

+ +
+++

+
+

+ + ++ +++
+

+
+ +

+

++
++++ +

+
+

+
+ + +++ +++

+

+
+++++

+
+

+

+
++++

+
+ +

+

+
++++ +++

+

+ ++ ++++
+

+

+
+++ ++

+
+

+

+
+ ++++

++

+

+
+

+++
+

++

+

+
+++ +++

+

+

++ ++ ++++
+

+ ++
++++

+
+

+ ++++ +++ ++ ++
+++++

+
+ + + ++ ++++ + + +++++++ +

++++ +
++ +++++++ ++

+

+++++
++

+
+

+++++ + ++
+

++++++ ++
+

++++++ ++
+

+++++ + +
+ + ++++++ +

+
+

+++ +++
+++ +++++

++++
+++ ++ ++++
+ +++ +++++
+ +++ ++++

+
+ ++ +++++

+
+

+ ++ +
+

++

+

+
+++++

+++ +
+

+++ +
+

+ +
+

+ ++++
+

+

+++++++
+

+

+

++++++
++

+++++++
++

+
++++++

+
+

+

+
+

++ ++++

+

+ +
+++ +++

+

++++++ + ++ + ++ +++ + ++ +++++++ +
+

+++ ++++ +
+

++++++ + ++ +++ + ++ ++++++ + ++ +++ ++++++ + +++ ++ + +++ +
+

++++ +++ + +++++ ++++

+

++ +++++ ++ ++ ++++ ++
+ + +++ + ++ +

+
+++++ ++ +++ ++++++ + +++

+++ +
+ +

+

++ ++ + ++ +
+

+++++++ + +
++ ++++ ++++ +++ +

+++
+

+ ++++
+

+ +++ ++ +
+

+
+

+
++ ++ +

+
+

+ +++ ++ +
++ +

+
++ +++ ++ ++

++ +++ +
+

+ +++ ++++
+

+ +++ +++ +
+

+ +++ +++ +
+

+ ++
+++

+
+

+

+

++

+++
+

+

+

+

+
+

+++
+

+

+

+

++

+++

+

+

+

+

++

+++

+

+

+

+

+
+

+ +++ +
+

+
+ +

+ +++ +
+

+
+ +

+ ++++

+

+
+ +

+ +++ +
+

+
++

+ ++++

+

+
++++ +

+
+

+

+

++

+++
+

+

+
+

+
+

+++
+

+
+

+

++

+++
+

+

+
+

+
+

+++
+

+

+

+

++

+ +++
+ ++

++

++++
+

+ +

+
+

+++++
+

+

++

++
+

++
+

+
+++ ++++

+
+

++

+++ ++
+ + +
+

+++ + +

+
++

+
+++ ++

+ + +
+

++ + + +

+
+ +

+ +++ + +
+

++
+

+++ + +
+

+++
+

+ + + +
+

+ +
+

+++ +
+

+
+ +

+
+

+
++ +

+
+ +

+
+++ + +

+
+++ ++ +++

+

+

+ +

+ ++++
+

+

++

+ ++++
+

+

++

++ +++
+

+

+
+

++ +++
+

+

+
+

++ +++
+

+

+
+

++ ++ +
+

+

+
+

++ +++
+

+

+

+
+ ++++

+
+

+
+

+ ++ ++
+

+
+

+
+

+

+++

+

+

+
+

+

+

+++

+

+

+
+

+++ + +
+

+
+

+++++++ +

++
++++ +

+ +
++

++ ++ +
+

+

+
+

+
++++

+

+
+

+ +
+ +++

+ + + ++
+++

+

+

++
+

+++ + +
+

+
+++ ++ ++ +++ ++++++
+

+ + ++ + +++ ++ + ++ ++++
+++ ++++++

+++ ++ ++++ ++ ++++ +++
+++ ++ ++++
+

++ ++ ++++ +++
++++++

+
+ +

+
++ + + ++++ +++ + ++ ++

+ +++ + +
++++ +++ + ++ +++ ++++ ++ +++ ++++++ ++ +++++ ++ ++ +++++ ++
+

+

+

+++++ + +
+ ++++ + ++ +++ +++ + ++ +++ +++ + ++ +++ ++++++ ++

+
+ +++++ ++

+
+ +++++ ++

+
+ ++ + ++ +++ +++ + ++ +++ ++++++ ++++ +++ ++ ++

+ + +++++ ++++
+++++
++

+
++

+++++ +
+

+
+

++++
+

+
+

+ +
++++

+
+

+
+

+
++++

++
+

++
++++

++ ++
+

++++
+

+
+

+ +++++
++ +++

+++++
+

+
+

+
+++++

+
+

+
++

+++
+

+

+

+
+

+

+++
+

+

+
++

+

+++
+

++++
+

++++ +

+
++

+

++
+

+
+++

+ +++ + +
++

++
++

+
+

+++
+

+ +++ + +
++

++
+++ +

+
++

+

+ +++
+

+
++

+

+
+

++++
+

+
++

+
++ +++

+

+
+

+
++ +++

+
++

+
++ +

+

+

+ +
+

+
++ +++

++

+ +++++ +

++

+ +++ +

+
+

+
+

+ +++ ++ +
+

+

+ +++ + ++
+

+

+ +++ ++ ++
+

++ ++
+

+ + +++++ + +
+

++
+

+++ + +
+

+++
++ ++ +

+
+

+
+ ++++

+
+

+ ++ +++ +
+

+
+++ +++ + +

+ ++
+

++ ++ +
+

+ +++++ + +
+

+++ ++
+

+
+

+ + +
++ +++++

+

+
+

+ +++++ +
+

+
+ ++ +++ +

+
++ +++++

+

++

+ ++++
+

+

+

+

+ ++++
+

+

+

+

+ +++++ +

+

++ +++++ +

+

+
+ +++++ +

++
+ ++ +

++ +

+

++ ++++
+

+

+++
+++

++
+

++

+++ +++ +

++
+

+ ++ +
++

++++ ++
+++

++
++++

+
++ ++

++++
+

+ +
++ ++++ +++
+

+
++ ++
+

+ +
+

+
+++ +

+
+ +

+
+

+++++
++

+
+ +++++ +++ ++ ++++

++ +++ ++++
+++ +++ +++

++
+

++ ++++
+++

++ ++++
+++ ++ +++
++++ ++ ++++

+++ ++ ++ +
+

++
+

++++++ ++++ ++++ + ++ +
+ ++++

+
+++ ++++ ++ ++ ++ +++ ++ +++

+ +++++ ++
+ + +++++ ++
+ + +++++ ++
+ + +++++

++
+

+ ++++ + ++
+

+
+++++ ++

+ + +++++ ++
+ + +++++ ++
+ + +++++ ++
+ + +++ ++ ++

+ +
++++ +++

+ + +++++ ++
+ + +++ +

+
++

++ +++ ++ ++++ +++++ ++
+ +

−4 −2 0 2 4

−0.5

0.0

0.5

Normal Q−Q Plot

Sa
m

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

Figure 4.29.: Diagnostic plots for parametric analysis in an average case of the balanced model.

indeed). In each scenario, therefore, graphs of the two different sizes are aggregated.
Figure 4.30 presents the rank-based analysis. Permutation tests were also performed

and the confidence intervals were slightly larger. We prefer therefore to base our com-
ments on the rank-based analysis, which in this case exhibits more power. For further
justification on this choice we refer the reader to the Appendix B. The following are the
main conclusions from the analysis.

• On Uniform graphs, TSN1 is the best algorithm on 4 scenarios and no other al-
gorithm does significantly better. Therefore, we indicate TSN1 as the preferable
method for this class. It appears particularly powerful with density 0.5. The sec-
ond best is ILS which outperforms TSN1 in the scenarios with density 0.9 and
variability 1.

• On the Weight Biased graphs, results are very similar to Uniform graphs. The
best algorithm is TSN1 , which is significantly the best in 3 scenarios, while ILS

is the second best and again outperforms TSN1 on graphs with density 0.9 and
variability 1.

• On the Geometric graphs, the overall best algorithm is clearly GLS. Differences
from the second best are significant in 6 out of 9 scenarios, while in the other 3
scenarios it is not significantly dominated. The second best algorithm is HEA. The
variability of the hidden colour classes and the edge density have a weak impact
on these graphs, at least for the performance of the best algorithms, and results
could be aggregated in a unique graph, in which case GLS is significantly the best
algorithm.

• Scenarios with variability 0 and 1 exhibit very similar performance of algorithms

4.13 Experimental analysis on a large set of random graphs 161

 Uniform Graphs (G)

Average rank

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = 0 (num. graphs = 25) density = 0.5 variability = 0 (num. graphs = 90) density = 0.9 variability = 0 (num. graphs = 70)

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = 1 (num. graphs = 25) density = 0.5 variability = 1 (num. graphs = 90) density = 0.9 variability = 1 (num. graphs = 70)

2 4 6 8

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = no (num. graphs = 20)

2 4 6 8

density = 0.5 variability = no (num. graphs = 20)

2 4 6 8

density = 0.9 variability = no (num. graphs = 20)

 Geometric Graphs (U)

Average rank

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = 0 (num. graphs = 30) density = 0.5 variability = 0 (num. graphs = 145) density = 0.9 variability = 0 (num. graphs = 55)

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = 1 (num. graphs = 30) density = 0.5 variability = 1 (num. graphs = 145) density = 0.9 variability = 1 (num. graphs = 55)

2 4 6 8

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = no (num. graphs = 20)

2 4 6 8

density = 0.5 variability = no (num. graphs = 20)

2 4 6 8

density = 0.9 variability = no (num. graphs = 20)

 Weight biased Graphs (W)

Average rank

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = 0 (num. graphs = 20) density = 0.5 variability = 0 (num. graphs = 65) density = 0.9 variability = 0 (num. graphs = 40)

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = 1 (num. graphs = 20) density = 0.5 variability = 1 (num. graphs = 65) density = 0.9 variability = 1 (num. graphs = 40)

2 4 6 8

TSN1
HEA
ILS

MinConf
GLS

Nov+
SAN6

TSVLSN
XRLF

density = 0.1 variability = no (num. graphs = 20)

2 4 6 8

density = 0.5 variability = no (num. graphs = 20)

2 4 6 8

density = 0.9 variability = no (num. graphs = 20)

Figure 4.30.: Rank-based confidence intervals for the average ranks. The analysis is divided in
three main classes of graphs: Uniform graphs, Geometric graphs, and Weight Biased graphs.
Inside each class, sub-classes are determined by the combinations of the stratification variables:
edge density and independent set variability. Graphs of size 500 and 1000 are aggregated and
the number of instances considered is reported in the strip text of the plots.

suggesting that this effect is not relevant (yet, it would be interesting to verify the
actual influence of this parameter on the final colour classes). An indication that

162 Graph Colouring

Size 500

Improvement over RLF solution

Cl
as

s
va

ria
bi

lity

0
1

no
Type = G; Edge density = 0.1

−80 −60 −40 −20 0
Type = G; Edge density = 0.5 Type = G; Edge density = 0.9

0
1

no
Type = U; Edge density = 0.1 Type = U; Edge density = 0.5 Type = U; Edge density = 0.9

−80 −60 −40 −20 0
0
1

no
Type = W; Edge density = 0.1 Type = W; Edge density = 0.5

−80 −60 −40 −20 0

Type = W; Edge density = 0.9

Size 1000

Improvement over RLF solution

Cl
as

s
va

ria
bi

lity

0
1

no
Type = G; Edge density = 0.1

−100 −80 −60 −40 −20 0
Type = G; Edge density = 0.5 Type = G; Edge density = 0.9

0
1

no
Type = U; Edge density = 0.1 Type = U; Edge density = 0.5 Type = U; Edge density = 0.9

−100 −80 −60 −40 −20 0
0
1

no
Type = W; Edge density = 0.1 Type = W; Edge density = 0.5

−100 −80 −60 −40 −20 0

Type = W; Edge density = 0.9

Figure 4.31.: Box-plots of differences for each graph class between the best solutions found by
the SLS algorithms and the solution produced by RLF.

the size of the colour class varies more with variability 1 is the better performance
of SAN6 on these instances (recall that it performs slightly better with variability
1 than with variability 0). Furthermore, in the case of no control on the colour
classes embedded in the graph, i.e., no hidden colouring embedded, the results
of the algorithms tend to be different for variability from 0 to 1, especially on the
Uniform and Weighted Biased graphs.

The improvement over RLFRLFRLF. The use of SLS algorithms gives a significant improve-
ment over the initial solution of RLF. In Figure 4.31, we show the distribution of differ-
ences between the best solution found in a graph after the application of one of the SLS
algorithms and the initial RLF solution. We distinguish two main patterns which have
an impact on the entity of the improvement:

• the improvement increases considerably with size and edge density for Uniform
and Weight Biased graphs and it can reach 105 colours of improvement in the case
of Weight Biased graphs;

• in Geometric graphs, the improvement is smaller than for the other two types of
graphs and more pronounced in graphs of density 0.5.

The fact that in the Geometric graphs there are not large improvements together with
the results of Ex-DSATUR on those graphs let us conclude that these graphs are actually

4.13 Experimental analysis on a large set of random graphs 163

Size 500

Improvement over ExDSATUR solution

Cl
as

s
va

ria
bi

lity

0
1

no
Type = G ; Edge dens. = 0.1

−60 −40 −20 0
Type = G ; Edge dens. = 0.5 Type = G ; Edge dens. = 0.9

0
1

no
Type = U ; Edge dens. = 0.1 Type = U ; Edge dens. = 0.5 Type = U ; Edge dens. = 0.9

−60 −40 −20 0
0
1

no
Type = W ; Edge dens. = 0.1 Type = W ; Edge dens. = 0.5

−60 −40 −20 0

Type = W ; Edge dens. = 0.9

Size 1000

Improvement over ExDSATUR solution

Cl
as

s
va

ria
bi

lity

0
1

no
Type = G ; Edge dens. = 0.1

−150 −100 −50 0
Type = G ; Edge dens. = 0.5 Type = G ; Edge dens. = 0.9

0
1

no
Type = U ; Edge dens. = 0.1 Type = U ; Edge dens. = 0.5 Type = U ; Edge dens. = 0.9

−150 −100 −50 0
0
1

no
Type = W ; Edge dens. = 0.1 Type = W ; Edge dens. = 0.5

−150 −100 −50 0

Type = W ; Edge dens. = 0.9

Figure 4.32.: Box-plots of differences for each graph class between the best solutions found by
the SLS algorithms and the solution produced by the Ex-DSATUR heuristic. If only TSN1 among
the SLS algorithms is considered the graph remains substantially the same.

easier to solve already by RLF. For the other graphs, instead, since we do not know their
optimal solution, we cannot conclude that they are harder than the Geometric graphs
for SLS algorithms but we gave evidence that RLF performs poorly.

The improvement over ExExEx-DSATURDSATURDSATUR. Ex-DSATUR is an exact algorithm with exponen-
tial worst case. Nevertheless, it can be stopped at any time and it returns a feasible
solution. The SLS algorithms here discussed have, very likely, also exponential running
time, therefore, their choice is appropriate only if the approximate solution they return
at a chosen time is better than the solution returned by Ex-DSATUR in the same run
time. In Figure 4.32, we give evidence that the SLS algorithms are impressively better
than Ex-DSATUR. Improvements of even more than 150 colours over Ex-DSATUR can
be attained by using these methods. Interestingly, Ex-DSATUR does even worse than
RLF for several instances. In the case of edge density 0.9, graphs of type W, and size
1000, RLF finds in some cases even 100 colours less, while very few are the cases where
Ex-DSATUR is better. The reason why Ex-DSATUR is worse than RLF is related to the
comparison between the two heuristics RLF and DSATUR.

164 Graph Colouring

4.14. Discussion

We compared SLS algorithms for large graph colouring instances. We showed that
exact algorithms can solve graphs until about 100 vertices, in the general case, while
for Geometric random graphs it may be possible to solve exactly even instances with 1000
vertices.

We discussed graph reduction rules which can be used to remove vertices that are
easily coloured independently by the colours assigned to the other vertices. In addition,
we gave a computational analysis of three simple and fast construction heuristics. RLF

appears to be the best heuristic, although its running time is higher than that for the
other two heuristics. If a very fast heuristic is needed, then DSATUR is the best choice.
DSATUR is furthermore not always dominated by RLF on Geometric random graphs. In
some cases, the reduction rules together with construction heuristics are enough to find
the chromatic number. Graphs that are exactly colourable in this way from the DIMACS
repository are those from register allocation, algebraic Quasigroups of size smaller than
100, graphs from the Donald Knuth’s Stanford GraphBase, and Mycielski graphs. When
reduction rules and construction heuristics are not enough, the solution quality can be
considerably improved in relatively short computation time with the application of SLS
methods.

Our important contribution for the advancement of SLS methods for graph colour-
ing has been an in-depth analysis of different neighbourhood structures for Iterative
Improvement. In particular, we developed and analysed a very large scale neighbourhood
(VLSN) which was for the first time applied to graph colouring. This neighbourhood is
based on cyclic and path exchanges which can involve more than one vertex from dif-
ferent colour classes. An effective examination of this neighbourhood is possible thanks
to the favourable correspondence between the problem of finding profitable cyclic ex-
changes and the problem of finding subset disjoint negative cost cycles in an improve-
ment graph (Thompson and Orlin, 1989). This model has also been applied to other
problems: the capacited minimum spanning tree problem (Ahuja et al., 2001a), the sin-
gle source capacited facility location problem Ahuja et al. (2004), and the multi-resource
generalised assignment problem. In all these cases VLSN was enhanced with basic SLS
methods and results were encouraging, producing best known results in a few cases.
In contrast, the application of VLSN to the vehicle routing problem with time windows
studied by Ibaraki et al. (2004) was not profitable. In our case we adapted an algo-
rithm for the examination of the neighbourhood which is due to Dumitrescu (2002). We
proved that our new neighbourhood entails fewer local optima in the GCP and there-
fore Iterative Improvement methods with cyclic and path exchanges can achieve higher
performance then simple one-exchange neighbourhoods. Nevertheless, when high per-
formances on large size graphs are required, the computational cost of examining the
larger neighbourhood can have a negative impact. Therefore, we introduced heuristic
truncation rules which worsen only slightly the quality performance, while decreasing
considerably the complexity of the examination. Finally, we enhanced Iterative Improve-
ment with the Tabu Search metaheuristic and tested the algorithm empirically on large
graphs.

From the experimental analysis it arose clearly that the use of VLSN is ineffective,
despite its good analytic properties. The time spent for examining the neighbourhood is

4.14 Discussion 165

better used by Tabu Search for exploring new regions of the search space. Apparently,
Tabu Search alone is already a good mechanism in GCP for coping with the small one-
exchange neighbourhood limited to conflicting vertices. We mention that, almost con-
temporaneously to our research, another attempt to adapt to graph colouring exponen-
tially large neighbourhoods that can be searched polynomially was developed by Glass
and Prügel-Bennett (2005). Although their neighbourhood structure is totally different
from our cyclic and path exchange neighbourhoods the final outcome is the same: the
one-exchange neighbourhood remains preferable. Hence, even highly promising neigh-
bourhoods can perform poorly in practice and only computational experimentation can
ascertain their competitiveness. Reporting about such negative results is therefore im-
portant.

The experimental analysis was then extended to other SLS methods. Some of them are
the best known methods for the GCP, others have been applied here for the first time.
The newly applied methods are Iterated Local Search, Novelty+, and Guided Local
Search. The choice for these methods is due to their very positive results in problems
similar to the GCP.

Two experiments were designed to evaluate SLS algorithms. A first experiment was
conducted on the instances of the DIMACS repository. In this case, 80 graphs remain
after the removal of the easy ones. These graphs are unevenly distributed among dif-
ferent classes, and this fact compelled us to maintain separated the analysis among the
classes. A second experiment was designed on randomly generated graphs. In this case,
we could increase the number of instances thus allowing to better reduce the variance of
the performance estimates. We considered a total of 1260 graphs that were constructed
with different structural parameters in order to gain a better insight into the relationship
between algorithms and graph structure. We took into account size, edge density, type
of graph, and characteristic of embedded colour classes. These are all features that may
also occur in a similar form in practical contexts.

The results of the two experiments present some differences. On the Uniform and
Weight Biased random graphs, results of the second experiment are much more conclusive
than results on the DIMACS instances. We deem this an indication that the experimental
design adopted in the second experiment is more appropriate. In this case, TSN1 is the
best algorithm with graphs of density 0.5 and remains not dominated at edge density
of 0.1 and 0.9.

On Geometric random graphs, GLS is clearly the best algorithm. This result is similar to
the result obtained for the WAP graphs. These two classes of graphs have the similar
characteristic of having the clique number and the chromatic number very close and the
result leads us to conjecture that GLS works well for graphs with this property. For the
WAP graphs, we know that there is a clique of at least 40 vertices in each instance as
they arise from the configuration of an optical network (in all instances, there exist fibres
that contain 40 light-paths, and light-paths sharing the same fibre are mutually adjacent,
A. Koster, priv. comm.). For four of these graphs the optimal solution is known but GLS

reaches it only in one case. This provides further indication that these graphs might
be challenging also for future comparisons. Weight Biased graphs are, instead, graphs in
which large cliques are avoided and indeed GLS is performing poorly.

These results are interesting and new. They show that TSN1 is not clearly dominated
by other approaches which were claimed better (like HEA) if the computation times are

166 Graph Colouring

not too large and the parameter settings are not fine-tuned on each instance. XRLF, also
believed to be quite effective, was shown to perform poorly on all graphs except on
the Queens graphs. Moreover, this algorithm is very unpredictable in its behaviour and,
despite the indications presented for its tuning, we do not recommend its use. We found
three possible explanations for the difference of these results from previously published
comparisons: (i) algorithms that were fine-tuned to the specific k of the k-colouring
problem to solve; (ii) comments on results were based on best results found, which is
known from statistics to be an incorrect way for making some inference; (iii) comments
were based on too few instances (in the case of XRLF mainly on one single instance);
(iv) the run times considered were much longer (although this claim should be restricted
to HEA only, which, as we verified, brings its contribution only later in the search on
Uniform random graphs); (v) and a priori knowledge was used for determining a good
starting value of k, close to the best known solutions (we gave, instead, confirmation that
for few graphs, like the Flat graphs, it may be harder to solve the problem at a value of
k quite distant from χ(G) than for values close to it).

Finally, we showed that the use of SLS algorithms is worthwhile as it can largely
improve the solutions found by the best construction heuristics and one of the best
exact algorithms if this is stopped prematurely at the same time as the SLS algorithms.
In both cases the improvements are impressive with peaks of about 100-150 colours
gained for high density graphs of size 1000.

In conclusion, we shed light on which are the best algorithms for solving the GCP. The
indication arose is that Tabu Search and Guided Local Search using the RLF construction
heuristic and a local search based on the one-exchange neighbourhood are state-of-
the-art approaches for large size graphs, as they are not dominated by any other SLS
algorithm and often attain the best results. These are quite general purpose algorithms
which do not exploit problem specific knowledge. Further research should be carried
out on ad-hoc algorithms for specific types of graphs, where problem specific knowledge
could be used to boost the performances.

Chapter 5.

Graph Colouring Generalisations

In which we introduce some generalisations of graph colouring with relevant real life
applications. We focus on Stochastic Local Search methods for solving the set T-colouring

problem used for modelling the assignment of frequencies in mobile networks.

5.1. Introduction

In the previous chapter, we studied the classical graph colouring problem (GCP) on
general graphs. Yet, the GCP may not be sufficient for modelling real life situations, as
there may be further constraints to consider besides those representable by simple edges.
An example is the assignment of frequencies in the design of mobile phone networks.
Radio stations are placed in the plane and their transmissions cover given regions, called
“cells”. Each station transmits at a certain frequency but due to interferences, stations
whose cells are geographically close to each other, cannot use the same frequencies.
This situation might look at first sight as the problem of colouring a planar graph, but
in practice things are more complicated. The available frequency band is partitioned
into a set of channels with equal bandwidth. The available channels, which may be
seen as colours, are denoted by integer numbers. Typically, not only prohibitions to
use the same channel (co-channel constraints) apply, but also adjacent channels must be
forbidden if they cause excessive noise. Interference constraints between transmitters
impose, therefore, frequencies to be different and to maintain certain separations on
their values. Moreover, these constraints may involve cells which are not contiguous,
thus making the graph not anymore planar. Finally, transmitters can require more than
one frequency if the number of mobile phones to serve in a cell is high.1 These new
constraints on the separation of frequencies and multiple frequency assignments to a
vertex are modelled by generalisations of graph colouring which are called T-colouring
and set T-colouring. As we will see, the definition of these problems is not unique since
constraints can assume different special connotations and several criteria to evaluate a
colouring can be taken into account in the optimisation version.

Another example where a generalisation of graph colouring is needed, is course time-
tabling, in which we have to schedule lectures in time periods by taking into account

1This problem is often also referred to as Fixed Channel Assignment to emphasise that the model is static,
i.e., the set of connections remains stable over the time, or Radio Link Frequency Assignment, to denote
the specific field of application.

168 Graph Colouring Generalisations

that some pairs of lectures cannot be scheduled at the same time because they share stu-
dents, lecturers or rooms. Again, this may look like a GCP but in practice, timetabling,
is never formulated so straightforwardly and other constraints are commonly present.
Realistic cases include, for example, the presence of restrictions on the assignment of
lectures to certain, specific time periods or the preassignment of some lectures due to
particular needs of the lecturers. The first case can be formalised as a list colouring
problem while the second as a precolouring extension problem.

In this chapter, we study the application of SLS methods for solving such general-
isations of graph colouring. We start by re-implementing known approaches and by
comparing them rigorously. Besides this, we extend algorithms that have been shown
successful in the GCP, develop other original ideas, and indicate the best approach to
deal with the new types of constraints in graph colouring generalisations. The system-
atic study on these problems provide important insights that turned out to be useful in
Chapter 6 when studying a complex timetabling problem.

We first pose the definition of some of the graph colouring generalisations which are
relevant for our study and mention some basic theoretical results in Section 5.2. We then
place our work in the context of recent literature and introduce the benchmark instances
which motivated our research in Sections 5.3 and 5.4. In Section 5.5, we present results
on the precolouring extension while in Section 5.6 the main attention is focused on
an extensive experimental comparison of algorithms for the set T-colouring problem.
A final discussion, which summarises the main findings of our study, concludes the
chapter.

5.2. Formal definitions

In this section, we define formally some of the graph colouring generalisations. We
proceed in increasing order of constraint complexity arriving at the definition of the
set T-colouring problem, which is the central problem of this chapter.

5.2.1. Precolouring Extension

In the precolouring extension, a vertex subset W ⊆ V of a graph G is precoloured, that is,
its vertices are assigned unchangeable colours. The task is then to extend the colouring
to the uncoloured vertices. Formally, the problem is defined as follows:

Input: A undirected graph G = (V, E), a set of colours Γ with |Γ| = k ≤ V, a
subset of vertices W ⊆ V, and a colouring of W, ϕW : W → Γ.

Question: Is there a feasible k-colouring ϕ : V \W → Γ such that ϕ(u) 6= ϕ(v)
whenever u, v ∈ V \W, (u, v) ∈ E and ϕ(u) 6= ϕW(v) whenever u ∈ V \
W, v ∈W, (u, v) ∈ E?

The k-colouring ϕ is called extension of the precolouring ϕW .

5.2 Formal definitions 169

5.2.2. List Colouring

A list colouring problem arises when each vertex has associated specifications on the
colours that are admissible. Formally, it can be expressed as:

Input: An undirected graph G = (V, E) with vertex set V = {v1, v2, . . . , vn}, a
set of colours Γ, and a list colour assignment L = (L1, . . . , Ln) with Li ⊆
Γ, ∀1 ≤ i ≤ n.

Question: Is there a vertex colouring ϕ such that:

• ϕ(vi) ∈ Li for all 1 ≤ i ≤ n, and
• ϕ(vi) 6= ϕ(vj) for all (vi, vj) ∈ E?

The mapping ϕ : V → Γ is also called list colouring, or L-colouring. It is then possible
to distinguish between feasible list colourings, i.e., list colourings that answer the problem
positively, and infeasible list colourings. Typically, Γ ⊂ N and Γ = L1 ∪ . . . ∪ Ln. Each Li
defines the set of admissible colours for vertex vi (often, the set of forbidden colouring is
given in its place).

If |Li| = k for all i, then L is termed a k-assignment. The choice number of G (also called
in the literature list chromatic number), denoted by χl(G), is the smallest k such that
every k-assignment L admits a feasible list colouring. G is then said to be k-choosable if
χl(G) ≤ k. Similarly to the GCP, it is possible to define an optimisation version of the
list colouring problems which is known as the k-choosability problem.

Input: An undirected graph G = (V, E) and a set of colours Γ.

Question: Which is the smallest k such that every k-assignment L with Li ⊆ Γ
and |Li| = k ∈ N for all i admits a feasible list colouring?

Note that the chromatic number problem can be seen as a k-choosability problem
in which the lists in the k-assignment are all identical Li = {1, . . . , k}. It follows that
χ(G) ≤ χl(G).

5.2.3. T-Colouring

In the T-colouring problem, a set of disallowed separations between colours assigned to
adjacent vertices is associated to each edge in E. Without loss of generality, the colour
separations Tuv may be expressed in terms of non-negative integers, that is, forbidden
differences between elements of the set of colours Γ ⊂ N. Formally, the problem is
defined by:

Input: An undirected graph G = (V, E), a set of colours Γ with Γ ⊂ N, and a
collection of sets T : {Tuv ⊂ N0, ∀(u, v) ∈ E}.

Question: Is there a k-colouring ϕ : V → Γ, such that |ϕ(u) − ϕ(v)| 6∈ Tuv,
∀u, v ∈ V?

170 Graph Colouring Generalisations

1 5

13

v4

v1 v2

v3

{0, 1}

{0}

{0, 1}

{0} {0, 1}

2 4

31

v4

v1 v2

v3

{0, 1}

{0}

{0, 1}

{0} {0, 1}

Figure 5.1.: T-colouring problem with χT(G) = 3 and spT(G) = 3.

A k-colouring that fails to satisfy some of the separation constraints is an infeasible
T-colouring; otherwise it is feasible. Note that if Tuv = {0} for all (u, v) ∈ E, then a
T-colouring problem reduces to the GCP.

The optimisation version of this problem focuses on four characteristics of a T-col-
ouring: the number of edge conflicts, in case of infeasible T-colouring; the order of the
T-colouring, defined as the number of different colours effectively used in the T-col-
ouring; the span of the T-colouring, that is, the difference between the largest and the
smallest colour used, i.e., maxu,v∈V(|ϕ(u)− ϕ(v)|); and the edge span of the T-colouring,
that is, the largest difference between colours at any edge, i.e., max(uv)∈E(|ϕ(u)− ϕ(v)|).
Distinguishing the four cases, we obtain four optimisation problems:

Input: An undirected graph G = (V, E), a set of colours Γ with Γ ⊂ N, and a
collection of sets T : {Tuv ⊂ N0, ∀(u, v) ∈ E}.

Question: One of the following:

Minimal number of conflicts: Which is the T-colouring that minimises the num-
ber of conflicting edges?

T-chromatic number: Which is the smallest order χT(G), known as T-chromatic
number (or T-order), such that a feasible T-colouring exists?

T-span: Which is the smallest span spT(G), known as T-span, such that a
feasible T-colouring exists?

Edge T-span: Which is the smallest edge span spe
T(G), known as edge T-span,

such that a feasible T-colouring exists?

Note that with Γ = {1, . . . , k}, the span of the graph corresponds to k− 1 and therefore
minimising the span corresponds to minimising k. Moreover, in the case T = {0}, we
have χT(G) = χ(G), spT(G) = χ(G)− 1, and the concept of edge span reduces to the
concept of graph bandwidth.

Not much work has been done for understanding possible relations between the three
last criteria. Hale (1980) points out that there are cases where no optimal order T-
colouring gives an optimal span and vice-versa. For instance, if the graph G and the
sets T are those of Figure 5.1, then χT(G) = 3 and spT(G) = 3 but a T-colouring with
order 3 has span at least 4, whereas a T-colouring with span 3 has order 4.

This example should raise the interest for the study of the trade off between the two
objectives of minimising the order and minimising the span of the T-colouring. Hale

5.2 Formal definitions 171

(1980) defines the restricted colouring problem2 as the attempt to minimise the span (order)
while maintaining fixed the order (span). A special case of restricted colourings occurs
when attempting to minimise the span (order) for the order fixed to χT(G) (span fixed
to spT(G)). But no other relevant work appeared in these directions.

The case in which all Tuv ∈ T consist of consecutive integers {0, 1, . . . , tuv − 1} for
all (u, v) ∈ E is more relevant for practical applications. This particular version of the
problem is known as separation distance T-colouring problem and the values tuv associated
with each edge (u, v) are called colour distances (Eisenblätter et al., 2002). The constraints
related with T that a T-colouring must satisfy become then |ϕ(u)− ϕ(v)| ≥ tuv, ∀(uv) ∈
E.

Finally, the problem of minimising edge conflicts in the T-colouring is strictly re-
lated to the minimal interference problem, which has also practical relevance in frequency
assignment (Aardal et al., 2003; Eisenblätter et al., 2002). This is the case, when penal-
ties are associated to disallowed separations and acceptable interferences are weighted
differently from forbidden interferences. This gives rise to the minimal interference
formulation where the total penalty has to be minimised.

5.2.4. List T-Colouring

Combining the two previous problems, we obtain the list T-colouring problem, intro-
duced by Tesman (1993), which may be formalised as follows:

Input: An undirected graph G = (V, E) with vertex set V = {v1, v2, . . . , vn}, a set
of colours Γ, Γ ⊂ N, a list colour assignment L = (L1, . . . , Ln) with Li ⊆ Γ,
∀1 ≤ i ≤ n, and a collection of sets T : {Tuv ⊂ N0, ∀(u, v) ∈ E}.

Question: Is there a T-colouring in which each vertex vi ∈ V receives a colour
ϕ(vi) from the corresponding list of admissible colours Li?

The T-colouring problem can be seen as a particular case of the list T-colouring prob-
lem where all Li ∈ L are identical.

Each of the four optimisation criteria defined for the T-colouring problem can be
used for list T-colourings. The formalisation is the straightforward extension of the
optimisation case of T-colouring problem, hence we omit it.

An additional optimisation problem which is studied with list T-colourings, is finding
the T-choice number:

Input: An undirected graph G = (V, E), a set of colours Γ ⊂ N, and a collection
of sets T .

Question: Which is the smallest k such that every k-assignment L with |Li| = k ∈
N0, admits a feasible list T-colouring?

2The term restricted is used in graph colouring with more than one meaning. Besides the meaning ex-
plained in the present text, Dorne and Hao (1998b) use the term to indicate the special case of T-
colouring where each Tuv ∈ T is a set of consecutive integers of the form Tuv = {0, 1, 2, . . . , tuv − 1}.

172 Graph Colouring Generalisations

5.2.5. Set T-Colouring

A further extension of the T-colouring problem, also originally described by Tesman
(1990), is the set T-colouring problem defined as follows:

Input: An undirected graph G = (V, E), a set of colours Γ ⊂ N, |Γ| = k, a number
of required colours r(v), ∀v ∈ V, and a collection of sets T : {Tuv ⊂ N0,
∀(u, v) ∈ E and Tuu ⊂ N0 ∀u ∈ V}.

Question: Is there a vertex colouring corresponding to a multi-valued function
ϕ : V → Γ such that each vertex receives a set of colours ϕ(v) = S(v) ⊆ Γ
and:

• |S(v)| = r(v) for all v ∈ V;
• |ϕ(v, i)− ϕ(v, j)| 6∈ Tvv ∀ϕ(v, i), ϕ(v, j), i 6= j; and
• |ϕ(v, i) − ϕ(u, j)| 6∈ Tuv ∀(u, v) ∈ E, ∀ϕ(v, i) ∈ ϕ(v), ϕ(u, j) ∈

ϕ(u)?

We call such multi-valued colourings set T-colourings and denote them as feasible if
they constitute an answer to the problem, and infeasible otherwise. The three con-
straints that a set T-colouring must satisfy in order to be feasible are called requirement
constraints, vertex constraints, and edge constraints, respectively.

Generalising the characteristics of T-colourings, we can define the order of a set
T-colouring to be the number of distinct integers used in all the sets S(v) and the span
to be the difference between the largest and the smallest integers used in any of the sets
S(v). We denote as χs

T(G) the minimal order and as sps
T(G) the minimal span of a set

T-colouring of G.
All the optimisation versions of the T-colouring problem can be extended to the case

of sets of colours assigned to vertices. However, three received major attention in the
literature: in case a feasible set T-colouring exists, the minimal order, and the minimal
span problem; in case no feasible set T-colouring exists, the maximal service. This latter
version arises mainly in the field of frequency assignment and seeks for a partial set
T-colouring which assigns to the vertices as many colours as possible while maintaining
feasibility. Basically, in this case the requirement of colours at each vertex is relaxed
to express a preference rather than a strict restriction. Formally, the three optimisation
versions are expressed as follows.

Input: An undirected graph G = (V, E), a set of colours Γ ∈ N0, |Γ| = k, a
number of required colours r(v) for each vertex and a collection of sets T :
{Tuv ⊂ N0, ∀(u, v) ∈ E and Tuu ⊂ N0 ∀u ∈ V}.

Question: One of the following:

Maximal service: Which is the set T-colouring that satisfies all vertex and edge
constraints and maximises the number requirement constraints satisfied?

Minimal order: Which is the smallest order χs
T(G) such that a feasible set T-

colouring exists?
Minimal span: Which is the smallest span sps

T(G) such that a feasible set T-
colouring exists?

5.2 Formal definitions 173

Combining the ideas of set T-colouring and list T-colouring, the notion of set list T-
colouring can be straightforwardly derived. This version of graph colouring is, however,
not relevant to the scope of this thesis.

5.2.6. Related problems

A special case of set colourings arises when each r(v) = r > 0 for all v ∈ V. In that case,
the assignment of colours is called an r-tuple colouring. The r-tuple chromatic number,
denoted by χr(G), is defined as the minimal number of distinct colours in an r-tuple,
that is, χr(G) = min{|⋃v∈V S(v)|} such that a feasible r-tuple colouring exists. The span
of an r-tuple can also be redefined.

Another special case of set colouring is the interval set T-colouring in which each set
S(v) is made of r(v) consecutive colours (de Werra, 1990). This problem is particularly
relevant for applications like course timetabling and employee timetabling when lessons
or shifts can be of variable length but must be scheduled in consecutive hours.

Often, in graph theory the T-colouring problem is treated with the collection T
reduced to one single set T, which remains the same for all the edges. The gen-
eral case can be obtained by considering l different graphs, G0, G1, . . . , Gl each on the
same vertex set V with the following properties: G0 ⊆ G1 ⊆ G2 ⊆ . . . ⊆ Gl and
T(0) ⊆ T(1) ⊆ T(2) ⊆ . . . ⊆ T(l). The task becomes finding a colouring ϕ that as-
signs to each vertex a colour, such that ϕ is simultaneously a T(i)-colouring of Gi for all
i = 1, . . . , l, that is, (u, v) ∈ E(Gi)⇒ |ϕ(u)− ϕ(v)| 6∈ T(i), i = 0, 1, . . . , l.

With respect to list colouring, Mahadev and Roberts (2003) have recently introduced
new formulations which can find relevant applications in the field of timetabling and
physical mapping of DNA. Namely, given a graph G and L for which a list colouring
does not exist, one can be asked for the minimal modifications to G or to L in order to
make them list colourable. In the first case, one may be interested in knowing what is the
smallest number of edges to remove for having a feasible list colouring. In the second
case, one may look for the minimal number p of vertices, v1, v2, . . . , vp such that a colour
must be added to the respective set of admissible colours Li, i = 1, 2, . . . , p. Alternatively,
one can define a trade from vertex v to vertex u as the operation of removing one colour
c from Lv and adding it to Lu, and seek how many trades are needed to make the list
assignment list colourable.

5.2.7. Known theoretical results

The decision versions of the T-colouring, list colouring and set T-colouring problems are
NP-complete for general graphs. This is due to the fact that the k-colouring problem
can be expressed as a particular case of these problems. Intuitively, results for the
optimisation problems are strictly related to the type of the graph G and the set T .
General results may therefore only be quite weak. One such result is the following.

Theorem 5.1 (Hale, 1980) For all graphs G and sets T , χT(G) ≤ spT(G).

174 Graph Colouring Generalisations

If all T sets are the same, i.e., T = {T ⊂ N0, ∀(u, v) ∈ E}, the following theorems hold
on all general graphs.

Theorem 5.2 (Cozzens and Roberts, 1982) For all graphs G and sets T,

χT(G) = χ(G).

Theorem 5.3 (Cozzens and Roberts, 1982) For all graphs G and sets T,

χ(G)− 1 ≤ spT(G) ≤ |T|(χ(G)− 1).

Theorem 5.4 (Cozzens and Roberts, 1982) For all graphs G and sets T,

spT(Kω(G)) ≤ spT(G) ≤ spT(Kχ(G)),

where ω(G) is the size of the largest clique of G and Kn is a complete graph of size n.

In particular, the last theorem stimulated research on spT(Kn) when the typology of
T is known. These results are, however, not valid for the more general case of T as a
collection of different sets.

For a review on more precise theoretical results on special cases of G and T we refer
to Roberts (1991) and Murphey et al. (1999). Here, since special cases of T-colouring
problems are rare in practice (Aardal et al., 2003), we orient our research to the general
cases.

5.2.8. Problem transformations

Precolouring extension into vertex colouring

Let G = (V, E) be a graph with precoloured set W and let k be a bound on the number
of colours. Assuming that Wi ⊆ W is the (possibly empty) set of vertices of colour i for
1 ≤ i ≤ k, it is possible to replace each Wi in G by a new vertex ui and join v ∈ V \W to
ui if and only if v had at least one neighbour in Wi. All new vertices ui are then made
mutually adjacent, forming a clique of order k. The precolouring of G is extendable with
colour bound k if and only if the modified graph has chromatic number k. An example
of the construction of the modified graph is shown in Figure 5.2.

Set T-Colouring into T-Colouring

A graph G = (V, E) with a collection of sets T of constraints and r(v), ∀v ∈ V colour
requirements can be transformed into a graph GS = (VS, ES) with r(v) = 1, ∀v ∈ VS

by creating a vertex u for each requirement of a vertex v ∈ V so that at the end |VS| =
∑v∈V r(v). The vertices u ∈ VS derived from a vertex v ∈ V form a clique of order r(v)
in which each edge receives the constraint Tvv. Every such vertex is then connected with
each vertex of the clique induced by another vertex w ∈ V if (v, w) ∈ E. The colour
separation associated with these edges is Twv. In the next sections we will often refer to
this transformation by naming the graph GS the split graph.

5.3 State of the art and motivations 175

Figure 5.2.: The transformation of the precoloured graph qwhdec.order5.holes10. The first
graph on the left is the original graph with 15 precoloured vertices and 10 “holes” in white. The
precoloured vertices and the edges incident to them are removed and in their place one single
vertex (represented in light grey) for each colour used is inserted in the graph (second graph).
The vertices added are connected each other forming a clique (third graph), then the new vertices
are connected to the vertices left in the graph if one of the vertices they represent was connected
to such a vertex in the original graph (fourth graph). The final graph is composed by the edges
and the vertices added (fifth graph).

5.3. State of the art and motivations

The problems introduced above have received particular attention in recent years both
from a theoretical and application perspective. Graph theorists are currently partic-
ularly involved in graph colouring generalisations. Many properties of these prob-
lems are studied, such as complexity, bounding, and approximations. Moreover, the
GCP generalisations introduced are just a few of those included in the family of graph
colouring problems and the interest is also in classifying and discovering new graph
colouring problems with practical relevance. Surveys that collect formulations of many
such problems are those of Jensen and Toft (1995) and Tuza (1997), as also the thesis of
Marx (2004). From the original papers of Roberts (1991) and Tesman (1990, 1993) the
attention has moved to specific graph typologies and specific problem formulations and
the literature has grown rapidly. For a bibliography of related publications we refer
the interested reader to the web site of the DIMACS research centre which besides the
“Computational Challenge” is also holding a series of workshops on theoretical results
on graph colourings and their generalisations.3

As far as the T-colouring problem is concerned, Giaro et al. (2003a) and Giaro et al.
(2003b) give more precise results on its complexity. Lower bounds have been inves-
tigated primarily for the assessment of frequency assignment algorithms (see Monte-
manni, 2001; Allen et al., 1999; Janssen et al., 2005; Smith et al., 2000), while few approx-
imation results are available (among them Simon, 1989 and Janssen and Narayanan,
2001). Finally, publications on approximate approaches are those of Costa (1993), Dorne
and Hao (1998b), Phan and Skiena (2002), Lim et al. (2003) and Prestwich (2003); the lat-
ter two present results on the instances proposed in the context of the DIMACS “Com-
putational Challenge”. We will mainly focus on these references, and we will describe
and re-implement the approximate methods proposed there.

In contrast, algorithms for the frequency assignment problem (FAP) have been well
studied in the last three decades. Several resources are collected on the web,4 among
them surveys (Eisenblätter et al., 2002; Aardal et al., 2003), an updated bibliography, and

3DIMACS/DIMATIA/Renyi Working Group on Graph Colourings and their Generalizations. January
2005. http://dimacs.rutgers.edu/Workshops/GraphColor/main.html (March 2005)

4A. Eisenblätter and A. Koster. June 2000. <http://fap.zib.de/biblio/> (March 2005)

http://dimacs.rutgers.edu/Workshops/GraphColor/main.html

176 Graph Colouring Generalisations

sets of benchmark instances. Exact and approximate algorithms have been proposed
and tested on instances from real applications. Particularly famous is the Philadelphia
instance, made of 21 vertices, which allows the comparisons of exact algorithms. More
challenging are the EUCLID CALMA, the COST 259, and the ROADEF Challenge 2001
instances whose size varies from 20 to 5000 vertices. Approximate algorithms are usually
tested on these instances. Several publications studied the application of SLS methods
to the FAP problem considering different minimisation objectives. The most relevant
publications on construction heuristics, and metaheuristics are those of Hao et al. (1998),
Capone and Trubian (1999), Hurley et al. (1997), Castelino et al. (1996), Kendall and
Mohamad (2004), and Smith et al. (2002).

The motivation of our study is mainly that of providing a clear comparison of ap-
proximate algorithms on challenging and precisely characterised instances for graph
colouring generalisation problems. In publications concerning frequency assignment,
we often read sentences like “any attempt to evaluate the relative performance of ex-
isting algorithms is certain to prove difficult, and this difficulty tends to increase rather
than decrease as more papers are published” (Smith et al., 2002). Similar assertions can
be found in other publications. Ultimately, they leave the reader confused about which
algorithm should be implemented. Even publications in the context of the DIMACS
“Computational Challenge” are misleading because of missing details (Lim et al., 2003)
or because algorithms have never been directly compared due to results attained under
excessive long run times (see for example Dorne and Hao, 1998b) or different instances.
The methods described in Chapter 3 give us the tools for the design and analysis of
experiments to carry out a correct comparison of algorithms and to address precise
questions about the solution approaches.

The focus of our study is on a special case of the set T-colouring problem, namely the
separation distance set T-colouring problem. Furthermore, given that the majority of the
publications have focused on the minimisation of the span, we also address mainly this
objective. However, we will also try to understand whether the evaluation of solutions
that approximate the minimal span remains the same when considered in the light of
the minimal order criterion.

5.4. Benchmark instances

Instances for computational benchmarking of solution methods for graph colouring gen-
eralisations are collected in the context of the “DIMACS Computational Challenge on
graph colouring and its generalisations” and they are available on the web.5 Instances
can be grouped by problem:

Precolouring extension. Quasigroup instances with precoloured vertices. They are ob-
tained by uncolouring randomly assignments from a feasible colouring (from there
the name Quasigroup with “holes”). The instances can be solved both by finding
a feasible k-extension for a given k with Γ = {1, . . . , k} or by minimising the order

5M. Trick. “Computational Series: Graph Coloring and its Generalizations.” August 2001.
http://mat.gsia.cmu.edu/COLOR04/. (July 2005.)

http://mat.gsia.cmu.edu/COLOR04/

5.5 Algorithms for the Precolouring Extension Problem 177

of the extension. We will focus only on the former that corresponds to the decision
version of the problem. Instances are denoted by qwhdec.

Set T-colouring. Two types of random graphs are given. By ignoring some data, these
instances can be used to study the GCP as well as the T-colouring problem. The
focus is on minimising the span of the colouring, which corresponds to minimising
k with Γ = {1, . . . , k} such that a feasible colouring exists.

Random Graphs. These instances were introduced by Dorne and Hao (1998b),
although their use remained limited to that publication. These are based
on Uniform random graphs with n vertices and an edge probability p, ex-
pressed in percent (see also page 97). Requirements, vertex-distances and
edge-distances are assigned to vertices and edges by uniformly choosing in
the intervals
{1, . . . , r}, {1, . . . , tuu}, {1, . . . , tuv}, respectively. In the set of instances the
following values are considered n ∈ {30, 100, 300, 500, 1000}, p ∈ {10, 50, 90},
r = tuu = tuv = 5. We denote these instances with the original French nomen-
clature essai.n.R.p where R = ∑ r(v).

New Random Graphs. For some extensive experiments described in the next sec-
tions, solving the previous graphs resulted computationally prohibitive. We
therefore modified the generator of Culberson et al. (1995) for graph colouring
instances to produce set T-colouring instances. We confine ourselves to con-
sider Uniform random graphs without hidden colouring but we controlled
the requirements at the vertices and the distances constraints. As for the
previous class, we vary requirement, vertex-distance, and edge-distance con-
straints assigned to vertices and edges by uniformly choosing them in the
intervals, {1, . . . , r}, {1, . . . , t}, and {1, . . . , c}, respectively. We considered the
following set of parameters: n ∈ {60, 120, 240}, p ∈ {0.1, 0.5, 0.9}, r ∈ {5, 10},
t ∈ {5, 10}, and c = t. We denote these graphs as T-G.r.t-n.p.

Geometric graphs. They are generated by random points in a 10,000 by 10,000
grid and are connected by an edge if they are close enough. Distances as-
sociated to edges are inversely proportional to the distances between nodes
in the grid while vertex colour requirements are uniformly generated. The
size of these instances ranges from 20 to 120. We denote sparse instances
as GEOMn and denser instances as GEOMna and GEOMnb. The instances GEOMnb
have higher requirements per node than GEOMna.

5.5. Algorithms for the Precolouring Extension Problem

Exact algorithms for solving precolouring extensions have recently been studied by
Gomes and Shmoys (2002). Heuristic algorithms for solving this problem are easily
derived from those presented for the GCP. Here, we confine ourselves to consider the
decision version of this problem consisting in finding a feasible colouring (that certainly
exists) for the Quasigroup instances with “holes” solved by Gomes and Shmoys (2002).
In particular, we are interested to give insight into the following two issues: (i) which

178 Graph Colouring Generalisations

is the best solution approach for tackling the problem and whether the relative perfor-
mance of the algorithms is the same as for the GCP; (ii) understanding whether the
hardness of the instances varies for SLS algorithms as for the exact algorithms studied
by Gomes and Shmoys (2002).

5.5.1. Two solution approaches

We consider two basic solution approaches.

Solving the reduced graph. In Section 5.2.8, we described the transformation of a pre-
coloured graph into a reduced graph. Solving the reduced graph can be accomplished
by any of the algorithms described in Chapter 4. In particular, we consider construction
heuristics with a bound kb. For the ROS and DSATUR heuristic we modified Algorithm
4.1 on page 104 in such a way that if l > kb a number is randomly chosen in {1, . . . , kb}.
A similar, straightforward modification was adopted for RLF, where the further con-
straint i < kb is added to the outer “while” loop of Algorithm 4.2 on page 104 and the
vertices left at the end are assigned a colour at random.

We included in the analysis two enhanced versions of DSATUR and RLF, namely,
DSATUR+ and RLF+. There are two new features in DSATUR+, namely (i) the colour
assigned to a selected vertex is the colour which can still be feasibly assigned to the
lowest number of remaining vertices; (ii) if no colour can be assigned without breaking
feasibility, then the colour which creates the lowest number of constraint violations is
used. The novelty of RLF+ lays, instead, in the choice of the first vertex to move in Ci
(see Algorithm 4.2) which is not anymore the vertex with maximal degree in V ′ but the
vertex with the lowest number of feasible colours (most constrained vertex).

Among the complete SLS methods we consider only TSN1 , given its good results for
the GCP.

Solving the original graph. Clearly, it is also possible to solve the original graph and
modify the algorithms to take into account for the constraints related with precoloured
vertices. For the construction heuristics this is easily achieved by an opportune initiali-
sation of the data structures involved. For Tabu Search, it would be enough to avoid the
involvement of precoloured vertices in any exchange.

5.5.2. Experimental analysis

In Figure 5.3, we compare the solutions of construction heuristics before (left) and after
the application of Tabu Search (right). Precisely, the results on the right are relative
to Tabu Search started from the initial solutions produced by each of the construction
heuristics and with a termination criterion of 1000 · |V| iterations. The comparison is
performed on the 15 Quasigroup instances with holes from the DIMACS repository and
it is based on ranks of the number of violations in the final colourings. The different
width of the confidence intervals in the figure is determined by the use of a slightly
different design in the two cases: 10 runs per instance for the graphs on the left and

5.5 Algorithms for the Precolouring Extension Problem 179

Average rank
20 40 60 80

ROS−Orig
DSATUR−Orig

DSATUR+−Orig
RLF−Orig
ROS−Red

DSATUR−Red
DSATUR+−Red

RLF−Red
RLF+−Red

QuasiGroup with holes (15 Instances)
Construction heuristics

10 15 20

QuasiGroup with holes (15 Instances)
After tabu search

Figure 5.3.: Confidence intervals for the all pairwise comparisons of algorithms on the Quasi-
group instances with holes. On the left, the comparison is among construction heuristics ob-
tained collecting 10 runs per instance. On the right, the comparison involves the same construc-
tion heuristics and is based on the results after the application of TSN1

for 1000 · |V| iterations
and 3 runs per instance.

3 runs for the one on the right. The results clearly indicate that DSATUR+ is the best
construction heuristic. From the perspective of computation time a comparison is not
relevant, since all heuristics remain below 1 second despite the fact that some instances
reach 4900 vertices. In general, solving the reduced graph helps in achieving better
results and this is particularly evident after the application of Tabu Search. Since |V| is
much smaller in the reduced graph, Tabu Search not only performs better in this case
but it is also much faster.

In Table 5.1, we report the numerical results of the comparison of Figure 5.3 between
DSATUR+ and TSN1 starting from DSATUR+. We divide the instances in under-con-
strained (U), medium-constrained (M), and critically-constrained (C) as suggested by
Gomes and Shmoys (2002). This division corresponds to the proximity of the instance
to the region of phase transition, i.e., the region where the problems pass from being
satisfiable to being unsatisfiable. The closer to this region the harder the instance be-
come. Gomes and Shmoys (2002) compare on these instances two different encodings
for the problem, as a CSP or a SAT problem, and solve them with exact methods. Re-
sults are slightly in favour of the CSP-based approach although the solution method is
more sophisticated and there are cases where the SAT-based method finds a solution
while the CSP-based does not. Computation times reach peaks of 1.5 hours for these
approaches. Our results show that SLS methods encounter similar difficulties as the
exact approaches described by Gomes and Shmoys (2002) when solving the critically-
constrained instances; problems are therefore hard independently of the search strategy
adopted. Slightly different is the performance on the medium-constrained instances
where SLS methods are very effective for the two instances of size 70 but fail to solve
the others on which the methods of Gomes and Shmoys (2002) still succeed. These in-
stances are challenging and may be particularly suitable for inspiring further research
for improving SLS methods because feasible solutions are known to exist and the hard-
ness of these instances is known a priori.

We conclude this section with a final remark on the list colouring problem. All the
methods discussed in Chapter 4 can be easily adapted to solve the list colouring problem

180 Graph Colouring Generalisations

DSATUR+ TSN1

Instance |V| |Vred| % red. region Viol. sec. Viol. sec.

Gomes
and
Shmoys

qwhdec.o.5.h.10 25 10 60 U 0.0 0.00 0 0.00 CSP/SAT
qwhdec.o.18.h.120 324 120 63 U 5.5 0.00 0 0.03 CSP
qwhdec.o.30.h.316 900 316 65 U 26.0 0.04 3 9.94 CSP
qwhdec.o.30.h.320 900 320 64 U 30.5 0.04 5 10.57 CSP
qwhdec.o.35.h.405 1225 405 67 M 45.0 0.08 22 26.51 CSP
qwhdec.o.40.h.528 1600 528 67 M 47.5 0.16 25 47.92 CSP
qwhdec.o.60.h.1440 3600 1440 60 M 63.5 1.40 24 200.92 SAT
qwhdec.o.60.h.1620 3600 1620 55 M 57.0 1.40 19 179.78 CSP
qwhdec.o.70.h.2450 4900 2450 50 M 55.0 3.55 0 18.75 CSP
qwhdec.o.70.h.2940 4900 2940 40 M 42.5 3.85 0 11.36 CSP
qwhdec.o.33.h.381.bal 1089 381 65 C 49.0 0.07 22 22.49 SAT
qwhdec.o.50.h.825.bal 2500 825 67 C 82.5 0.40 37 148.19 CSP
qwhdec.o.50.h.750.bal 2500 750 70 C 92.0 0.44 43 146.52 N.S.
qwhdec.o.60.h.1080.bal 3600 1080 70 C 122.5 1.35 56 315.84 N.S.
qwhdec.o.60.h.1152.bal 3600 1152 68 C 118.5 1.40 47 289.90 N.S.

Table 5.1.: Numerical results on the precolouring extension instances. Given are the number of
vertices and the number of vertices after graph reduction, the percentage of removed vertices,
and the region of hardness as defined by Gomes and Shmoys (2002). The results of the two
heuristics are expressed in terms of the median number of violations in the final solution and
median time limit (or where feasible solutions are found the median time to reach these solu-
tions). For Gomes and Shmoys (2002), we report the approach that found a solution or “Not
Solved” in case no solution was found.

in a similar vain as we adapted algorithms for the precolouring extension problem. It is
enough to add a tabu restriction for each pair colour–vertex which is forbidden by the
list constraints.

5.6. Algorithms for the Set T-Colouring Problem

We follow in this study of the set T-colouring problem the same scheme developed in
Chapter 4 for the GCP. We first introduce reduction techniques, exact algorithms, and
develop a method for gaining lower bounds. Then, we study Stochastic Local Search
methods separately in their components and finally analyse the results of a large scale
experimental design for the comparison of high-performing algorithms.

5.6.1. Graph reduction

In the GCP, a vertex v can be removed from G if d(v) < k since a feasible colour as-
signment for v can be found independently from the colours used in AV(v). A similar
reasoning can be applied to the separation distance T-colouring problem. Indeed, each
colour chosen for a vertex w ∈ AV(v) forbids 2(tvw − 1) colours for v. Thus, in total
at most ∑w∈AV(v) r(w)2(tvw − 1) colours can become unavailable for v. If the number
of remaining colours available for v is at least r(v)(tvv − 1) + 1, we are assured that
a feasible colouring for v exists. This removal process can be iteratively applied and

5.6 Algorithms for the Set T-Colouring Problem 181

the elimination of some vertices can make other vertices removable. However, for our
benchmark instances, this reduction is not very effective. For the random graphs no
reduction occurs. Only for the Geometric instances some vertices can be removed, but
in all cases less than 20%.

5.6.2. Exhaustive search

The goal of this section is showing that the computation cost for solving exactly the
set T-colouring problem increases considerably with respect to the GCP and that the
exact approach is infeasible already on small graphs. We show this by showing that
it is already very hard to solve the simplification of a set T-colouring problem into a
T-colouring problem. Every instance of set T-colouring problem can be simplified into
an instance of T-colouring problem by neglecting the constraints at the vertices, i.e.,
the vertex requirements and the vertex distance constraints, and maintaining only the
original graph and the edge distance constraints. Note that this process of simplification
is different from the one of transformation introduced in Section 5.2.8, according to which
an instance of set T-colouring problem can be solved by solving a T-colouring problem
on the split graph.

Given this premise, we focus our attention on exact algorithms for the T-colouring
problem. Exact approaches for the T-colouring problem are mainly based on backtrack-
ing techniques. Examples are given by Hurley et al. (1997) and Costa (1993); Lanfear
(1989) considers only the special case of the two-level T-colouring problem.

We modified Ex-DSATUR of Mehrotra and Trick (1996), described in Section 4.6, re-
sulting in a generalised Ex-DSATUR, G-Ex-DSATUR for short. Unfortunately, here a
clique cannot be used to precolour a part of the graph as in the GCP. In the next section,
we will present a lower bounding technique for deriving from a clique a lower bound
for the T-colouring problem. This lower bound is used by G-Ex-DSATUR for stopping
the search, although not for determining a precolouring of part of the graph. Empirical
observations gave evidence that there is no impact in solution quality either in the use
of the lower bound and in the use of the corresponding precolouring. An upper bound
is also used for pruning the search when opportune and it is determined by one of
the construction heuristics, which will be introduced later. Besides this, G-Ex-DSATUR

works as usual by colouring a vertex v with colour c, and contextually forbidding by a
forward mechanism the colours in the interval (c− tuv, c + tuv) for all adjacent vertices
u ∈ AV(v). Vertices are considered sequentially with precedence given to vertices with
the largest number of forbidden colours. If no colour lower than the upper bound can
be determined, then the vertices adjacent to the current vertex are recoloured through
backtracking until a feasible T-colouring can be established. Ties, in case of an equal
number of colours in adjacent vertices, are broken by the vertex degree. We also inves-
tigated the use of an adjusted vertex degree which accounts for distances on the edges
but it did not yield any improvement because ties are rare to occur.

In Table 5.2, we present results on the instances of set T-colouring problem when
simplified into T-colouring, and when transformed into set T-colouring instances. For
both cases we solve a GCP on the corresponding graph with Ex-DSATUR. The increase
in the hardness of the T-colouring problems in comparison with the GCP is evident.

182 Graph Colouring Generalisations

set T-colouring simplified into T-colouring set T-colouring transformed into T-colouring
Ex-DSATUR G-Ex-DSATUR G-DSATUR Ex-DSATUR G-Ex-DSATUR G-DSATUR

Instance χ(G) sec. LB k sec. k χ(GS) sec. LB k sec. k
GEOM60 6 0.00 26 - - 33/34 (37) 43200 230 - - 258/258
GEOM70 8 0.00 27 - - 38/40 44 0.00 260 - - 283/287.5
GEOM80 8 0.00 40 - - 44/45 63 0.00 365 - - 392/395
GEOM90 8 0.00 45 - - 46/46 51 0.00 313 - - 335/338.5
GEOM100 9 0.00 49 - - 53/54.5 60 0.00 378 - - 412/416
GEOM110 9 0.00 49 - - 53/56.5 62 0.10 348 - - 400/410
GEOM120 11 0.00 58 - - 61/66 (64) 43200 343 - - 412/419
GEOM30a 6 0.00 26 27 18.97 29/31 40 0.00 182 - - 238/238
GEOM40a 7 0.00 26 - - 38/38 46 0.00 160 - - 229/229
GEOM50a 9 0.00 30 - - 53/54 61 0.00 199 - - 335/345
GEOM60a 10 0.00 37 - - 54/55 65 0.00 290 - - 369/373
GEOM70a 11 0.00 55 - - 68/69 71 0.00 425 - - 487/487
GEOM80a 12 0.00 45 - - 70/70 68 0.00 241 - - 388/396
GEOM90a 12 0.00 55 - - 71/76 65 0.1 285 - - 398/405
GEOM100a 13 0.00 57 - - 73/78 81 0.1 302 - - 462/471
GEOM110a 14 0.00 63 - - 79/81 14 0.0 385 - - 523/523
GEOM120a 16 0.00 78 - - 92/93 93 0.2 514 - - 571/578
GEOM20b 3 0.00 12 13 6.36 14/14 8 0.00 39 - - 45/45
GEOM30b 5 0.00 14 (26) 12h 26/26 11 0.00 38 - - 78/78
GEOM40b 7 0.00 30 - - 35/35 14 0.00 74 - - 79/86
GEOM50b 8 0.00 32 - - 37/40 17 0.00 67 - - 92/94
GEOM60b 9 0.00 37 - - 47/47 22 0.00 79 - - 123/132
GEOM70b 10 0.00 40 - - 55/55 22 0.00 94 - - 133/135
GEOM80b 12 0.00 51 - - 69/74 (26) 43200 110 - - 148/149
GEOM90b 15 0.00 58 - - 82/83.5 28 0.00 112 - - 160/161
GEOM100b 15 0.00 59 - - 82/87 30 0.00 133 - - 173/179
GEOM110b 15 0.00 68 - - 89/89.5 37 0.00 182 - - 221/225.5
GEOM120b 16 0.00 73 - - 96/101.5 34 0.00 172 - - 206/219.5
essai.100.275.10 5 0.00 11 - - 19/20 (17) 43200 46 - - 61/61
essai.300.937.10 - - 11 - - 38/40 - - 35 - - 110/111.5
essai.500.1507.10 - - 13 - - 53/55 - - 42 - - 140/144
essai.1000.3049.10 - - 15 - - 86/90 - - 43 - - 220/225
essai.30.95.50 7 0.00 9 19 0.43 21/23.5 (24) 7200 31 - - 68/68
essai.100.304.50 (15) 43200.0 17 - - 53/53.5 (55) 43200 55 - - 137/142.5
essai.300.905.50 - - 19 - - 124/124 - - 63 - - 330/333
essai.500.1484.50 - - 21 - - 188/190 - - 65 - - 470/480
essai.1000.3024.50 - - 20 - - 334/336.5 - - 74 - - 862/869
essai.30.90.90 15 0.00 19 34 197.10 40/40 52 0.02 74 - - 119/119
essai.100.299.90 37 128.00 32 - - 94/97 (134) 43200 103 - - 259/259
essai.300.940.90 - - 46 - - 239/244.5 - - 169 - - 659/669
essai.500.1536.90 - - 53 - - 369/375 - - 197 - - 1013/1028
essai.1000.2975.90 - - 62 - - 673/679 - - 218 - - 1804/1821.5

Table 5.2.: Results for the Geometric and Uniform random graphs considered as T-colouring
and as set T-colouring problems. G-Ex-DSATUR is compared with a lower and an upper bound.
The lower bound LB is computed through Algorithm 5.1 and the upper bound through the
construction heuristic G-DSATUR, both introduced in the next sections. For reference, we also
report the result of Ex-DSATUR which solves the GCP finding the chromatic number χ of the
original and split graph. Both G-Ex-DSATUR and Ex-DSATUR were run with a time bound of
12 hours (43200 sec.). Results in parenthesis indicate that at that time the algorithm did not yet
finish. All results in the table are the number of colours used by the solution, yielding a span of
spT(G) = k− 1.

Whereas Ex-DSATUR is able to solve easily the Geometric instances, both for the original
graph and the split graph, G-Ex-DSATUR, encounters enormous difficulties already at
very small graph sizes and already on the simplified T-colouring problem; very rarely it
returns a solution. For reference purposes, we report in the table also the lower bound
and the results of a construction heuristic, which we will introduce later.

5.6.3. Lower bounds for the minimal span

From the previous results it is clear that exact methods are infeasible for solving the set
T-colouring problem and that approximate methods are required. Note that in the field
of frequency assignment it is possible to encounter instances of size even greater than
5000 vertices (Aardal et al., 2003) and that the allocation of frequencies can be required

5.6 Algorithms for the Set T-Colouring Problem 183

to be very fast if the demand for channels at the transmitters varies over time, as in
dynamic environments (Eisenblätter et al., 2002). Hence, the problem to solve is even
harder than those reported in Table 5.2.

Approximate methods exhibit the known flaw that they do not provide any guar-
antee on the quality of the solutions attained. The availability of lower bounds may
help in the assessment of their performance. For the set T-colouring problem, an eas-
ily derived lower bound is given by the vertex constraints. Accordingly, it is sp ≥
maxv∈V{r(v)(tvv − 1) + 1}. As for the GCP, another lower bound for the T-colour-
ing problem can be derived by the size of a clique. If all the edges contained in a
clique of size k have the same forbidden distance t, then the T-span spT(G) is at least
t · (|ω(G)| − 1). However, the best lower bound does not necessarily belong to the largest
clique and if the distances are not all equal, other bounding procedures must be devised.

Raychaudhuri (1994) observes that, given an assignment of colours on a graph G,
vertices can be ordered in a non-decreasing sequence of colours. Then, if the graph is
extended to a complete graph G′ by introducing edges with distance t = 0, the order
of the vertices forms a path with length less or equal to the span of the assignment.
Hence, the minimum Hamiltonian path in an arbitrary subgraph (completed by zero-
value edges) provides a lower bound on the minimal span for the T-colouring problem
defined on that subgraph, and thus, on the whole graph. The minimal length Hamil-
tonian path of a graph can be determined by solving the minimum Hamiltonian cycle
problem (better known as the Travelling Salesman Problem, for short TSP) on the same
graph and removing the longest edge.

This bounding procedure has the pitfall that its quality strongly depends on the cho-
sen subgraph. Induced subgraphs of G can provide better lower bounds than G, as
shown in Figure 5.4. Janssen and Kilakos (1999) suggest to compute a lower bound
for spT by finding a lower bound for the TSP in a limited number of “dense” sub-
graphs of G.6 We generalise this procedure by solving exactly the TSP problem in large
cliques of G. Our procedure is formalised in Algorithm 5.1. Finding large cliques in
G is achieved by the variant of the semi-exhaustive greedy procedure of Johnson et al.
(1991), as already pointed out in Section 4.7,7 while the travelling salesman problem is
solved with the Concorde TSP solver (Applegate et al., 1998) which produces an exact
solution.8 Concorde is very fast in solving even large TSP instances, hence this approach
is perfectly feasible for our benchmark instances.

Besides lower bounds, also approximation measures may be useful. Dorne and Hao
(1998b) propose an approximation value ŝpT(G) for the T-span in the case of random
graphs Gn,p with edge distances tuv randomly chosen from a uniform distribution with

6Janssen and Kilakos (1999) use this procedure to prove the optimality of the instance Philadelphia, nev-
ertheless, no methodology for determining the “dense” subgraph is given, and they restrict themselves
to consider a known clique of the instance.

7The maximal clique corresponds to the maximal independent set in the complement graph. The proce-
dure of Johnson et al. (1991) available on the Internet solves the maximal independent set problem in
the same way as the XRLF algorithm described in Section 4.10.3 with EXACTLIM= 0. Yet, the available
procedure does not minimise the number of edges in the remaining graph. Therefore, we had to re-
implemented it in the case of XRLF. The other parameters required by the algorithm are set as follows:
TRIALNUM = 4; CANDNUM = |V|/4.5; and SETLIM = {80, 50, 30} for ρ(G) ≤ 0.5, 0.5 < ρ(G) ≤ 0.8, and
ρ(G) > 0.8, respectively.

8Concorde TSP uses QSopt linear programming solver. They are both available, for research purposes, at
http://www.tsp.gatech.edu/concorde.html. (June 2005.)

http://www.tsp.gatech.edu/concorde.html

184 Graph Colouring Generalisations

v2

v1 v3

{1} {1}

{3}
Figure 5.4.: The values on the edges represent the distances Tuv. The graph G is complete. A
Hamiltonian path of minimal length in G is v1, v2, v3 and has length 2. Hence, the lower bound
provided by solving a TSP problem is 2. However, the edge (v1, v2) provides a better lower
bound of 3 (which, in this case, is also the optimal solution).

Function T-Span_Lower_Bound(G, T);
lwb = 0; Wb = ∅;
for i=1 to ITERATIONS do

Select some large clique W ∈ G;
if |W| ≥ |Wb| then

π = an Hamiltonian cycle of minimal length in W;
p = the Hamiltonian path obtained from π by removing the
edge (π(i), π(i + 1)) with longest distance tπ(i)π(i+1);
if lwb < c(p) %c(p) is the total cost of the path.

then
lwb = c(p);
Wb = W;

end
end

end
return lwb;

Algorithm 5.1: Lower bound procedure for T-colouring. The parameter
ITERATIONS is set to 100 for graphs G with less than 1000 vertices, and to
50 for larger graphs.

mean value t̄:9

ŝpT(G) = (χ̂(G)− 1) · t̄
A similar result is given for the set T-colouring problem. In particular, if the require-

ments for each vertex are randomly chosen from a distribution with mean value r̄, in
case of graphs with low edge density, it is:

ŝps
T(G) = (χ̂(Gn,p)− 1) · t · r,

while for graphs of high edge density

ŝps
T(G) = (χ̂(GS

n,p)− 1) · t
9We use the hat to indicate that the value is an approximation as done for the GCP.

5.6 Algorithms for the Set T-Colouring Problem 185

Function T-greedy(G(V, E), π, T);
Γ = Z+ \ 0;
ϕ(vπ(1)) = {1}, ϕ(vπ(2)) = ∅, . . . , ϕ(vπ(n)) = ∅;
for i = 2, . . . , |V| do

ϕ(vπ(i)) = min{k ∈ Γ : ∀j < i, |ϕ(vπ(i))− ϕ(vπ(j))| /∈
T, (vπ(i), vπ(j)) ∈ E};

end
Let k = max{h : ϕ(vi), vi ∈ V};
return the k-T-colouring, i.e., k and ϕ(v1), ϕ(v2), . . . , ϕ(vn);

Algorithm 5.2: Greedy construction heuristic for T-colouring.

where GS is the split graph defined in Section 5.2.8.

5.6.4. Construction heuristics

We discuss first three construction heuristics for the T-colouring problem. The best of
them is then compared against construction heuristics specific for the set T-colouring.

Construction heuristics for T-colouring

Greedy T-colouring algorithm. As for the graph colouring problem, there is a basic
algorithm for constructing solutions to the T-colouring, the greedy heuristic. It was first
studied by Cozzens and Roberts (1982). The algorithm recursively colours the vertices
of the graph with the smallest feasible colour, proceeding in some defined vertex order.
It can be adapted to the set T-colouring problem by assigning a set of feasible colours,
instead of a single one, and by choosing the colours for the set as those corresponding
to the smallest feasible integers. The algorithm always produces a feasible colouring for
any graph. Theoretical studies showed that for some specific graphs and some specific
sets T the algorithm finds a colouring with minimal span. We refer to Murphey et al.
(1999) for a review of these results on complete graphs.

Algorithm 5.2 gives the greedy heuristic, from now on called T-greedy. It takes as
input a graph G and a permutation π of the vertices. A fast implementation of the
T-greedy algorithm maintains a set of forbidden colours for each vertex that is still to
colour and updates it at each iteration of the algorithm. The final complexity is O(k|V|).
Note that, differently from graph colouring, k is not bounded by the number of vertices.

Clearly, the quality of the solution found depends on the permutation π. We analyse
static and dynamic ways to determine this order.

Sequential heuristics. The greedy algorithm is used jointly with a procedure for de-
termining the order of the sequence of vertices to be coloured incrementally. In the
static approach, all vertices are ordered at once, according to a prescribed strategy and
then they are coloured in this order. Inspired by the vertex degree information in graph
colouring, the strategies are the following:

186 Graph Colouring Generalisations

1. Random vertex ordering (RO algorithm).

2. Largest first vertex ordering (LF algorithm).

3. Smallest last vertex ordering (SL algorithm).

The LF algorithm orders vertices in non decreasing order of their degree. The SL
algorithm arranges the vertices in an order v1, v2, . . . , vn such that vertex vi has the
smallest degree in the subgraph G′ ⊂ G induced by V ′ = {v1, v2, . . . , vi}. This sequence
is determined starting at the final vertex and proceeding in reverse order. We denote the
three heuristics G-ROS, G-LFS, and G-SLS.

Certainly, the vertex degree still remains a valid heuristic information to determine the
hardness of colouring a vertex. However, given the distance constraints of T-colouring
it is reasonable to test an adjusted vertex degree that uses the additional information of the
distance of colours between adjacent vertices and that is defined as dT(v) = ∑u∈AV(v) tuv.
We consider therefore the defined heuristics in the two variants, with vertex degree and
with adjusted vertex degree.

A clear comparison of sequential heuristics for T-colouring is not reported in the
literature. Hurley et al. (1997) conclude that it is difficult to assess which variant of the
sequential algorithm performs well on a specific instance; however, their comparison is
limited to small size instances of around 20 vertices and no statistical analysis of the
results is applied.

Generalised DSATUR. In the dynamic approach used by DSATUR, the definition of
the saturation number remains the same. The only difference occurs in its update. If a
vertex v receives colour c then an adjacent vertex u can not receive colours in the interval
{c− tuv, c + tuv}.

We tested two different sorting strategies:

1. Largest saturation first vertex ordering (LS algorithm).

2. Smallest saturation first vertex ordering (SS algorithm).

In both cases, ties are broken by the largest (adjusted) vertex degree. Ties occur,
however, much less frequently than in DSATUR for GCP, and this choice has low impact.

In addition to the generalised DSATUR, denoted as G-DSATUR, which uses the T-
greedy heuristic to determine the colours to assign to a vertex, we also test a different
heuristic that selects the colour among the feasible ones that is also feasible for the lowest
number of uncoloured vertices. The algorithm for this greedy procedure, to use in place
of the T-greedy heuristic, is given in Algorithm 5.3. We denote with G-DSATUR# the
heuristic that uses the greedy algorithm T-greedy#. In Algorithm 5.3, the case Γ′′ 6= ∅,
i.e., the case in which a vertex can be coloured with a previously used colour, is less
likely to occur with dense graphs. However, even for graphs with ρ(G) = 0.9 it occurs
for at least 50% of the vertices and hence the presence of an effect of the new rule is
guaranteed.

The use of saturation degree information on construction heuristics for T-colouring
has already been studied by Costa (1993). The method has also been studied for fre-
quency assignment problems by Borndörfer et al. (1998) who analyse a different rule
to assign colours (frequencies) and by Hurley et al. (1997) who suggest to colour first

5.6 Algorithms for the Set T-Colouring Problem 187

Function T-greedy#(G(V, E), π, T);
Γ = Z+ \ 0;
ϕ(vπ(1)) = {1}, ϕ(vπ(2)) = ∅, . . . , ϕ(vπ(n)) = ∅;
for i = 2, . . . , |V| do

Γ′′ = {l ∈ Γ : ∀j < i, |l − ϕ(vπ(j))| /∈ T, (vπ(i), vπ(j)) ∈ E};
%

Γ′′ ⊆ Γ is the set of
feasible colours vπ(i)

if Γ′′ 6= ∅ then
Γ′′′ = {l ∈ Γ′′ : min |{vπ(j), ∀j > i, |l − ϕ(vπ(j))| /∈ T, (vπ(i), vπ(j)) ∈
E}|;
ϕ(vπ(i)) = min{l ∈ Γ′′′};

end
else

ϕ(vπ(i)) = min{k ∈ Γ : ∀j < i, |ϕ(vπ(i))− ϕ(vπ(j))| /∈
T, (vπ(i), vπ(j)) ∈ E};

end
end
Let k = max{h : ϕ(vi), vi ∈ V};
return the k-T-colouring, i.e., k and ϕ(v1), ϕ(v2), . . . , ϕ(vn);

Algorithm 5.3: A modification of the T-greedy heuristic which selects the least
usable colour.

vertices in the most constrained path indicated by the lower bounding procedure. Since
we did not observe any improvement by this procedure we avoid to use it here.

Generalised RLF. Construction heuristics based on the greedy algorithm try to assign
to each vertex the lowest possible colour. In the GCP, we saw that a different strategy
is possible: colouring as many vertices as feasible with the same colour before using
a new one. In the GCP, this coincides with selecting large independent sets and it is
realised by the RLF heuristic. In T-colouring, the concept of independent set is still
valid but vertices are also subject to distance constraints and hence it is not enough to
assign them to different sets but these sets must also be correctly separated.

The RLF procedure for T-colouring, G-RLF, is given in Algorithm 5.4. The procedure
is very similar to Algorithm 4.2 on page 105. The only difference is in the initialisation
of the set U of vertices that cannot be added to colour class C. Uncoloured vertices
can be added to the new colour class only if no distance constraint is violated. We test
two versions of G-RLF, one uses the simple vertex degree and another uses the adjusted
vertex degree dT.

To our knowledge, we are the first to study the extension of the RLF heuristic to the
T-colouring problem.

Comparison. We evaluate the heuristics according to their capability of minimising the
span of the T-colouring. In order to simplify the presentation of the results, we first
analyse the effect of the adjustment of the vertex degree. From Figure 5.5 we see that
the adjusted information helps G-DSATUR and the sequential heuristics to attain better

188 Graph Colouring Generalisations

Function G-RLF(G, T);
C1 = ∅, C2 = ∅, . . . , Ck = ∅;
U = V, i = 1; % U is the set of uncoloured vertices

while U 6= ∅ do
V ′ = {u ∈ U : ∀j, w j < i, w ∈ Cj, (u, w) ∈ E, i− j /∈ Tuw};
U = U \V ′;
Let v ∈ V ′ be a vertex for which |dT

V′(v)| is maximal;
%dT

V′(v) = ∑u∈AV′ (v) tuv

Ci = {v};
U = AV′(v), V ′ = V ′ \ AV′(v); %

U set of uncoloured vertices
which can not be placed in V

while V ′ 6= ∅ do
Let v ∈ V ′ be a vertex for which |dT

V′(v)| is maximal;

%
the edges in U
are minimised

Ci = Ci ∪ {v};
U = U ∪ AV′(v), V ′ = V ′ \ AV′(v);

end
i = i + 1;

end
k = i− 1;
return the k-colouring, i.e., k and C1, . . . , Ck

Algorithm 5.4: Generalised Recursive Largest First heuristic for T-colouring.

results while it remains mainly indifferent for the G-RLF heuristic. We focus therefore
on the versions that use the adjusted information.

In Figure 5.6, we show confidence intervals for all-pairwise comparisons of the con-
struction heuristics on the various instance classes in a rank-based analysis. G-DSATUR

is significantly better than G-RLF and all generalised sequential heuristics. Differently
from the GCP, G-RLF is never better and it is not dominated only on sparse Geometric
graphs. The use of T-greedy or T-greedy# in G-DSATUR does not yield significant differ-
ences. With respect to time, G-RLF is the slowest heuristic, although the instances when
treated as T-colouring, are solved all within 1.5 seconds. G-DSATUR remains below 0.5
seconds on the instances of size 1000.

In order to solve the tie between the two version of G-DSATUR, we investigate how
heuristics optimise the use of colours, that is, how they minimise the order of the T-col-
ouring. Note that it is not clear whether the presented heuristics tend to minimise the
span or the order. We report the analysis for this criterion in Figure 5.7. Apparently,
G-DSATUR is the best in optimising also the order but only on the random graphs. On
the Geometric graphs, instead, G-RLF is the best algorithm. The relevance of this result
is twofold: on the one hand, it tells us that on the Geometric instances there is a trade off
between minimal span and minimal order and that G-RLF minimises better the order;
on the other hand, it unveils an important aspect whose reasons would be worthy to
be investigated deeper: Uniform graphs and Geometric graphs exhibit different span–
order trade offs. Unfortunately, our original intent of breaking the tie in G-DSATUR is
not solved. Therefore, giving preference to simplicity, in the rest of the chapter we will
use G-DSATUR with T-greedy heuristic.

5.6 Algorithms for the Set T-Colouring Problem 189

20

40

60

80

Adjusted Not adjusted

 Heuristics

G−ROS
G−LFS
G−SLS
G−RLF
G−DSAT#
G−DSAT

The effect of vertex degree

M
ed

ia
n

ra
nk

Vertex degree

Figure 5.5.: The effect of the adjustment of the vertex degree information on the heuristics.
Data are aggregated over all Uniform and Geometric random T-colouring instances and ranked
within instances. The number of runs per instance is 10, hence, ranks fall in the interval [1, 160].

Construction heuristics for Set T-Colouring

The construction heuristics for the T-colouring problem can be used also for the set T-
colouring when the split graph is considered. However, it is interesting to investigate
whether there exist approaches that exploit better the structure of the set T-colouring
problem.

Sivarajan et al. (1989) study sequential heuristics specialised for the channel assign-
ment problem. The analysis is confined to instances of size 21 and results are not com-
pared with any other approach. Inspired by their work, we consider the following four
factors, with two choices for each of them, for the assemblage of a sequential construc-
tion heuristic.

Vertex degree adjustment: The alternatives are:

– dT
A(v) = ∑u∈AV(v) r(v)tuv − tvv. This is the original measure proposed by

Sivarajan et al. (1989) (identifier A);

– dT
B(v) = 1

2 r(v)(r(v) − 1)tvv + ∑u∈AV(v)(r(u)r(v)tuv). This is our alternative
proposal which counts the number of individual constraints acting on each
requirement r(v), weighted by the number of colours that each constraint
forbids, i.e., tuv or tvv (identifier B).

Vertex ordering: based on the degree information, the alternatives are:

– smallest last ordering (identifier C);

– largest first ordering (identifier D).

Requirement order: Once vertices have been ordered, requirements can be arranged in
a matrix |V| ×maxv∈V r(v). Each row of the matrix corresponds to a vertex while
each column to a single colour requirement. The rows are arranged in the ver-
tex order determined previously while the colour requirements are arranged such
that all the columns of the matrix have nearly the same number of requirements.
Requirements in the first row start at the first column. Requirements in the second
row start at column (r(v1) + 1) and fill the row cyclically. Similarly, requirements

190 Graph Colouring Generalisations

Average rank

G−DSATUR

G−DSATUR#

G−RLF

G−ROS

G−LFS

G−SLS
Gn1 (4 Instances) Gn5 (5 Instances) Gn9 (5 Instances)

10 20 30 40 50

G−DSATUR

G−DSATUR#

G−RLF

G−ROS

G−LFS

G−SLS
GEOMn (7 Instances)

10 20 30 40 50

GEOMab (21 Instances)

Figure 5.6.: All-pairwise comparisons in a rank-based analysis using the minimal span criterion.
Only T-colouring instances are considered in a design with 10 runs per pair algorithm–instance.
Instances GEOMna and GEOMnb are aggregated in the class GEOMab because from a T-colouring
perspective their features coincide. The edge density of instances GEOMn is 0.1, and of GEOMab
is 0.2, while in both classes the average distance constraint at the edges is 4.5.

in the remaining rows start where requirements in the previous end. Once re-
quirements have been arranged in this way in the matrix, two orderings may be
obtained:

– row-wise ordering (identifier R:);

– column-wise ordering (identifier C:).

Assignment strategy: Decided the requirement order, two strategies can be adopted to
assign the colour:

– Colour exhaustive: assign the least colour that does not introduce any viola-
tion to each requirement selected in the defined order.

– Requirement exhaustive: for each colour in order from 1 to k scan all yet
uncoloured requirements in the defined order and assign the current colour
if feasible.

Comparison. We tested all 16 possible combinations of levels of these factors on the
available set T-colouring instances. In Figure 5.8 we explore the effects and interactions
of the four factors on a rank-based analysis. The only evident conclusion is that the
requirement exhaustive strategy is a better choice with respect to the colour exhaustive
strategy. All other three factors seem to interact with each other and it is not possible,
from this figure, to understand the significance of their effects.

We proceed therefore considering all-pairwise comparisons of the 8 combinations left
after the removal of the colour exhaustive strategy. In the comparison, we include also a
version of G-DSATUR that solves the set T-colouring problem as a T-colouring problem
in the split graph. The results of the comparisons are reported in Figure 5.9 where each

5.6 Algorithms for the Set T-Colouring Problem 191

Average rank

G−DSATUR

G−DSATUR#

G−RLF

G−ROS

G−LFS

G−SLS
Gn1 (4 Instances) Gn5 (5 Instances) Gn9 (5 Instances)

10 20 30 40 50

G−DSATUR

G−DSATUR#

G−RLF

G−ROS

G−LFS

G−SLS
Geometric (7 Instances)

10 20 30 40 50

Geometric.ab (21 Instances)

Figure 5.7.: The same experimental design of Figure 5.6 analysed by the minimal order criterion.

of the 8 configurations is indicated by a label obtained by the identifiers of the factor
levels. The most relevant observation is that none of the heuristics for set T-colour-
ing is significantly better than G-DSATUR in none of the scenarios. The analysis of the
computation time did not reveal any difference among the 9 heuristics included in the
comparison. All solve the largest instances of density 0.9, whose split graph consists of
3000 vertices, in about 2.5 seconds, while, for the same size, the computation time falls
below 1.5 seconds if the edge density is 0.5. G-DSATUR appears therefore a good choice
for solving also set T-colouring instances.

Finally, we examine the criterion of minimising the order of the set T-colouring. In
Figure 5.10 the instance classes seem to have a strong influence on the performance of
the heuristics with respect to this criterion and no clear winner arises.

5.6.5. Iterative Improvement

There are different approaches for solving the set T-colouring problem by means of lo-
cal search. Of main importance is understanding whether it is more convenient to solve
the set T-colouring by splitting it into a T-colouring problem or to try to exploit the dif-
ference between edge and vertex constraints by approaching the problem in its original
form. Analogously to the graph colouring problem, it is interesting to investigate the
possibility of solving the problem as a sequence of decision problems with k fixed or by
varying the number of colours used. We will consider the following three alternatives.

Solving the T-colouring problem on the split graph with k fixed. Once the graph of
a set T-colouring problem has been split, the solution representation may be a complete
assignment of colours to vertices like in the GCP. The solutions may be represented by a
map ϕ and a partition C of vertices in colour classes, i.e., C = {C1, . . . , Ck}. In this way,
each vertex receives exactly one colour. The requirement constraints are satisfied by

192 Graph Colouring Generalisations

SL

LF

Row

Column

40
60
80

100

120

140

Vertex
 orderingRequirement

 ordering

Rank

Colour Exhaustive

SL

LF

Row

Column

40
60
80

100

120

140

Vertex
 orderingRequirement

 ordering

Rank

Requirement Exhaustive

Degree not adj.
Degree adj.

Figure 5.8.: Interaction plots for factors of the set T-colouring heuristics. The four factors are:
assignment strategy, vertex degree adjustment, vertex ordering, and requirement ordering.

the solution representation, while the distinction between vertex constraints and edge
constraints is removed, as the former are now also on the edges of the split graph. An
initial assignment and an initial number of colours is determined by G-DSATUR. The
number of colours is then decreased by one by assigning to the vertices which had
colour k a colour in {1, . . . , k− 1} that introduces the lowest number of edge conflicts,
breaking ties randomly. The problem of finding a feasible solution for k− 1 is solved by
a local search minimising the number of edge violations in the solution. The objective
function is, similarly to the GCP, defined as

f (C) = ∑
(u,v)∈E

I(u, v)

where I(u, v) = 1 if |ϕ(u)− ϕ(v)| < tuv, and I(u, v) = 0 otherwise. The goal is to find a
solution C such that f (C) = 0.

Solving the T-colouring problem on the split graph with k variable. In this case,
the solution representation is the same as in the previous approach but the number
of colours may increase or decrease at run time. Local search can visit feasible and
infeasible complete assignments that use no more than k I colours determined by the
initial solution produced by G-DSATUR. An evaluation function to guide the search
towards feasible colourings and towards colourings with smaller span was proposed by
Hurley et al. (1997). It is defined as

f (C) = k I · ∑
(u,v)∈E

|I(u, v)|+ (kmax − kmin) + ∑
i∈Γ

J(Ci) + kmax (5.1)

where J(Ci) = 1 if |Ci| > 0 and J(Ci) = 0 otherwise. Formally, it is possible to express
kmax = arg maxi∈Γ{Ci : J(Ci) = 1} and kmin = arg mini∈Γ{Ci : J(Ci) = 1}. The function
5.1 computes the sum of edge conflicts, span, order of the colouring, and largest colour
used. The edge conflicts are weighted by the largest number of colours, thus a solution
which reduces the number of violations will always be preferred with respect to those

5.6 Algorithms for the Set T-Colouring Problem 193

Average rank

G−DSATUR
CCA
CCB
CRA
CRB
DCA
DCB
DRA
DRB

Geometric (11 Instances) Geometric.a (11 Instances) Geometric.b (11 Instances)

20 30 40 50 60

G−DSATUR
CCA
CCB
CRA
CRB
DCA
DCB
DRA
DRB

Gn1 (5 Instances)

20 30 40 50 60

Gn5 (5 Instances)

20 30 40 50 60

Gn9 (5 Instances)

Figure 5.9.: All-pairwise comparisons in a rank-based analysis on the minimal span criterion on
set T-colouring instances. The label of the heuristics is obtained by adding the identifiers of the
factor levels, in the order, vertex ordering, requirement ordering, and vertex degree adjustment.

Average rank

G−DSATUR
CCA
CCB
CRA
CRB
DCA
DCB
DRA
DRB

Geometric (11 Instances) Geometric.a (11 Instances) Geometric.b (11 Instances)

20 30 40 50 60 70

G−DSATUR
CCA
CCB
CRA
CRB
DCA
DCB
DRA
DRB

Gn1 (5 Instances)

20 30 40 50 60 70

Gn5 (5 Instances)

20 30 40 50 60 70

Gn9 (5 Instances)

Figure 5.10.: The comparison of Figure 5.9 from the perspective of minimal order criterion.

that modify the other terms of the sum. The inclusion of the order in the sum contributes
to break ties. The last term is the least important and contributes only to use the first
colours, avoiding to move with the same span over and over through the interval [0, k I].

Solving the set T-colouring problem with k fixed. Maintaining the set T-colouring
problem in its original formulation, we can represent a solution as a set of vertices
each with r(v) colours assigned. This can be done by creating a vector {ϕ(v1, 1), . . . ,
ϕ(v1, r(v1)), . . . , ϕ(vn, 1), . . . , ϕ(vn, r(vn))} of length ∑v∈V r(v) in which each position
corresponds to a colour assigned to a vertex. Additional pointers are maintained to
make fast the access to the vector. We continue to denote a solution as ϕ, although now
it is as a multi-valued function, or as C, which is a set of colour classes containing the
vertices, i.e., C = {C1, . . . , Ck}; however, C is not anymore a partition because vertices
can be in several colour classes. The requirement constraints are again satisfied by the
solution representation for ϕ. Thanks to the distinction of positions in the vector, the

194 Graph Colouring Generalisations

vertex constraints may also be used to reduce the number of solutions in the search
space S to only those assignments that satisfy vertex constraints. With k fixed, an initial
assignment is determined and a problem for finding a feasible colouring is solved in
sequence at each k. The evaluation function counts the number of unsatisfied edge
constraints

f (C) = ∑
(u,v)∈E

∑
i∈{1,...,r(u)}
j∈{1,...,r(v)}

I(u, v, i, j)

where I(u, v, i, j) is 1 if |ϕ(u, i)− ϕ(v, j)| < tuv, and 0 otherwise. The goal is to find a
solution C such that f (C) = 0.

Neighbourhood Structures

For the two approaches on the split graph we limit ourselves to consider the basic one-
exchange neighbourhood N1 of Definition 4.1 on page 110. For the set T-colouring
we consider instead two neighbourhood structures: a modification of the one-exchange
neighbourhood and a colour reassignment within vertices. The following are the formal
definitions.

Definition 5.1 (Restricted one-exchange) The neighbourhood of C is the set of colour-
ings C ′ obtained from C by changing exactly one colour of one vertex in such a way that
the vertex constraints are maintained satisfied. Using the function ϕ, which defines the
set {C1, . . . , Cn}, a formal definition of the neighbourhood is

N R
1 (C) = {C ′ : ∃v ∈ V and i ∈ {1, . . . , r(v)} and j ∈ Γ and |ϕ(v, l)− j| 6∈ Tvv ∀l 6= i :

ϕ′(v, i) = j and

ϕ′(v, l) = ϕ(v, l) ∀l 6= i and

ϕ′(u, i) = ϕ(u, i) ∀u, i, u ∈ V \ {v} and i ∈ {1, . . . , r(u)}}

Definition 5.2 (Intra-vertex reassignment) The neighbourhood C is the set of colour-
ings C ′ obtained from C by changing the colours assigned to a vertex in such a way that
the vertex constraints and the edge constraints involving that vertex are satisfied. In
other terms, the application of a move in this neighbourhood produces an adjustment of
the colours assigned to a vertex such that all its constraints are satisfied. Formally,

NA(C) = {C ′ : ∃v ∈ V and H ⊂ Γ with |H| = r(v) and |c1 − c2| 6∈ Tvv ∀c1, c2 ∈ H and

|c− ϕ(u, j)| 6∈ Tuv ∀(u, v) ∈ E, c ∈ H :

ϕ′(v) = H and

ϕ′(u, i) = ϕ(u, i) ∀u, i u ∈ V \ {v} and i = {1, . . . , r(u)}}

From the previous chapter we learnt that very large scale neighbourhoods based on
path and cyclic exchanges are not profitable for the graph colouring. Therefore, we

5.6 Algorithms for the Set T-Colouring Problem 195

avoid to consider them here, since the distance constraints make the neighbourhood
exploration even more complex.

Kempe chains are, instead, infeasible in the context of T-colourings, since finding
independent colour classes is not enough to satisfy the distance constraints. A generali-
sation of Kempe chains has been attempted by Borgne (1994). The idea is to select two
vertices, or two vector positions, u and v coloured with c1 and involved in a constraint
violation and a colour c2 whose colour class does not contain any vertex adjacent to u
and v. All vertices in Cc1 , except u, are then exchanged with all those in Cc2 .

Remark. Recalling the definition of connectivity of a search space (Definition 3.3, page
86) it is straightforward to show that the search space in the set T-colouring problem
solved with k fixed is connected when using the neighbourhood structure N R

1 .

Neighbourhood Examination

One-exchange neighbourhood. The examination of N1 is done as for the GCP and a
complete exploration entails visiting (k− 1)|V| possible neighbours, although in prac-
tice, only vertices involved in some conflict are considered for exchange.

Additional data structures are used for the fast evaluation of f (C) after an exchange.
In the split graph and for fixed k, the matrix ∆ is defined by |V| × k elements. Its ini-
tialisation and update is outlined in Algorithm 5.5. The complexity of these procedures
increases with respect to the GCP and it depends on the entity of the distances between
colours. In the case of k variable, the neighbourhood has size (k I − 1)|V| and the ma-
trix ∆ is maintained of size |V| × k I . With the necessary changes, Algorithm 5.5 still
applies. In addition, the order of the colouring and the values kmin and kmax are also
maintained. The evaluation function after an exchange for vertex v from colour ϕ(v) to
c is f (C ′) = k I∆(v, c) + δc + δϕ(v) where δc and δϕ(v) are the contributions of removing v
from Cϕ and inserting it into Cc, respectively, to the last three components of the sum in
Equation 5.1.

Restricted one-exchange neighbourhood. With the set T-colouring representation, a
matrix ∆ of size ∑v∈V r(v)× k is maintained that indicates for each position in the solu-
tion vector corresponding to a requirement the number of edge violations determined
by the assignment of a colour to the corresponding vertex. Algorithm 5.5 is still valid for
maintaining the matrix although inside the loop on the vertices adjacent to v a further
loop has to be included iterating over the requirements of vertex u. Note that in the
previous cases we have |V| = ∑v∈V r(v), while now the set V is only made of original
vertices. The complexity of Algorithm 5.5 remains therefore the same. In addition to
∆, another matrix ∆2 of size |V| × k is maintained to forbid the assignment of colours
that break vertex constraints. The update of this matrix after each exchange is done in
O(2tvv). The evaluation function is updated after an exchange as f (C ′) = f (C) + ∆(v, c).

Intra-vertex reassignment neighbourhood. In practice, a reassignment is attempted
only for vertices in conflict. Once a vertex is chosen, a set F is determined comprising the
colours which are feasible with respect to the edge constraints acting on the vertex (not
the vertex constraints). The construction of this set can be done easily in O(|V|k) using

196 Graph Colouring Generalisations

Function Initialise_∆(G,ϕ);
∆ = 0;
for each v in V do

for each u in AV(v) do
for i in {ϕ(v)− Tuv, . . . , ϕ(v) + Tuv} do

∆(v, iϕ(v)) = ∆(v, ϕ(v)) + 1;
end

end
end

Function Update_∆(G,ϕ,v,Ci) %Ci is the old colour class of v
for each u in AV(v) do

for i in {cold − Tuv, . . . , cold + Tuv} do
∆(u, cold) = ∆(u, i)− 1;

end
for i in {ϕ(v)− Tuv, . . . , ϕ(v) + Tuv do

∆(u, i) = ∆(u, i) + 1;
end

end

Algorithm 5.5: Pseudo-code for the initialisation and update of the matrix ∆.

the same data structure ∆ described for the previous neighbourhoods (its update is done
by decomposition of the reassignment into single restricted one exchange). If we simply
looked for r(v) colours from F such that the vertex constraints are satisfied this would be
easy: we just have to order the values in F and scan the set once, skipping the values that
are not sufficiently distant from the previous ones. Yet, this procedure is deterministic
and we would obtain the same reassignment of colours visiting a vertex twice if nothing
in its neighbourhood changed. We want to avoid this and make the search randomised,
such that, visiting the vertex the second time, we obtain a different configuration that
can be profitably propagated. Implementing this strategy corresponds to determine all
subsets of F of size r(v) that satisfy the vertex constraints and pick one at random.10 In
our solution to the problem we order randomly the set F and search for a solution by
avoiding to order F again. The proposed algorithm uses a backtracking approach and it
is outlined in Algorithm 5.6. In the algorithm the set H is implemented as an ordered
binary tree. This allows the insertion of an element in O(log n) operations and the check
for vertex constraints in constant time (since only the predecessor and successor are to
be considered). The algorithm is exponential because, in the worst case, the Algorithm
5.6 has to consider all possible (|F|r(v)) solutions. The problem can however be solved also
in polynomial time and as future work we plan to compare the two different search
algorithms.

In practice, we will never use this neighbourhood alone. In a similar manner as with
the VLSN in Chapter 4, we combine it with the restricted one-exchange. How this is

10More formally, the problem can be stated as
Input: A subset of distinct integers numbers M ⊆ {1, . . . , n}, and two integers c < n and k < |M|.
Question: Which are all possible subsets S ⊂ M such that ∀a, b ∈ S: |a− b| > c.

Note that the problem has no solution if c < (m− k)/(k− 1).

5.6 Algorithms for the Set T-Colouring Problem 197

Function reassign(G, v, tvv, r(v));
F = {c ∈ Γ : |c− ϕ(u, i)| ≥ tuv, ∀(u, v) ∈ E, ∀ϕ(u, i) ∈ ϕ(u)};
if |F| ≥ r(v) then

H = ∅; shuffle F;
assign(F, H, tvv, r(v), 0);
if (|H| = r(v)) then return an H assignment of feasible colours for
v;

end
return no feasible assignment of colours for v found;

Function assign(F, H, d, r, start);
for i ∈ {start, . . . , |F| − r + |H|} do

Let c be the i-th element of F;
if |c− j| ≥ d ∀j ∈ H then

assign(F, H ∪ {i}, d, r, i + 1);
end

end

Algorithm 5.6: An algorithm for the exact reassignment of colours to a vertex.

done is explained in the next section.

5.6.6. Stochastic Local Search algorithms

As for the GCP, we embed the local search components into more complex SLS methods.
We restrict our attention to those methods that performed the best on the GCP.

Solving the T-colouring problem on the split graph with k fixed

Tabu Search, Min-Conflicts, Guided Local Search, and Hybrid Evolutionary algorithm.

Mutatis mutandis we reuse the same framework of these metaheuristics based on the
one-exchange neighbourhood as described for the GCP (Section 4.10.1). They become
therefore generalised versions of these algorithms and we denote them GSF-TS, GSF-
GLS, GSF-HEA (G stands for generalised, S for split graph, and F for fixed k). As for the
GCP, GSF-HEA uses GSF-TS as local search.

In the case of Tabu Search the length of the tabu list is set tt = random(10) + 2δ|Vc|,
where Vc is the set of vertices which are involved in at least one conflict, δ is a parameter,
and random(10) is an integer random number uniformly distributed in [0, 10].

Note that our GSF-TS is very similar to the Tabu Search methods proposed by Costa
(1993), Castelino et al. (1996), and Hurley et al. (1997). In those papers, Tabu Search was
shown to perform better than simulated annealing and other genetic algorithms, which,
therefore, we avoid to re-implement here. More specifically, we tested the FASoft system
Hurley et al. (1997), which however resulted in worse results than GSF-TS, the reason
for this being mainly the fact that the starting solution generated by the construction

198 Graph Colouring Generalisations

heuristics of that system are always worse than the one obtainable by G-DSATUR. GLS
was already applied in the context of frequency assignment by Tsang and Voudouris
(1998). Their local search is more complex than ours since it includes the use of don’t
look bits to avoid the repetition of recent exchanges. This difference is, however, not
significant, as we also restrict the neighbourhood to vertices involved in conflicts and
their method imposes similar restrictions.

Tuning. The tuning of parameters was done separately for Uniform and Geometric
instances but priority was given to choices with robust performance. These are the final
settings and in parenthesis the alternatives considered:

GSF-TS: δ = 20 (0.5, 1, 10, 20, 30, 40, 50, 60, 70, 100);
GSF-GLS: λ = 1 and sw = 20 (1, 20, 100, 200);
GSF-HEA: Tabu Search iterations 10000 (1000, 10000) and δ = 20 (20, 40);
GSF-MC: tt = 20 (2, 10, 20, 30).

Solving the T-colouring problem on the split graph by extending partial graphs

Incomplete Dynamic Backtracking. Prestwich (2002b, 2003) models the T-colouring
problem as a binary constraint satisfaction problem and solves it by means of constraint
propagation techniques based on backtracking with forward checking. Nodes in the
search tree are feasible partial colourings. The algorithm, called FCNS, ends up to be
very similar to the Ex-DSATUR for the GCP but, contrary to that algorithm, it is in-
complete to improve scalability. FCNS uses an incomplete randomised form of dynamic
backtracking which selects randomly backtrack variables and unassigns them without
unassigning those assigned after. In the algorithm, at each dead-end B backtrack vari-
ables are unassigned where B is a user defined noise parameter.

Tuning. The code of the algorithm was provided by Prestwich and, according to his
suggestion, we set the parameter B to 1.

Solving the T-colouring problem on the split graph with k variable

Tabu Search. We test a Tabu Search algorithm based on the same framework as in the
case of k fixed and neighbourhood N1, but using the evaluation function of Equation
5.1. We denote this algorithm as GSV-TS.

Tuning. We set δ = 20 as for GSF-TS (other values tested in the tuning phase were 0.5,
1, 10, 20, 30, 40, 50, 60, 70, 100).

Solving the set T-colouring problem with k fixed

Tabu Search. We test two Tabu Search algorithms, GOF-TS and GOF-TS-reass. GOF-
TS uses the N R

1 neighbourhood and it is, basically, the same algorithm as introduced by
Dorne and Hao (1998b). The version developed for frequency assignment instances by

5.6 Algorithms for the Set T-Colouring Problem 199

Let C∗ be the best non tabu neighbour of C in N R
1 breaking ties

randomly;
if f (C∗) < f (C) then return C∗;
for all v ∈ Vc of C do

if reassign(G, v, tvv, r(v)) returns an assignment then
return C with ϕ(v) changed as indicated by reassign

end
end
return C∗

Algorithm 5.7: The procedure for the selection of a neighbour in GOF-TS-reass.
The function reassign is given in Algorithm 5.6.

Hao et al. (1998) differs only in the management of the tabu length, while the version of
Hao and Perrier (1999) is more rudimentary. GOF-TS-reass is instead a new algorithm
that uses the union of N R

1 and NA. Since the exploration of NA is computationally
expensive, a heuristic truncating rule is adopted similar to the Variant 3 for the VLSN
in the GCP (see page 121). This rule reduces the exploration of NA to the only cases
where no improvement can be found in N R

1 . The neighbourhood examination scheme is
reported in Algorithm 5.7. Despite this rule, a main difference with TSVLSN in the GCP
is that the exploration of the neighbourhood remains exponential in the worst case. As
we will see, however, for the instances of our analysis its application remains feasible.

A Tabu Search mechanism is used only for restricting N R
1 . For NA such a mechanism

is not needed, as the randomisation of reassign in Algorithm 5.6 implies already that
different assignments are returned at each call of the function and repetitions avoided.

Tuning. For both algorithms GOF-TS and GOF-TS-reass we tuned the parameter δ that
influences the tabu length. We set δ = 10 for GOF-TS and δ = 20 for GOF-TS-reass (the
other values tested were 0.5, 1, 10, 20, 30, 40, 50, 60, 70, 100)

Adaptive Iterated Construction Search. For the GCP, Culberson (1992) developed an
extension of the sequential heuristic based on the greedy algorithm. It consists in ap-
plying the greedy method repeatedly each time to a new permutation maintaining ver-
tices that have the same colour in the previous colouring in consecutive positions of
the permutation. This method of generating new permutations ensures that the new
colouring will not use more colours than the previous colouring. A similar approach
can be applied in the T-colouring by using Algorithm 5.2. However, due to the distance
constraints, the condition of maintaining vertices that are in the same colour class in
consecutive positions of the new permutation is not anymore sufficient to guarantee
that the number of colours used will be less or equal the current one. In fact, only
permutations in which the distance between colour classes remains the same will guar-
antee such a property. One such permutation is the reverse order of the colour classes.
Lim et al. (2003) propose an algorithm which uses this idea. Nevertheless, details of the
implementation are missing and we cannot reproduce exactly the same algorithm. We,
therefore, implemented our own version based on the idea of iterated greedy (this im-
plementation yields superior performance to the implementation of Lim et al. (2003), as
it arises from the comparison with state-of-the-art results in Appendix C.2). The method

200 Graph Colouring Generalisations

works as follows. An initial solution is determined by G-DSATUR. Then, a colouring
that uses k− 1 colours is constructed applying the T-greedy algorithm to a permutation
of the vertices obtained from the previous colouring. The permutation maintains ver-
tices that have the same colour in consecutive positions but reverses the order of the
colour classes and shuffles vertices in the classes. The rationale behind this procedure
is that, if the reverse order of colour classes yields a colouring that uses the same or a
lower number of colours, then it is possible that this order, or small variations thereof,
lead to a feasible T-colouring with k− 1 colours. Perturbations in the reverse order are
introduced by inserting vertices that had colour k before vertices that had colour b, with
b ∈ {k− 1, . . . , 1}. Each colouring generated by T-greedy on a proposed permutation of
vertices is then improved by a Tabu Search local search applied for I × Vc × ∑v∈V r(v)
iterations. If no feasible solution is found and all possible values of b have been at-
tempted, the search proceeds by Tabu Search solely. We denote with GOF-AG this final
algorithm, which is the hybridisation of Tabu Search and Adaptive Iterated Greedy.

Tuning. In the implementation of Lim et al. (2003), b was a parameter to tune and its
value was not given. We linked this parameter to the algorithm, and hence we do not
need anymore to decide on its specific value. For the parameter I we tested the values
10 and 100 and we noted that I = 100 is preferable. In addition, we run preliminary
experiments to decide whether to run the algorithm with GOF-TS or with GSF-TS, as the
underlying idea of GOF-AG can be applied to both the original and the split graph. The
result was in clear favour of GOF-TS (with its corresponding tuning), hence we include
only this version in the comparison.

Solving the T-colouring problem on the split graph by extending partial graphs

Incomplete Dynamic Backtracking. Prestwich (2002b, 2003) attempted to model this
problem as a satisfiability problem (SAT) and to solve it with incomplete backtracking
techniques for SAT. The number of variables in the model is large and slows down con-
siderably the algorithm yielding inferior solutions to the FCNS method defined above.

5.6.7. Experimental Analysis

In this section, we describe the experimental analysis for the evaluation of SLS meth-
ods for solving the set T-colouring instances. In particular, we intend to determine:
(i) the best approach to solve the set T-colouring problem (using k fixed versus vari-
able, splitting the graph versus maintain the original distinction of constraints); (ii) the
most convenient neighbourhood for Tabu Search; (iii) the best overall algorithm; (iv) the
impact of instance features on the comparisons; (v) the scaling of the algorithms with
graph size and distance constraints.

In previous literature, comparisons of algorithms for the set T-colouring problem
have been accomplished mainly on two classes of instances: the Geometric graphs,
available at the DIMACS graph colouring repository, and the random graphs used by
Dorne and Hao (1998b). The size of many of these latter graphs resulted excessive for

5.6 Algorithms for the Set T-Colouring Problem 201

performing a reliable study, therefore, besides Geometric graphs, we use the random
graphs generated by ourselves and introduced in Section 5.4.

Analogously to what was done for the GCP, we use CPU time as the termination
criterion as a way to ensure that all algorithms do make use of the same computational
resources. Other measures, such as number of algorithmic steps, are not possible given
that the algorithms are all different and the search steps have different complexity. First,
we investigate which could be a reasonable time limit.

The time limit. We use the algorithm GOF-TS as the reference algorithm. This choice
is justified by the fact that, as for the GCP, Tabu Search appears to perform well, it
is a relatively simple algorithm, and hence it constitutes a reasonable benchmark for
more complex algorithms. Furthermore, we will show that its running times are not
considerably different from GSF-TS for the same number of iterations, which is an-
other algorithm appealing to serve as reference. Unfortunately, previous comparisons
published are incomplete in the definition of the experimental setting adopted (see, for
example, Lim et al., 2003). Prestwich (2003) and Dorne and Hao (1998b) define, instead,
a maximal number of iterations for their algorithms. Dorne and Hao (1998b) use 107

(2 · 107 for the largest graphs) iterations for their implementation of GOF-TS. We adopt
a different approach linking the maximal number of iterations for GOF-TS to the size of
the instance, i.e., Imax = 10000×∑v∈V r(v). On graphs of size 100 this value yields about
one third of the number of iterations used by Dorne and Hao (1998b), while on larger
graphs the two measures become closer.

We report the results attained by an experimental study designed to understand
whether Imax is a reasonable bound according to two criteria: (a) the solutions attained
should be of high quality, possibly reaching a limiting behaviour for the algorithm, (b)
the computation time should not be excessive.

We first report indications relative to criterion (a). To this end, we run GOF-TS for
10× Imax iterations on the new random graphs described in Section 5.4. Due to the cost
of solving some of these graphs, we restrict ourselves to consider graphs of size 60 and
the following combinations of r and d: 5,5; 5,10; 10,5 (see Section 5.4 for the definition
of these two parameters). Including the probability parameter p, the classes of instances
considered are 9 and comprise 10 graphs each. The classes are recognisable in Figure
5.11. The grey curves represent the probability of a last improvement to occur at the
indicated number of iterations, normalised by 10 × Imax. The black curves represent
instead the same data distribution as if they were censored at Imax iterations. The grey
distributions are meant to be only indicative, because their data would also be probably
censored if we could run an experiment with 100× Imax. Clearly, the entity of improve-
ments missed at Imax iterations indicates that this bound is too low and that at least
10× Imax should be used.

In Figure 5.12 we observe that the choice Imax versus 10× Imax has an impact on the
relative order of performance of the algorithms in our study. In other terms, the in-
crease of computation time consequent to using 10× Imax rather then Imax is not equally
profitable for all algorithms as the presence of crossing curves indicates.

On the other side we must control, according to criterion (b), that 10× Imax does not
yield an excessively long computation time, both for us, for running the experiments,
and for a possible planning scenario. To this end we check how the computation time
of GOF-TS scales with instance characteristics.

202 Graph Colouring Generalisations

Normalised iterations

Pr
ob

ab
ilit

y
of

 im
pr

ov
in

g 0.0
0.2
0.4
0.6
0.8
1.0

density = 0.1; r = 5; d = 5 density = 0.5; r = 5; d = 5 density = 0.9; r = 5; d = 5

0.0
0.2
0.4
0.6
0.8
1.0

density = 0.1; r = 10; d = 5 density = 0.5; r = 10; d = 5 density = 0.9; r = 10; d = 5

0.0 0.2 0.4 0.6 0.8
0.0
0.2
0.4
0.6
0.8
1.0

density = 0.1; r = 5; d = 10

0.0 0.2 0.4 0.6 0.8

density = 0.5; r = 5; d = 10

0.0 0.2 0.4 0.6 0.8

density = 0.9; r = 5; d = 10

Last improvement Last feasible

Figure 5.11.: The probability for GOF-TS of finding an improvement in random graphs of size
60. The distributions are obtained from 1 run on 10 graphs per instance class. The grey curves
are the distributions at 10× Imax and the black ones are the censored distributions at Imax.

In Figure 5.13 we report the empirical cumulative distribution functions of the compu-
tation time needed by GOF-TS to perform Imax and 10× Imax iterations on the 9 classes
of instances. We observe that (i) the increase in computation time due to the multi-
plication of Imax is linear and follows the same multiplying factor, namely 10, (ii) the
computation times for GOF-TS to solve the set T-colouring instances are much higher
than those experienced for graphs of the same size in the GCP, (iii) the increase of the
computation time due to the increase of the density is considerable, (iv) the number of
colours required at each vertex has a stronger influence on the computation time than
the separation distances, (v) on graphs from the lower right class a termination criterion
of 10× Imax entails waiting 2 hours and 45 minutes for instances of only 60 vertices. In
addition, we comment that GSF-TS and GOF-TS behave similarly, and hence from the
computational point of view there is not significant difference in solving the problem
in the split or the original graph. For more detailed numerical results we refer to the
Tables in Appendix C.2.1.

In order to study the computational complexity of GOF-TS and obtain a model for
predicting its running time on the basis of instance features, we try to derive from
the collected data curve bounds which are a function of the 5 variables |V|, ρ, r̄, t̄vv, t̄uv.
McGeoch et al. (2002) discuss how to adapt known linear regression techniques to the
study of the asymptotic behaviour of algorithms. By using two of the techniques there
indicated by these authors, namely log-log and Box-cox, we obtain the models reported
in Table 5.3. On the Geometric graphs the Box-cox technique did not returned an answer
because of lack of convergence. On the Uniform graphs instead it returned a model
which is exponential, although it indicated that the curve has to be regarded as an upper

5.6 Algorithms for the Set T-Colouring Problem 203

T−G.5.5−60.0.1
5

10
15

20
25

M
ed

ia
n

ra
nk

T−G.5.5−60.0.5 T−G.5.5−60.0.9

1 10

T−G.5.5−120.0.1

5
10

15
20

25
M

ed
ia

n
ra

nk

1 10

T−G.5.5−120.0.5

Multiplier factor for Imax

1 10

T−G.5.5−120.0.9

c(0, 1)

c(
0,

 1
)

GOF−TS−reass
GOF−AG
GOF−TS
GSF−MC
GSF−TS
GSF−HEA
GSV−TS
GSF−GLS
FCNS

1 10

GEOM (p=0.1 r=5.8 d=4.3 vd=10)

5
10

15
20

M
ed

ia
n

ra
nk

1 10

GEOMa (p=0.2 r=5.1 d=4.5 vd=10)

Multiplier factor for Imax

1 10

GEOMb (p=0.2 r=2.1 d=4.3 vd=10)

c(
0,

 1
)

GOF−TS−reass
GOF−AG
GOF−TS
GSF−MC
GSF−TS
GSF−HEA
GSV−TS
GSF−GLS
FCNS

Figure 5.12.: The effect of increasing the running time on the algorithms. On the Uniform
graphs, instances have sizes 60 and 120, and r = d = 5. On the Geometric graphs the title
reports average statistics with p being the edge density, r requirements, d edge distances, and vd
vertex distances.

bound in the asymptotic behaviour. However an exponential model is not very useful.
Considerations on the complexity of GOF-TS (see Section 5.6.5) lead us to conjecture that
an iteration of GOF-TS should have complexity O(|V|aρb(r̄ + T̄vv + T̄uv)) and this looks
more similar to the model provided by the log-log transformation. In the light of this
fact, we decide to rely on the polynomial model provided by log-log. Its characterisation
together with the coefficients is given in the last row of the table. Note that, in the case
of random graphs, the model is a lower bound, hence, with an increase of computation
times its predictions are actually under-estimates.

We will use this model, that predicts the computation time for performing Imax it-
erations, for determining the time limit on each instance of the experiments described
next. For numerical indications about the predicted times and a comparison with the
real ones we refer to the Appendix C.2.

The design of experiments. We separate the two blocks of experiments relative to the
two classes of instances, Uniform and Geometric random graphs. In the light of the
results in the previous paragraph, we decided to use the time limit corresponding to
10× Imax, hence, 10 times the values returned by the model of Table 5.3. To cope with
the long computation time issue beside using the experimental designs “several runs

204 Graph Colouring Generalisations

Figure 5.13.: Computation time for GOF-TS and GSF-TS for performing Imax and 10 × Imax
iterations on different graphs of size 60. The empirical cumulative distributions functions are
obtained from 1 run on 10 graphs per instance class.

on various instances” we use also the “one single run on various instances” design. For
the 90 Uniform random graphs we perform 1 single run per instance while for the 27
Geometric random graphs we perform 3 runs per instance. Note that running all the
experiments for the 9 algorithms on our reference machine (Section 4.4) require 45 days
(without taking into account preliminary experiments for the tuning).

Performance measurement. The SLS algorithms introduced are designed for minimis-
ing the span of the colouring. The algorithm response we measure is k = max{Γ}, i.e.,
the maximal number of colours used in the solution. Clearly, it is s̃p(G) = k − 1. In
order to normalise response among instances, we transform k into the error measure
err defined by Equation 4.2 on page 137. Here, we substitute k̃ROS with the median
result returned by G-DSATUR and χ(G) with ŝp(G). In Figure 5.14, we see that in some

Uniform Geometric

log-log |V|2.36ρ0.99 r̄3.68(t̄uu + t̄uv)2.54 l |V|1.30ρ0.12 r̄1.30(t̄uu + t̄uv)8.23 c

Box-cox 1.02|V|13.06ρ2.20r̄1.70t̄uv u

Selected t = 1
3.91·105 · (|V|2.36ρ0.99 r̄3.68(t̄uu + t̄uv)2.54)− 79.56 t = 1

5.12·1011
· 1.02|V|13.06ρ2.20r̄1.70t̄uv

Table 5.3.: The outcome of the linear regression analysis for determining the asymptotic time
behaviour of GOF-TS in relation with instance feature. Conform to the notation introduced by
McGeoch et al. (2002) we indicate with a letter l, c and u the type of bound. The letter l is used
for lower bound, u for upper bound and c if the curve fits the data without a prevalent diverging
trend.

5.6 Algorithms for the Set T-Colouring Problem 205

Performance measure
0.5 1.0

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

Figure 5.14.: Box-plot of performance error measure err on the 90 random graphs of size 60.

circumstances some algorithms are not able to improve over the results provided by the
G-DSATUR heuristic. In particular GSF-GLS appears really not worthwhile to be used
(obviously it cannot do worse than G-DSATUR, and values larger than one are due to
the fact that the values of the heuristic are averaged). For graphs of large density, FCNS

does not better than G-DSATUR. Besides this observation, the analysis through box-plots
does not present any further evident indications and speculations about differences in
the algorithm performance are not appropriate from these plots.

The choice of statistical tests. We checked the assumptions for the application of the
statistical tests defined in Section 3.6.2. In all cases, diagnostic plots for checking the
assumptions of parametric tests suggest that a parametric analysis is not appropriate.
We rely therefore on permutation and rank-based tests. In Figure 5.15 and 5.16 we
present the comparison of the two methods for determining confidence intervals in
the all-pairwise comparisons of our algorithms. Figure 5.15 corresponds to a “several
runs on various instances” scenario while Figure 5.16 to the “one single run on various
instances” scenario. In both cases, rank-based tests appear more powerful, although, in
the two figures results are aggregated without considering the presence of stratification
variables which may be used for reducing the variance. However, given the results of
the analysis reported in Appendix B, and assuming that we give more importance to
finding a better span in many instances rather than large improvements only on few,
we decided to base the comments that follow on the inference produced by rank-based
tests.

The best approach to the problem. In Figure 5.15, algorithms are presented in in-
creasing order of performance as the ordinates approximate the origin of the axes. It
clearly arises that solving the problem in the split graph is not the best approach. All
algorithms that worked well for the GCP are weak in performance when adapted to
solve the set T-colouring problem with this representation. In particular GSF-GLS and
GSF-HEA perform always significantly worse than GSF-TS. Surprisingly, among the al-
gorithms that work on the split graph the best is GSF-MC which is never dominated
by the other algorithms working on split graph and it performs significantly better as
the requirements at vertices increase (which corresponds to an increase of vertices and
clique sizes in the split graph). The use of k variable also does not appear a good choice
to solve the problem, although our algorithm in this context was a quite simplistic one

206 Graph Colouring Generalisations

0.0 0.2 0.4 0.6 0.8 1.0

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

Permutations
GEOM p=0.1 r=5.8 d=4.3 cd=10 (7 Instances)

5 10 15 20

Ranks
GEOM p=0.1 r=5.8 d=4.3 cd=10 (7 Instances)

0.2 0.4 0.6 0.8 1.0

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

Permutations
GEOMa p=0.2 r=5.1 d=4.5 cd=10 (10 Instances)

5 10 15 20 25

Ranks
GEOMa p=0.2 r=5.1 d=4.5 cd=10 (10 Instances)

0.2 0.4 0.6 0.8 1.0

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

Permutations
GEOMb p=0.2 r=2.1 d=4.3 cd=10 (11 Instances)

5 10 15 20 25

Ranks
GEOMb p=0.2 r=2.1 d=4.3 cd=10 (11 Instances)

Figure 5.15.: Confidence intervals for the all pairwise comparisons of approximate algorithms
on Geometric instances of the set T-colouring problem. Permutation tests with USP procedure
are used on the left column while Friedman’s rank-based tests are used on the right column.
The experimental design is “several runs on various instances” with 3 runs per instance. The x-axis
reports the average error measure and the average rank, respectively. The time limit applied
corresponds to 10× Imax iterations of GOF-TS.

0.0 0.2 0.4 0.6 0.8 1.0

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

Permutations
Random graphs aggregated (90 Instances)

2 4 6 8

Ranks
Random graphs aggregated (90 Instances)

Figure 5.16.: Confidence intervals for the all pairwise comparisons of SLS algorithms on aggre-
gated Uniform random instances of the set T-colouring problem (see also Figure 5.17). Permuta-
tion tests are used on the left column while the Friedman’s rank-based tests are used on the right
column. The experimental design is “one single run on various instances”. The x-axis reports the
average error measure and the average rank, respectively. The time limit applied corresponds to
10× Imax iterations of GOF-TS.

5.6 Algorithms for the Set T-Colouring Problem 207

and perhaps better algorithms could be devised.
In contrast, solving the original graph, that is, maintaining the vertex-distance con-

straints distinguished from edge-distance constraints and imposing their satisfaction in
the solution representation (thus restricting the neighbourhood to neighbours that do
not violate such constraints) results to be the best solution approach. Indeed, 3 out of
the 4 best methods, GOF-TS, GOF-TS-reass, and GOF-AG use this representation.

The best algorithm and the influence of instance features. For Geometric graphs, the
best algorithm is GOF-AG. This holds for all the three classes (Figure 5.15) and, conse-
quently, also in the aggregate case. On the Uniform random graphs the aggregate anal-
ysis of Figure 5.16 indicates the same conclusion. However, on these graphs a detailed
analysis reported in Figure 5.17, where columns represent different edge density and
rows different requirements and distances constraints, shows that GOF-AG is not always
the best on all classes. In the cases with edge density 0.5 or 0.9 and requirements per
vertices below 5, GOF-TS-reass performs better. Important is the comparisons between
these two algorithms and GOF-TS, since both of them might be seen as enhancements
of this very simple algorithm. The results indicate that the use of an iterated greedy
procedure or of the reassignment neighbourhood NA are in general useful, although
there are few cases where differences are not significant.

As far as FCNS is concerned, the number of iterations it performed in our experimental
setting ranged from 2, 4 · 106 to 5.4 · 107. In the original paper by Prestwich (2003) the
bound was 3 · 107, hence, the results here discussed are in line with those presented by
that author. Nevertheless, the results are rather weak and the method appears not to be
competitive.

A detailed summary of the numerical results is reported in Appendix C.2. We just
mention here that the results attained on the Geometric graphs are better than the best
known results in the literature on 25 instances out of 28, reaching up to 36 colours less
on GEOM100a, while they are worse only on 2 instances.

An analysis on GOFGOFGOF-TSTSTS-reassreassreass We try to understand the influence of instance character-
istics on the behaviour of GOF-TS-reass. In Table 5.4, we report a collection of statistics
that help us in this task. The number of improvements made possible by the function
reassign of Algorithm 5.6 is considerable when compared to the number of improvements
due to one-exchanges (we recall that Algorithm 5.6 is called only when no improving
one exchange is found, hence the improvements would have been missed without the
use of the restricted one-exchange neighbourhood N R

1). Particularly relevant for the
feasibility of the algorithm, which has an exponential worst case, is the fact that the size
of |F| remains constantly small and comparable to the requirements. However, this is
not an unlikely situation when solving instances close to their optimal span. The range
of colours fmax − fmin increases, instead, with the density and this fact could explain the
better performances of GOF-TS-reass on graphs of larger density. With a larger range,
it is indeed easier to find rapidly a feasible reassignment or, given that |F| is small, to
determine that no feasible reassignment exists. On the class T-G.10.5-60.0.1, we have
a strange behaviour: the algorithm required much longer run times, as a consequence
of the large |F|, and no improvement in the intra-vertex reassignment neighbourhood
NA was found. Yet, the improvements were few also in the restricted one-exchange
neighbourhood N R

1 and hence this class exhibits some particular properties that would

208 Graph Colouring Generalisations

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

T−G.5.5−60.0.1 (10 Instances) T−G.5.5−60.0.5 (10 Instances) T−G.5.5−60.0.9 (10 Instances)

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

T−G.5.10−60.0.1 (10 Instances) T−G.5.10−60.0.5 (10 Instances) T−G.5.10−60.0.9 (10 Instances)

2 4 6 8

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC
GSF−TS

GSF−HEA
GSV−TS

GSF−GLS
FCNS

T−G.10.5−60.0.1 (10 Instances)

2 4 6 8

T−G.10.5−60.0.5 (10 Instances)

2 4 6 8

T−G.10.5−60.0.9 (10 Instances)

Figure 5.17.: All-pairwise comparisons on stratified Uniform random graphs. Edge density varies
on the columns and requirements and distances on the rows.

probably be interesting for further studies. In conclusion, since worse performance in
comparisons with GOF-TS are only due to longer run times, a possible improvement for
GOF-TS-reass would then be to limit the calls to reassign to cases where F is close in size
to r(v).

Scaling of performance with instance size. We designed another experiment consid-
ering Uniform random graphs of size 60 and 120 and r̄ = t̄ = 5 and we collected 3
runs per instance with a time limit corresponding to 10× Imax, where the computation
time for Imax is given by the model of Table 5.3. The all-pairwise comparison is reported
in Figure 5.18. We observe that the significance of the differences increases due to the
passage from 1 to 3 runs per instance in the design of the experiment, and becomes
significant even for edge density 0.1. Differences increase also with respect to the size
of the graph. The relevant observation is that the good performance of GOF-TS-reass on
graphs of edge density 0.5 is maintained with the increase of graph size. As we noted
before, the complexity of Algorithm 5.6 depends on the entity of requirements at the
vertices and the number of colours in F, but not by the size of the graph. The outcome
is that GOF-TS-reass is the best algorithm for instances of edge density around 0.5 and
requirements below 5. In an aggregate analysis (not reported) of the data represented
in Figure 5.18 there is no difference between GOF-AG and GOF-TS-reass, while they both
perform better than GOF-TS.

We conclude noting that there is no indication against the conjecture that these results
should hold also for larger instances with the same characteristics, as those solved by
Dorne and Hao (1998b).

5.6 Algorithms for the Set T-Colouring Problem 209

class iter. calls improv. in N R
1 improv. in NA |F| fmax − fmin

T-G.5.5-60.0.1 8880 17698 1179 59 7 25
T-G.5.10-60.0.1 9259 15953 839 98 8 50
T-G.10.5-60.0.1 9994 20110 6 0 26 73
T-G.5.5-60.0.5 9030 25463 776 194 6 43
T-G.5.10-60.0.5 9187 22112 926 113 6 133
T-G.10.5-60.0.5 9287 35321 851 138 9 69
T-G.5.5-60.0.9 9232 21370 651 117 5 53
T-G.5.10-60.0.9 9807 13782 223 30 8 159
T-G.10.5-60.0.9 9437 23402 640 77 10 209

Table 5.4.: Statistics on GOF-TS-reass. The first four columns report statistics gained from 10000
iterations of GOF-TS-reass and are the median values out of 10 runs on one single instance per
class. They represent the number of iterations in which there was no improving one-exchange
and the function reassign of Algorithm 5.6 was called (iter.), the total number of calls to the
function reassign (calls), and the number of improving moves in the two neighbourhoods. The
last two columns report statistics obtained by one single run of 10000 iterations of GOF-TS-reass
on a single instance per class. They represent the number of colours in F for the vertex v in
reassign, i.e., the colours which are feasible according to the edge-distance constraints of vertices
adjacent to v, and the range of colours in F, i.e., fmax − fmin, with fmax = max{c : c ∈ F} and
fmin = min{c : c ∈ F}.

Average rank

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC.1
GSF−MC.2

GSF−TS
GSF−HEA

GSV−TS
GSF−GLS

FCNS
T−G.5.5−60.0.1 (10 Instances) T−G.5.5−60.0.5 (10 Instances) T−G.5.5−60.0.9 (10 Instances)

5 10 15 20 25 30

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC.1
GSF−MC.2

GSF−TS
GSF−HEA

GSV−TS
GSF−GLS

FCNS
T−G.5.5−120.0.1 (10 Instances)

5 10 15 20 25 30

T−G.5.5−120.0.5 (10 Instances)

5 10 15 20 25 30

T−G.5.5−120.0.9 (10 Instances)

Figure 5.18.: All-pairwise comparisons on stratified random graphs. Edge density varies on the
columns and size and distances on the rows.

210 Graph Colouring Generalisations

The importance of tuning. The tuning of the parameters is crucial with SLS algo-
rithms. In Figure 5.18, we show its importance for GSF-MC. An aggregate analysis indi-
cates in a tabu length of 20 the best choice but for instances of density 0.9 a length of 10
yields clearly better results. Similar considerations hold for GOF-TS where a δ value of
10 yields definitely better results than 20 for instances with high density (this should be
true also for GOF-TS-reass although we did not extensively test it). Our original choice
was determined by an aggregated evaluation of performance which was biased by the
larger number of graphs of small edge density because of the presence of the Geometric
graphs. The behaviour of GSF-MC has to be regarded as a confirmation that the tuning
of SLS algorithms is a determinant factor for the success of a solution method and that
it can have very important effects, not only marginal ones. A correct tuning requires the
thorough understanding of the instance classes to which the algorithm must be applied
and a good guess of a reasonable range of values for the parameters. A methodology
that can help in this tuning process is the one based on sequential testing and racing
approaches. This methodology is used extensively in Chapter 6. It is beyond the scope
of our analysis here to fine tune the various algorithms for the set T-colouring problem
and we leave this for future work.

The improvement over GGG-DSATURDSATURDSATUR. In the Appendix C.2, Table 5.5, we present the nu-
merical comparison of the range of values for the lower bound, the G-DSATUR heuristic,
and the best SLS algorithm on the Uniform random graphs. The ranges are determined
by two stochastic factors: the graphs (10 per class) and the algorithm. Since we do not
know how good the lower bounds are, we cannot comment on the hardness of these
instances.

The improvements over the G-DSATUR heuristic are always relevant and clearly indi-
cate the importance of applying SLS algorithms. Even in the instances with r̄ = t̄ = 5
and density 0.1 where the distance from the lower bound is small, there is an improve-
ment of about 10 colours. On these graphs, however, we noted that it is hard to distin-
guish differences among the algorithms (see Figure 5.17) and given the proximity of the
best SLS algorithm results to the lower bounds we may conjecture that a “floor” effect
is present. On all other classes, instead, a large gap lower bound–best solutions exists.

We conclude that the new instances introduced are sufficiently challenging and the
improvements over G-DSATUR are important. Numerical details of the results on all
these instances as well as on the Geometric ones are given in Tables C.8 and C.9 of
Appendix C.

The minimal order problem. In Figure 5.19 we analyse the solutions returned by the
algorithms under the criterion of minimising the order. When doing so, GOF-TS-reass
results to rank among the worst algorithms, while GOF-AG and GOF-TS remain the best
but are overtaken on instances with high edge density by GSV-TS. This latter result
supports the conjecture that minimising the order and minimising the span are two
objectives in conflict with each other. The interaction between these two objectives may
deserve further research. We add that in the development of GSV-TS, it has been quite
problematic to derive a good objective function for the minimal span. In particular, the
objective function f = −∑i∈Γ |Ci|2 + |Vs| · |Vc| where Vs is the set of vertices in the split
graph and Vc the vertices involved in at least one distance conflict, seemed to lead the
search very rapidly to good solutions in terms of the order number.

5.7 Discussion 211

Instance Lower Bound (sec.) G-DSATUR GOF-TS-reass/GOF-AG

T-G.5.5-60.0.1 29 – 40 (2) 41 – 62 34 – 42
T-G.5.5-120.0.1 20 –53 (2) 58 –79 45 –57
T-G.5.10-60.0.1 42 – 68 (2) 78 – 107 63 – 83
T-G.10.5-60.0.1 55 – 91 (7) 79 – 116 62 – 93
T-G.5.5-60.0.5 30 – 50 (7) 89 – 116 74 – 89
T-G.5.5-120.0.5 41 –70 (9) 154–189 125–141
T-G.5.10-60.0.5 61 – 105 (8) 168– 231 137– 169
T-G.10.5-60.0.5 66 – 100 (22) 148– 222 123– 163
T-G.5.5-60.0.9 71 – 96 (41) 160– 194 137– 164
T-G.5.5-120.0.9 105–126(37) 276–321 247–276
T-G.5.10-60.0.9 91 – 125 (48) 304– 370 261– 291
T-G.10.5-60.0.9 141– 173 (117) 288– 353 253– 298

Table 5.5.: Comparison between lower bounds, construction heuristic, and best SLS algorithm
(either GOF-TS-reass or GOF-AG) on the random graphs instances. The values refer to k, the
number of colours used in the solution.

Average rank

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC.1
GSF−MC.2

GSF−TS
GSF−HEA

GSV−TS
GSF−GLS

FCNS
T−G.5.5−60.0.1 (10 Instances) T−G.5.5−60.0.5 (10 Instances) T−G.5.5−60.0.9 (10 Instances)

5 10 15 20 25

GOF−AG
GOF−TS−reass

GOF−TS
GSF−MC.1
GSF−MC.2

GSF−TS
GSF−HEA

GSV−TS
GSF−GLS

FCNS
T−G.5.5−120.0.1 (10 Instances)

5 10 15 20 25

T−G.5.5−120.0.5 (10 Instances)

5 10 15 20 25

T−G.5.5−120.0.9 (10 Instances)

Figure 5.19.: All-pairwise comparisons on the order of the colouring for stratified random graphs.
Edge density varies on the columns and size and distances on the rows.

5.7. Discussion

We defined graph colouring generalisations and studied SLS algorithms for the set T-
colouring problem. We focused on two type of random graphs, Geometric and Uniform.
The former are part of the DIMACS repository, the latter have been re-generated because
those available were too large to allow a large scale experimental analysis on SLS algo-
rithms. The new graphs generated amounted to 120 and varied in size, edge density,
vertex requirements, and distance constraints.

The study on construction heuristics showed that a generalised form of DSATUR that
solves the T-colouring transformation of the set T-colouring problem is the best choice
on both classes of graphs. In terms of solution quality it performs better than the ROS
and RLF heuristics adapted for solving the T-colouring problem and it is not dominated
by a set of heuristics specific for the set T-colouring problem. In terms of computation

212 Graph Colouring Generalisations

times it remains very fast and solves split graphs of 3000 vertices in about 2.5 seconds.

The comparison of SLS algorithms comprised state-of-the-art algorithms and adapta-
tions of algorithms from the GCP. The methods that work on the original formulation
of the set T-colouring problem and solve a sequence of problems with fixed k resulted,
with few exceptions, preferable to those working on the transformation of the problem
in set T-colouring problem.

Clear indications arose that GOF-AG, an Adaptive Iterated Greedy based on Tabu
Search with one-exchange neighbourhood, is the best overall algorithm both on the
Uniform and on the Geometric random graphs. Our re-implementation of this algorithm
yields much better performance than those originally presented by Lim et al. (2003), and
we were able to improve the best known results on 18 out of 28 Geometric random graphs.
However, a more fine-grained analysis of the instance classes revealed that for graphs
with edge density 0.5 and requirements at the vertices below 5 colours, GOF-TS-reass,
a Tabu Search algorithm with one-exchange neighbourhood enhanced by occasional
exact reassignment of colours at the vertices, performs better than GOF-AG. These two
algorithms can be easily combined together, and thus a further boost in performance is
possible in future implementations.

As far as graph colouring generalisations are concerned, our study contradicts some
of the claims encountered in graph colouring literature, that algorithms performing well
for the GCP should perform well also for its generalisations. We showed that this is not
true and that adaptations of methods like HEA and GLS resulted in algorithms that
perform poorly on the set T-colouring problem.

The main difference with respect to the similar analysis on the GCP is the strong
increase of computation times required by SLS algorithms for solving the set T-colour-
ing problem. The choice for the time limit has been different in comparison with the
previous chapter. We tried to infer a model from preliminary observations by means of
linear regression techniques. The advantage of this approach might be the prediction of
reasonable time limits for solving an instance from its features that are known a priori.
On the one hand, this task resulted as being complicated, rich of pitfalls, and, to a certain
extent, unsatisfactory in its results, mainly due to the large variance in the measures
of computation times. On the other hand, the problem of deciding an appropriate
stopping time for SLS algorithms still remains a “problem” (of course, when no practical
limitations occur) and methods for the analysis of results that are less dependent from
one particular such choice would be very useful in this context.

The main concern with the choice of the time limit is that it may affect the results.
To this end, we provided evidence that some differences in the relative order may arise
although these differences seem not to affect the best algorithms. The facts that we
brought in support of this claim are two: (i) the two best algorithms are both based
on GOF-TS, which exhibits a continuous improvement of solution quality over the run
times that we could afford to test, (ii) the similarity of results at Imax and 10 × Imax

algorithm iterations.

Two other facts are remarkable to be pointed out. They confirm known pitfalls in al-
gorithm testing. The first is that aggregating results may lead to rough conclusions. This
became evident on the Uniform random graphs where a detailed analysis of the results
revealed that, depending on the characteristics of the instances, different algorithms

5.7 Discussion 213

may result preferable. The analysis of algorithms should therefore take into account ho-
mogeneous classes of instances or instances that are well representative of the practical
application for which the algorithm is designed. The second fact is that tuning is not
a marginal factor but a determinant one in the performance of SLS algorithms. This
suggests that in a real application, improved performance may be obtained by further
tuning of parameters. The statistical methodology that we adopt in the next chapter in-
dicates how the tuning process can be done effectively by reducing unnecessary testing.
We observed, indeed, that some algorithms are significantly inferior already after few
runs (e.g., GSF-GLS) and they could be removed very soon to leave space for a better se-
lection of the most promising ones or for the enlargement of the set of parameter values
considered. Our analysis is a compromise between the need of finding algorithms that
behave well enough in general and the need of understanding how much performances
may vary with respect to the classes of instances. An specific tuning of parameters on
the large spectrum of instance classes considered would have been very costly, hence,
we gave preference to robust tuning of the algorithms and attempted, where possible,
to link the parameters to the characteristics of the instances thus making them part of
the heuristic rules tested with the algorithm.

Finally, there are two main lessons learned in this chapter which are relevant for the
next chapter where we will solve a complex timetabling problem. First, it is profitable to
use a solution representation that reduces the search space and satisfies by construction
some constraints. This is made evident by the fact that algorithms that solved the set
T-colouring problem working on the split graph resulted clearly inferior in performance
to all approaches that used the original graph and imposed the satisfaction of the vertex
constraints. This reduction of the neighbourhood is reasonable since it maintains the
search space connected. Secondly, exact algorithms to solve small assignment problems
are appealing because they can find new improvements where basic neighbourhoods
fail. This result contradicts somehow the outcome of the previous chapter where a very
large scale neighbourhood search algorithm gave an opposite indication. It is wrong,
therefore, to generalise this result and its validity must be verified in every specific case.

Chapter 6.

Course Timetabling

In which we advocate an engineering approach for the application of SLS methods to real
life problems and suggest the use of a systematic development methodology. We use

timetabling as a case study to bring evidence that this approach is successful.∗

6.1. Introduction

Timetabling can be generally defined as the activity of assigning, subject to constraints,
a number of events to a limited number of time periods and locations such that desir-
able objectives are met as much as possible. Areas where such an activity is required
are, among others, educational timetabling, employee timetabling, sports timetabling,
transport timetabling, and communication timetabling.

Educational timetabling can be subdivided into three main classes: school timetabling,
course timetabling and exam timetabling. Here we will be concerned with a particular
case of university course timetabling. In university course timetabling a set of lectures
must be scheduled into rooms and timeslots subject to constraints that are usually di-
vided into two categories: “hard” and “soft”. Hard constraints must be strictly satisfied
with no violation allowed, while in the case of soft constraints it is desirable, but not
essential for feasible timetables, to minimise their violations. Constraints and their im-
portance differ significantly among countries and also among institutions (Carter and
Laporte, 1998).

Typical in course timetabling, are the availability of a limited number of timeslots and
the requirements of allocating lectures only into suitable rooms, having no more than
a lecture per room. In some countries, like in Italy or in the United Kingdom where
courses are composed of well defined lectures with different subjects and teachers, a
further requirement is that lectures belonging to the same course and, hence, attended
by the same students, are scheduled in different timeslots. Note that this latter con-
straint is rarely present in Germany, (at least not at the Computer Science Department
of Darmstadt University of Technology), although this may not be a choice by rather a
necessity. In many universities, timetabling is still done by hand and the involvement
of any further constraints increases the complexity of this activity. An automatic system

∗Part of the research described in this chapter was carried out together with Dr. Mauro Birattari, Dr. Olivia
Rossi Doria and Krzysztof Socha. The content of the chapter has also been object of a joint article
accepted for publication at the Journal of Scheduling.

216 Course Timetabling

removes such limitations and leaves wider organisational freedom. It makes also possi-
ble to take into account soft constraints such as the desirability of having lectures well
spread through the week so that the students do not have to attend too many or too few
courses on a day.

Course timetabling can be formulated as a combinatorial optimisation problem. Given
that a large number of events (lectures) are to be scheduled and a wide variety of
constraints is present, the problem to be solved can be very difficult and a variety of
approaches from the field of Operation Research and Artificial Intelligence have been
proposed. Many publications on applications of different techniques to timetabling ap-
peared in recent years and the proceedings of a biannual International Conference on
the Practice and Automated Timetabling (PATAT) collect the state-of-the-art. However,
all timetabling systems are specifically designed for particular versions of a timetabling
problem and comparisons between them are rarely possible.

Our scope, in this chapter, is broader than merely solving a specific timetabling prob-
lem. Timetabling is a real world application that exhibits issues common to many other
real world problems and our intention is to show how we can tackle such an example
effectively with SLS methods. The choice of timetabling as a representative case for
real applications is due to (i) its high complexity and degree of specificity, which makes
minimal the chance of finding reusable algorithms (this feature is typical of real life
problems); (ii) its connection to graph colouring and its generalisations which gives us
the basis to model and solve effectively timetabling problems; (iii) the possibility of mea-
suring the effectiveness of our general approach in the International Timetabling Com-
petition,1 that was held in 2002 and 2003 and aimed at attracting the best researchers
of the field. The selected problem has three hard constraints and three soft constraints,
each representative of different types of constraints.

Michalewicz and Fogel (2000) argue in favour of the following approach to problem-
solving:

Better solutions to real-world problems can often be obtained by usefully
hybridising different approaches. Effective problem-solving requires more
than a knowledge of algorithms; it requires a devotion to determining the
best combinations of approaches that addresses the purpose to be achieved
within the available time.

We totally agree with this vision and follow it for solving our specific timetabling
problem. Accordingly, in the case of SLS methods, we do not pledge ourselves in ad-
vance to any rigid method, such as one single metaheuristic, but make use of a combi-
nation of different methods. Yet, this poses additional problems in the configuration of
the final SLS algorithm and in the selection of its constituent components. We suggest
that proceeding in a systematic way with the strong use of experimental testing is the
correct manner to develop such effective, hybrid algorithms, or, said in other words, to
assemble an effective SLS algorithm from SLS components.

1The International Timetabling Competition was organised by B. Paechter and L. Gambardella from the
Metaheuristics Network, and was sponsored by PATAT, the International Series of Conferences on the
Practice and Theory of Automated Timetabling. As members of the Metaheuristics Network, we could
submit an algorithm but we were not allowed to win the prize. For details on goals and rules of the
competition we refer to the official web site http://www.idsia.ch/Files/ttcomp2002/ (October 2004).

http://www.idsia.ch/Files/ttcomp2002/

6.2 Methods for timetabling: the state of the art 217

The novelty of our approach is the interactive use of a systematic experimental method-
ology based on sequential testing for the development of SLS algorithms. Sequential
testing has recently been introduced to the tuning of metaheuristic parameters by Bi-
rattari et al. (2002) and we described it in Chapter 3. It is indeed a very useful tool
for the whole development process of SLS algorithms as it enables us to evaluate many
candidate algorithms and it can be used in an automatic manner saving a lot of te-
dious hand-work. Moreover, if used sapiently, ongoing results can suggest the design
of further algorithm candidates, which may be inserted in the testing procedure at any
time. In this way, the sequential testing may be regarded as an interactive procedure
and it may guide the development of effective algorithms that are highly specialised for
the situation at hand. A further advantage of such a methodology is that it provides
with some statistical guarantee that the final algorithm is a good algorithm. In a real
context, where benchmark results are not available, this is indeed a contribution not to
underestimate.

We used this methodology to develop an algorithm for submission to the International
Timetabling Competition. The competition defined the instance class, the rules and the
deadline for the entry of the submission. This situation is very similar to a real context,
where these specifications are present and are part of the problem formulation. The
competition had 24 feasible submissions from all over the world. According to the
evaluation criterion of the competition, our algorithm outperformed the official winner
which, in turn, outperformed by a quite large margin all the other submissions. We use
this fact as evidence that our approach is profitable.

The chapter is organised as follow. In Section 6.2, we discuss the current state of art
in educational timetabling and place our work within the context of that area. We in-
troduce the specific timetabling problem that we solve in Section 6.3, and, in Section 6.4
we discuss possible formalisations of this problem as a graph colouring problem with
the involvement of different types of constraints. In Section 6.5, we define the method-
ology for the SLS engineering process and describe its application in our practical case.
Next, in Section 6.6, we provide the details of the final SLS algorithm, whose general
framework is worth to be reused in similar applications, and analyse the impact of its
components in Section 6.7. We conclude with a discussion on the guidelines for the ap-
plication of SLS methods in Section 6.8 and with a summary of the main issues arising
in this chapter in Section 6.9.

6.2. Methods for timetabling: the state of the art

Probably due to its academic environment, educational timetabling has received partic-
ular attention and it is the most fervid area for new ideas which are then applied also to
other fields of timetabling such as staff scheduling and rostering (see Ernst et al., 2004
for a review on these related application areas).

Current research on university course timetabling focuses on three main directions.
First, given the large variety of problems arising from the specific needs of different
institutions, there is the attempt of formulating standard timetabling problems, which
include supersets of constraints, where portable programs can be developed and com-

218 Course Timetabling

pared. The web repository on Timetabling Problems maintained by L. Merlot2 is an ex-
ample of efforts towards this goal. Secondly, there is the tendency to develop generalised
frameworks that can handle a wide range of problems or that provide the practitioners
with as many components already implemented as possible. Examples are standardised
models for handling constraints proposed by Chand (2004) and Custers et al. (2005) or
libraries for metaheuristics such as EasyLocal++ (Di Gaspero, 2002), or other commer-
cial packages such as iOpt (Voudouris et al., 2001), SpaceMap (Burke et al., 2004a) and
Harmony (Post and Veltman, 2004). However, as discussed in Section 2.4.5 and as also
pointed out in this specific context by de Werra (1985), the idea of developing a univer-
sal timetabling program which could be used everywhere does not seem to be reason-
able. The huge variety of timetabling problems makes it very unlikely that an effective
heuristic method exists which is good for all constraints of different nature. Accordingly,
frameworks leave to the final user the task of assembling and customising the solution
methods. This process necessarily requires a certain degree of expertise and devotion of
time from the user side. Therefore, there is currently a third direction of research, that
looks at systems with many pre-developed algorithms and seeks for methodologies for
choosing automatically and intelligently the appropriate algorithm for the problem at
hand. The arrival point should be a system able to recognise the similarity of the new
problem with previously solved problems and apply to the new problem the best tech-
nique for the matched case. Examples in this direction are hyper-heuristic approaches to
select among heuristics proposed by Burke, Kendall, and Soubeiga (2003) and case-based
reasoning systems recently introduced by Burke, Eckersley, McCollum, Petrovic, and Qu
(2004b). The general trend in timetabling goes therefore towards the realisation of gen-
eral systems which embed both solution techniques and automatic methods for their
selection.

As far as solution techniques are concerned, the tendency seems to indicate SLS meth-
ods to be the most appropriate. Mathematical programming approaches like column
generation are usually limited to a small number of constraints and small instances.
A recent example of integer programming applied to a highly-constrained timetabling
problem is given by Daskalaki et al. (2004). The main effort with these techniques lies in
the modelling of the constraints and in the definition of the variables, because existing
software packages can be used for solving the resulting integer programming formu-
lation. Network flow methods are in general limited to simple assignments without
constraints (see for instance de Werra, 1985). Otherwise, in some sporadic cases, the
problem can be decomposed into a series of assignment type problems and the network
flow model may become useful. With a similar idea, cluster methods split the events in
subgroups, solve the problem for the subgroups, and then re-combine events together
(Balakrishnan et al., 1992).

Applications of these classical techniques from Operations Research have, however,
scarce impact in practice. Better performing alternatives are constraint programming
techniques, that formulate the timetabling problem as a set of variables, each with its
own domain, and as a set of constraints expressed in a well defined language (we refer
to Zervoudakis and Stamatopoulos, 2001 for a contextualisation of constraint program-
ming in timetabling). This approach is particularly appealing for solving the hard con-

2 L. Merlot. “Operations Research Group: Timetabling Problem Database.” October 2003.
http://www.or.ms.unimelb.edu.au/timetabling/. (June 2005.)

http://www.or.ms.unimelb.edu.au/timetabling/

6.2 Methods for timetabling: the state of the art 219

straints but less for solving the soft constraints. Some successful applications, therefore,
use constraint programming together with SLS methods which are, in contrast, very
good at minimising soft constrains (see White and Zhang, 1998 and Merlot et al., 2003).
The interest for SLS methods is very high, as can be seen from the large number of pub-
lications in every edition of PATAT which use these techniques. The main advantage
of SLS methods is their extreme flexibility which makes them relatively easy to develop
and quite good in performance in many contexts. Another advantage is that they can
be used also in an online setting when the problem changes. This may be important
in some timetabling problems. As, for instance, in employee timetabling where one
employer can suddenly ask for vacation and the schedule must be updated in order
to cover its duties. In this case, it is desirable to repair the schedule with the minimal
necessary changes without having to reschedule the whole crew of employers and it can
be easily done with local search algorithms.

An issue in timetabling which receives increasing attention is how to combine the
search for solutions and the decision-making process. Soft constraints are indeed a
criterion to discern among solutions and their importance may not always be clear. This
makes timetabling a multi-objective problem. The way in which these criteria are used
depends on the specific situation. If the decision maker knows a priori a preference order
between criteria, then solutions satisfying this order have to be found. In the opposite
case, solutions are first found which exhibit a trade off between the various criteria and
then the decision maker selects the most adequate. We can distinguish the following
three alternative methods to evaluate solutions.

Combine objectives: this is the “classical” method widely used in highly constrained prob-
lems. It consists in the combination of the criteria into a single value. The use of
weights and transformations allows to control the degree of compensation and the
importance of each criterion. The majority of publications on educational timeta-
bling fall into this typology. A variant to this method is suggested by Burke et al.
(2001) who propose a similar method in which the value is obtained by measuring
the distance of the objective value from an ideal point.

Alternating objectives: in this method a criterion at a time is optimised while imposing
constraints on the others. It can be used when a priority order is defined. Several
applications to timetabling have been proposed which are usually referred to as
lexicographic or multi-phased approaches (see Thompson and Dowsland, 1998
and Paquete and Stützle, 2002a)

Pareto-based: in this method, the preference between solutions is established by the con-
cept of dominance in the Pareto sense, that is, a solution is better than another
if it is not worse in any criterion and there is at least one criterion in which it is
better. Applications of this method to timetabling are rare and so far limited to
two criteria. The main references are Carrasco and Pato (2001) and Paquete and
Fonseca (2001) (who solved the problem at the same university).

For a deeper insight in all the issues related with multi-objective optimisation in time-
tabling we refer the reader to Silva et al. (2004). In our case study, the choice of the
method is imposed by the competition and corresponds to a combination of objectives
in a single evaluation function.

220 Course Timetabling

For a large collection of general timetabling applications, we refer to the proceedings
of the five PATAT conferences organised in the last decade (Burke and Ross, 1996, Burke
and Carter, 1998, Burke and Erben, 2001, Burke and De Causmaecker, 2003, and Burke
and Trick, 2004 and to the recent special issue of the European Journal of Operational
Research3. Relevant to our work is the high specificity of the constraints in timetabling
which motivates the choice of flexible methods such as SLS methods. Our approach to
the problem is based on the conviction that timetabling requires necessarily a certain
degree of algorithm customisation and that a theory of practice for this task is needed.

6.3. The definition of the problem

The university course timetabling problem (UCTP) that we consider was proposed in
the context of the International Timetabling Competition and was also treated in the
research of the Metaheuristics Network. It is an abstraction of a real UCTP arising at
Napier University in Edinburgh and we denote it as UCTP-C. It was proposed by Ben
Paechter who also made available a set of randomly generated instances.

Problem description

The UCTP-C can be formalised as follows.

Input: A set of events4 E, a set of 45 timeslots T (5 days of 9 periods each), a set of
rooms R in which events can take place, and a set of students S. Every event
has associated a list of students LE who have to attend it. In addition, each
event has a set of required features FE, and each room has a size SR and a set
of satisfied features FR.

Question: Which timetable schedules all events in timeslots and in rooms in such a
way that the following three hard constraints H = {H1, H2, H3} are satisfied:

H1: only one event is assigned to each room at any timeslot.
H2: the room is big enough for hosting all attending students and satisfies all

the features required by the event;
H3: no student attends more than one event at the same time;

and the sum of the violations of the following three soft constraints Σ =
{S1, S2, S3} are minimised:

S1: a student should not have a class in the last slot of a day;
S2: a student should not have more than two classes in a row;
S3: a student should not have a single class on a day?

3European Journal of Operational Research, Volume: 153, Issue: 1, February 16, 2004
4Without loss of generality, we call event the single indivisible activity which constitutes the object of

scheduling. Alternative names used in the terminology of course timetabling are class or lecture of a
course.

6.3 The definition of the problem 221

In the UCTP-C, an assignment is infeasible if it violates one of the hard constraints. An
infeasible assignment is considered worthless and it is therefore discarded. To help in
the presentation we define A the set of all possible complete assignments, and Ã ⊆ A
the set of feasible assignments that satisfy the constraints in H. A feasible assignment
should minimise the sum of the violations of constraints in Σ. To this end, an evaluation
function f (a) is defined that associates to each assignment a ∈ Ã a penalty cost f (a) that
accounts for violations of constraints in Σ. The goal is to find an assignment a∗ ∈ Ã of
minimal cost, that is, an assignment such that f (a∗) ≤ f (a) for all a ∈ Ã.

The evaluation function f (a) is defined by the International Timetabling Competition.
The quality of a feasible assignment a ∈ Ã is given by:

f (a) = ∑
s∈S

(
f1(a, s) + f2(a, s) + f3(a, s)

)
where S is the set of students and

f1(a, s) is the number of times a student s under assignment a has a class in the last
timeslot of the day.

f2(a, s) is the number of times a student s under assignment a has more than two con-
secutive classes, each time weighted by the number of classes exceeding two in a
sequence (for example, f2(a, s) = 1 if s has 3 consecutive classes, f2(a, s) = 2 if s
has 4 consecutive classes, etc.)

f3(a, s) is the number of times a student s under assignment a has to attend a single
event on a day (for example, f1(a, s) = 2 if s has two days with only one class).

The smaller f (a) is the better is the assignment judged in quality.

The benchmark instances

The instances of the competition were generated by a random generator and reflect
real-world UCTP instances at Napier University in Edinburgh. The details on how the
generator works were kept secret in order not to unveil shortcuts to the solution. The
only indication available was that at least one assignment with an evaluation function
value equal to zero exists for each instance.5 In Table 6.1, we report the main statistics of
the 20 benchmark instances which were used to evaluate the submitted algorithms. The
number of timeslots is fixed to 45 while events range between 350 and 440 and students
between 200 and 300. The number of rooms suitable for each event (rooms

/
event) is quite

low. Recalling the experience with vertex distance constraints in the set T-colouring
problem, this fact may suggest that an exact algorithm could be feasible for the assign-
ment of rooms to scheduled events. The number of events per student (events/student)
and the number of students per event (students/event) are, instead, informative of how
difficult might be satisfying all constraints. Since it is known that for each instance a
zero cost assignment exists, for constraint S3 there exists a feasible assignment that uses
only 40 timeslots. Indicatively, with 400 events and 10 rooms, this corresponds to filling
up completely the 40 timeslots available with events.

5After the competition we learned that the generator works in a backward form, starting from an optimal
solution and defining an instance therefrom.

222 Course Timetabling

Instance identifier 1 2 3 4 5 6 7 8 9 10

events 400 400 400 400 350 350 350 400 440 400

students 200 200 200 300 300 300 350 250 220 200

rooms 10 10 10 10 10 10 10 10 11 10

rooms
/
event 1.96 1.92 3.42 2.45 1.78 3.59 2.87 2.93 2.58 3.49

AV
(
events

/
student

)
17.75 17.23 17.70 17.43 17.78 17.77 17.48 17.58 17.36 17.78

SD
(
events

/
student

)
1.07 1.16 1.13 0.97 1.16 1.10 1.07 1.04 0.97 1.04

AV
(
students

/
event

)
8.88 8.62 8.85 13.07 15.24 15.23 17.48 10.99 8.68 8.89

SD
(
students

/
event

)
1.82 3.16 1.93 5.26 5.97 5.59 11.36 5.88 3.98 1.86

Instance identifier 11 12 13 14 15 16 17 18 19 20

events 400 400 400 350 350 440 350 400 400 350

students 220 200 250 350 300 220 300 200 300 300

rooms 10 10 10 10 10 11 10 10 10 10

rooms
/
event 2.06 1.96 2.43 3.08 2.19 3.17 1.11 1.75 3.94 3.43

AV(events
/
student) 17.41 17.57 17.69 17.42 17.58 17.75 17.67 17.56 17.71 17.49

SD
(
events

/
student

)
1.14 0.93 1.07 1.13 1.08 1.02 1.01 0.97 1.02 1.05

AV
(
students

/
event

)
9.58 8.79 11.05 17.42 15.07 8.88 15.15 8.78 13.28 14.99

SD
(
students

/
event

)
2.87 5.26 5.37 9.20 6.58 1.93 5.99 2.20 4.22 3.59

Table 6.1.: Descriptive statistics for the instances of the competition; averages and standard
deviations are denoted, respectively, by AV and SD.

The evaluation of candidate algorithms in the competition

In the International Timetabling Competition, the participants were asked to submit an
algorithm and a seed number for re-producing the solution deemed the best on each of
the 20 instances. The winner was the participant whose solutions scored the best results
across all instances. More precisely, each participant j was associated a penalty value pj

computed as:

pj = ∑
i∈I

fi(aj
i)− fi(ab

i)
fi(aw

i)− fi(ab
i)

where I is the set of the 20 instances of the competition, fi is the evaluation function
value for instance i, aj

i the assignment submitted by participant j for the instance i, and
ab

i and aw
i are, respectively, the best and the worst assignment for the instance i among

all those submitted. In other terms, for each instance a participant was given a penalty
value between 0 and 1; 0 if his assignment resulted to be the best for that instance, and 1
if the assignment was the worst. The total penalty value was then obtained by the sum
of the single values on the instances. The winner was the participant that scored the
lowest final penalty value.

The maximal time available to solve an instance was defined by a benchmark code
which had to be run on the same machine as the algorithm. The times produced by the
benchmark code are reasonable times for desktop computers, for example, on a Pentium

6.4 Timetabling and graph colouring formalism 223

III with clock speed 700 MHz the time available was about 18 minutes.

6.4. Timetabling and graph colouring formalism

In his “Introduction to Timetabling”, de Werra (1985) models school timetabling as an
edge colouring problem6 and course timetabling as a vertex colouring problem. In the
latter case, each event is associated to a vertex and edges are introduced between pairs of
vertices if the corresponding events cannot be scheduled in the same period. A feasible
course timetable in p periods will then correspond to a p-colouring in such a constraint
graph, that is, every vertex receives some colour (period) and no two adjacent vertices
(events) are allowed to have the same colour.

We can simplify our UCTP-C into this representation by ignoring for the moment the
assignment of rooms.

Definition 6.1 The constraint graph GT(E, D) relative to the UCTP-C is constructed by as-
sociating an edge to every vertex pair ei and ej if they correspond to vertices that share one or
more students.

Clearly, finding a feasible colouring for the constraint graph GT, in the general case,
is an NP-complete problem (Garey and Johnson, 1979). However, this is not enough
to create a feasible solution for the UCTP-C, since the constraints H1 and H2 are not
considered. Definition 6.1 can be further extended.

Definition 6.2 The constraint graph G′T(E, D′) relative to the UCTP-C is the graph where D′

is the set of edges obtained by the union with D from Definition 6.1 and the set of edges between
each vertex pair ei and ej that correspond to events that can be scheduled only in one single room
which is equal for both.

Studying the hardness of solving a graph colouring problem in the constraint graph
gives an idea of how hard might be finding a feasible solution (one that satisfies all
constraints H) for a UCTP-C instance. In Table 6.2, we report the statistics of the graphs
GT and G′T derived from the UCTP-C benchmark instances. We also report the minimal
number of colours. χ̂(G) and χ̂(G′), found by the algorithm TSN1 when applied to those
graphs. We observe that the differences in terms of colours by considering GT or G′T are
relevant (in 13 instances this difference is more than 8). For the graph G′T(E, D′), a feasi-
ble colouring with much less than 40 colours is always easily found, except on instances
3, 10, 12, and 17, where 40 colours must be used. Translated in terms of timetabling, the
number of colours found per each instance represents the minimal number of timeslots
required by a feasible assignment. The maximal number of timeslots used by an optimal
solution is necessarily 40, hence the instances where 40 is also the lower bound appear
as particularly difficult.

6Edge colouring can be considered as a special case of vertex colouring: edge colouring of a graph G
is nothing else than the vertex colouring of the line graph of G. The line graph L(G) of G contains
one vertex vc for each edge e of G, vertices ve and v f are connected if e and f have a common vertex.
However, for solving an edge colouring problem it is almost always advantageous not to consider it as
a general vertex colouring problem, but to make use of special properties of edge colourings.

224 Course Timetabling

Instance identifier 1 2 3 4 5 6 7 8 9 10

AV
(
d(GT)

)
72.28 71.50 77.49 84.25 91.53 90.30 68.01 63.77 66.64 77.06

AV
(
d(G′T)

)
81.00 83.00 93.67 90.28 108.51 90.95 72.10 67.83 75.01 80.25

SD
(
d(G′T)

)
21.14 26.46 20.92 32.25 37.11 32.38 40.40 31.68 26.86 19.56

AV
(
d(GT)

)
0.18 0.18 0.19 0.21 0.26 0.26 0.19 0.16 0.15 0.19

AV
(
d(G′T)

)
0.20 0.21 0.23 0.23 0.31 0.26 0.21 0.17 0.17 0.20

SD
(
d(G′T)

)
0.05 0.07 0.05 0.08 0.11 0.09 0.12 0.08 0.06 0.05

χ̂(GT) 23 23 24 27 27 28 28 24 24 25

χ̂(G′T) 39 38 40 32 39 28 34 28 36 40

Instance identifier 11 12 13 14 15 16 17 18 19 20

AV
(
d(GT)

)
73.39 69.81 72.01 82.11 78.10 71.13 86.25 69.33 80.11 84.53

AV
(
d(G′T)

)
81.78 81.56 83.14 85.90 86.43 79.29 107.94 83.95 80.68 86.04

SD
(
d(G′T)

)
24.08 44.96 33.19 47.80 38.70 19.57 32.95 23.91 30.06 23.77

AV
(
d(GT)

)
0.18 0.18 0.18 0.24 0.22 0.16 0.25 0.17 0.20 0.24

AV
(
d(G′T)

)
0.20 0.20 0.21 0.25 0.25 0.18 0.31 0.21 0.20 0.25

SD
(
d(G′T)

)
0.06 0.11 0.08 0.14 0.11 0.04 0.09 0.06 0.08 0.07

χ̂(GT) 24 25 25 28 26 25 27 25 25 25

χ̂(G′T) 34 40 35 29 35 36 40 39 25 28

Table 6.2.: The instances of the competition from a graph colouring perspective. Given are
statistics on the vertex degree d and normalised vertex degree d̄ of the two graphs GT and G′T
and their chromatic number approximations attained by TSN1 .

This graph colouring model is still quite distant from the requirements for solving
the UCTP-C. The room assignment is, indeed, still not taken into consideration. The
first implication when re-considering the presence of rooms is that the number of events
assigned to timeslots cannot be higher than the number of available rooms. A graph
colouring generalisation known as bounded colouring (Hansen et al., 1993) can be used
for modelling this further constraint. In a bounded colouring, each colour class Ci has
a bound on its size ci and the number of vertices assigned to it must be lower than this
value.

Once a feasible bounded colouring has been found, it would be possible to assess its
feasibility with respect to the UCTP-C in a second step by matching the events scheduled
in each timeslots with the available rooms. If the matching is not possible, then a new
bounded colouring must be found. The procedure could iterate by trial and error until
a feasible solution is found.

This was indeed the strategy adopted by the official winner of the competition Kos-
tuch (2005). In his 3-phase approach, however, a bounded colouring was constructed by
a heuristic and no successive local improvement was applied, thus, constantly, a set of
vertices remained unassigned after the exact matching and a rather complex improve-
ment process was needed to make the timetable complete and feasible.

A further refinement is possible to try to include the room assignment and all hard
constraints in a graph colouring formulation, such that a solution to that problem is a

6.4 Timetabling and graph colouring formalism 225

feasible solution for the UCTP-C. We end up with a variant of list T-colouring.
Let T be the set of timeslots and R be the set of rooms; timeslots and rooms are

represented without loss of generality by integer numbers. Then we can represent the
assignment of a timeslot and a room (t, r) by means of a unique value v = t · |R|+ r.
The set Γ = {1, . . . , |T| · |R|} corresponds then to the set of colours. We wish to find a
mapping ϕ : E→ Γ such that all hard constraints for the UCTP-C are satisfied.

To this end, we introduce a constraint graph G
′′
T(E, D

′′) and further conditions that
reflect the constraints of the UCTP-C and we require that ϕ be a feasible colouring
under those conditions.

• Due to H1, the constraint graph G
′′
T(E, D

′′) is completely connected and a collection
of distances is associated with all edges: T = {tij = 1, ∀(ei, ej) ∈ D

′′}. Accord-
ingly, each event cannot receive exactly the same room in the same timeslot.

• Due to H2, a list Li ⊆ Γ of admissible colours is associated to each vertex ei ∈ E.
The list contains the value v that corresponds to rooms that are feasible for the
event. For example, if |R| = 10, |Q| = 45, and r = {1, 3, 5} are the rooms suitable
for event ei then it is Li = {1, 3, 5, 11, 13, 15, . . . , 441, 443, 445}.

• Due to H3, a second collection of distance constraints T ′ : {tij = 1, ∀(ei, ej) ∈ D
′}

is associated to the set of edges D
′ ⊆ D

′′
determined by the events that cannot

be scheduled in the same timeslot (D
′

is the same as in graph G′ introduced in
Definition 6.2). In order to satisfy this set of constraints, ϕ must be such that
|bϕ(ei)/|R|c − bϕ(ej)/|R|c| ≥ tij, ∀(i, j) ∈ D

′
.

However, when also soft constraints are to be considered, the models become even
more complicated and the benefit of coding our UCTP-C as graph colouring for then
solving it with the algorithms presented in the previous two chapters is lost. Never-
theless, the effort of modelling a problem into a simpler one which is well known and
studied in the literature is not in vain. In contrast, this is the process that is at the basis
of the design of SLS components. The identification of similarities with some known
simpler problems permits the retrieval of a series of relevant information (e.g., which
construction heuristics, neighbourhood structures, etc. are appropriate) by consulting
some opportunely organised collection of applications and results of SLS algorithms on
standard problems. Unfortunately, such a collection does not yet exist, mainly due to the
difficulty inherent in the organisation and representation of the knowledge of entities
such as combinatorial problems. Examples that may inspire developments in this direc-
tion exist in the two close areas of computational complexity, with the book of Garey
and Johnson (1979), or approximation theory, with the online compendium to the book
of Ausiello et al. (1999).

Back to our case, many of the algorithmic components present in the algorithm that
won the International Timetabling Competition and that we will describe later are exten-
sions of components which where used in the graph colouring problems. The process
that led us to model our UCTP-C as graph colouring problems consisted in the removal
of constraints. Once the SLS components for the standard problem at the core have
been identified the constraints must be re-introduced. This implies the adaptation of the
SLS components. In this case, the further distinction of constraints in local and global
constraints may be useful.

226 Course Timetabling

Local constraints are those whose violations can be checked quickly because they re-
quire only the single assignment to be known. SLS methods deal well with this kind
of constraints by maintaining some static auxiliary data structures, as lists or matrices,
and afterwards often they can check violations in linear time. In the UCTP-C, all the
hard constraints and also constraint S1 of not having a student with a lecture in the last
timeslot of a day are local constraints. In contrast, global constraints, do not manifest
any precise bad individual assignment: anything appears acceptable, as long as all the
local constraints in the solution are not violated. Violations of global constraints can be
checked only once the solution or some part of it are complete and hence known. SLS
methods deal less well with global constraints, which, for example, cannot be satisfied
by solution representation or by neighbourhood restriction. Checking global constraints
is typically computationally more expensive than checking local constraints. Auxiliary
data structures are a good idea for speeding up this process but they are to be dynamic
and their update is often complex to implement. Two soft constraints in the UCTP-C
represent global constraints: not having students with two classes in a row, (S2) that can
be checked while building a solution; and not having a student with only one class on
a day (S3), that can only be checked when the timetable is complete and all events have
been assigned a timeslot.

6.5. An engineering methodology for SLS methods

A central concept that we put forward in the previous chapters is the vision of SLS
methods as a combination of components. In SLS algorithms for the GCP this combi-
nation was quite basic: a Construction Heuristic, an Iterative Improvement algorithm,
and a Metaheuristic. The importance of maintaining algorithms relatively simple was
determined by the fact that the GCP is one of the standard problems on which SLS
components must be deeply analysed because they are highly reusable. Yet, we saw
that some hybrid algorithms such as the hybrid Evolutionary Algorithm or the Iterated
Local Search, both based on Tabu Search, are very competitive. Analogously, on the
set T-colouring, the Adaptive Iterated Greedy which is often the best algorithm, is, in
fact, a combination of two metaheuristics: Adaptive Greedy and Tabu Search. Even the
algorithms TSVLSN on the graph colouring and GOF-TS-reass on the set T-colouring can
be seen as been obtained by combination and hybridisation of more neighbourhoods.

This background leads us to support the view that a final, high-performing SLS al-
gorithm in a context, in which re-usability is not a main concern, is obtained by the
combination of more than three basic components. The final outcome is an hybridisa-
tion of parts that showed to behave well on standard problems, such as the GCP, TSP,
MAX-SAT, etc. Assembling these parts is an engineering process consists in the adap-
tation of the components to the real life problem at hand, in their organisation and in
their selection. A methodology is, clearly, needed to guide in this activity.

An important part of component-based engineering methodologies is the specification
of the components. This task, we believe, has been quite well accomplished in recent
years. In the previous chapter we distinguished components at different levels. Besides
the distinction of Construction Heuristics, Iterative Improvements, and Metaheuristics at
the highest level, we saw that within each of these constituents it is possible to recognise

6.5 An engineering methodology for SLS methods 227

more fine-grained distinctions, as for example search strategy, neighbourhood structure,
etc. The book of Hoos and Stützle (2004) is perhaps the best reference for a thorough de-
scription of fine-grained SLS components, their scope, and their implementation. Never-
theless, in spite of examples on the standard problems, the development and application
of these components on a new problem progresses, in a certain extent, by intuition and
by trial and error and has to rely on empirical testing, analysis of results and consequent
actions. In software engineering, this process is known as experimental development and
implies the refinement of algorithms step-by-step through several development cycles
substantiated by empirical observations. Clearly, the definition of correct procedures for
carrying out this process might be very helpful.

In this section, we propose a methodology and introduce appropriate tools which we
validate through the application in the context of the International Timetabling Compe-
tition. The central point followed here is the adoption of the racing algorithm proposed
by Birattari et al. (2002). We show that its use solves efficiently the problem of selecting
the best among a wide spectrum of possible algorithmic configurations (the configura-
tion problem). Moreover, it can also be used to acquire knowledge on the problem at
hand and on the application of SLS methods.

The whole methodology is particularly suitable for the development of optimisers
for solving real-world problems with expectations in terms of functionality, cost, and
delivery schedule.

6.5.1. The methodology

We consider the application of SLS methods from a perspective of algorithm engineering.
It comprises the design, analysis, implementation, tuning, debugging, and experimen-
tal evaluation of computer programs. Demetrescu et al. (2003) point out the need for
defining standard methodologies and tools for the best accomplishment of these tasks.
Similarly, in the context of SLS methods, algorithm engineering must proceed through
the following steps.

Modelling and Requirement Analysis. It consists in modelling the real world system as an
optimisation problem, thus identifying the problem, its constraints and its objec-
tives. If there are multiple criteria for evaluating a solution it is crucial to under-
stand whether there exist priorities. The precise specification, eventually in math-
ematical terms, of the problem is crucial, because it corresponds to the definition
of the optimiser and the quality of its solutions. Moreover, it makes possible the
communication within a team of theoreticians, developers, analysts, and managers
to whom the problem has been commissioned.

To this phase also belongs the understanding of the requirements that the op-
timiser must satisfy. The application scenario (design, control, planning, as de-
scribed in Section 3.3) determines the termination criterion and influences the de-
sign of the algorithm and its analysis. But also important (and so far not really
understood) is the collection of training instances which are representative of the
class of instances for which the optimiser is to be devised.

This phase is carried out in strict collaboration with the client who commissioned

228 Course Timetabling

the optimiser. The advantage offered by the flexibility of SLS methods is that the
definition of the optimiser can be “pulled” by the needs of the customer rather
than “pushed” by the limitations of the solving techniques.

Brainstorming and Design. It consists in choosing the solution methods for the problem.
This is the creative phase in which easily solvable sub-problems are recognised,
similarities with standard problems are identified, but also new approaches are
conceived. Standard problems may inspire successful construction heuristics, so-
lution representation, neighbourhood structures, etc. Functioning algorithms are
designed and metaheuristics added on top. The focus is on the general algorith-
mic structure without being too much involved into details, like data structures
and coding. Usually, the outcome of this phase is a collection of ideas whose
effectiveness is impossible to forecast at that point. We deem important in this
phase to look at the problem outside of any technique framework, and to search
for ingenious ways to solve it.

Coding. It consists in transforming the designs of the previous phase into prototypes.
Profitable in this context are frameworks and libraries. The time invested to be-
come familiar with these tools will pay off as soon as features will be added to the
system. Even if the developers prefer to write their own code, it is profitable, for
the organisation of the work, to use a framework. In this context, we encourage
the use of EasyLocal++ whose organisation of objects was largely adopted by the
author of this thesis. The chief advantage of this framework, rather than making
available a library of methods for metaheuristics, is an appropriate definition of
classes which allows to easily add components of any kind. Such an organisation
becomes extremely important in complex algorithms, like the one for timetabling
described in this chapter, and in code maintenance tasks. Moreover, it makes
feasible team work and easy the involvement of novices. A similar, alternative
framework, is HotFrame (Fink and Voß, 2002). Both these frameworks allow the
use of data structures like the Standard Template Library of C++ or the LEDA
libraries.

Experimental Analysis. It comprises the tuning and comparison of algorithms. This is
the phase in which statistical tests may be used. The theory of experimental de-
sign is helpful for the organisation and analysis of experiments. Full factorial or
fractional factorial designs may be adopted when factors are clearly identified and
orthogonal, i.e., all combinations of their levels are feasible. This procedures en-
tail a fine-grained analysis and are typically performed to find patterns that may
then be exploited. They require therefore a certain degree of involvement and
interaction. More likely, when the interest is only in determining which is the
best algorithm, a single treatment factor design with the algorithms as treatment
is the appropriate design. In this case the use of sequential testing, such as the
racing algorithm is recommendable. It allows the comparison of many different
alternatives in reasonable time and it does not require too much involvement be-
cause the process can easily be made automatic. Note that the adoption of a fully
automatic race, in which all algorithms are instantiated at the beginning, allows
to bypass that tedious part in algorithm development which in the literature is
usually referred to as “preliminary experiments”, consisting in the understand-

6.5 An engineering methodology for SLS methods 229

ing of how the algorithm behaves with respect to computation time and tentative
parameters. This phase may be very demanding because it imposes a strong inter-
action with the developer and very poor in its intellectual content. Furthermore,
we believe that the racing approach can be very stimulating, balancing cooperation
and competition within a work team composed by several persons. Other advan-
tages brought by a racing methodology are the possibility of testing for bugs using
large scale experiments, and the extraction of knowledge on the problem which
other approaches like analytical analysis, landscape analysis, or qualified run time
distributions are equally likely to provide.

Documentation and Maintenance. Documenting the internal design of the algorithm and
maintaining and enhancing the optimiser are two further tasks required in practi-
cal contexts. The details of this task, however, are beyond the scope of this thesis.

The steps discussed above could be followed in a waterfall process. Yet, this is usually
never the case because the results of the experiments suggest new, previously unseen
directions. The realistic approach is therefore an iterative process consisting in the con-
struction of an initially simple optimiser and in its evolution through further refinements
and additions of components, once the promising ones have been determined. The rac-
ing approach is again very helpful. New candidate algorithms can be inserted in the
race at an intermediate stage, run for a number of times equal to the runs collected for
the other candidates in the race, and directly included in the tests.

Next we describe the use of this methodology in the context of the UCTP-C. We
already described the requirements which are imposed by the competition and gave the
formal specifications of the problem. The part relative to the aspects of coding is not
relevant to our discussion. There exists a large body of literature on this issue which
falls into the area of software engineering. Two publications in this area with focus on
optimisation are Di Gaspero (2002) and Weihe (2001) which could then inspire further
readings. We focus, instead, on the design and on the organisation of the experiments.

6.5.2. Design of SLS algorithms in the UCTP-C case

The UCTP-C has been part of the research activities of the Metaheuristics Network.
Initially, simple construction heuristic and local search algorithms were developed by
Rossi-Doria et al. (2003). These construction heuristics and local searches served as a ba-
sis for comparing straightforward implementations of metaheuristics like Tabu Search,
Simulated Annealing, Iterated Local Search, Evolutionary Algorithms, and Ant Colony
Optimisation. All metaheuristics were bounded to use the same local search procedure.

The instances for the comparison were different from those of the International Time-
tabling Competition, although created by the same random generator, and were grouped
into three classes according to their size. The results of the comparison were in part in-
conclusive. The performance of the metaheuristics varied between instances of different
sizes and with respect to the capability of solving hard or soft constraints. The main
pattern found was that Tabu Search and Iterated Local Search behaved better than other
metaheuristics with respect to the capability of reaching feasibility but once a feasible

230 Course Timetabling

assignment was found, Simulated Annealing appeared as the best choice for minimising
the violations of the soft constraints. For an extensive description of these analyses and
its results we refer to Rossi-Doria et al. (2003) and to Chiarandini and Stützle (2002). It
arose clearly, however, that restricting metaheuristics to the use of the same local search
was not a correct approach for comparing them in practice because in this way not all
their potential was exploited.

It was then decided to proceed in a different way and to develop a highly competitive
algorithm to be submitted to the International Timetabling Competition.7 The work was
organised within a team of researchers of the Metaheuristics Network, each researcher
being an expert on different metaheuristics. We first collaborated to exchange ideas and
knowledge on the problem. Then it was decided to proceed in a competitive manner,
and each researcher was left free to develop the technique of his expertise. The racing
algorithm was used for assessing the algorithms thus giving a feedback to the devel-
oper on whether improvements were still feasible. In this way, the potential of each
metaheuristic approach was exploited at best. In particular, the author of this thesis
worked in detail on Simulated Annealing and Iterated Local Search. However, from the
previous results it was clear that these methods had to be combined with others.

The following are the algorithmic components that were attentively considered within
the team.

Construction heuristics. 60 different construction heuristics were implemented. They were
inspired by graph colouring heuristics and other timetabling applications (see
Carter et al., 1996, Burke et al., 1995, and Newall, 1999).

Local searches. Various local searches based on 7 different neighbourhood structures and
different ways to explore the neighbourhood were analysed (besides those de-
scribed in detail in Section 6.6.5 other such attempts are described in Rossi-Doria
et al., 2002). Variable neighbourhood descent was adopted for assembling sequences
of local search procedures based on different neighbourhood structures.

Metaheuristics. Preference was given to the following methods:

– Tabu Search;

– Simulated Annealing;

– MAX -MIN Ant System a variant of ant colony optimisation (see Socha, 2003;
Socha et al., 2003 for details on its application to the UCTP-C);

– Heuristic Memetic Algorithm, a variant of Evolutionary Algorithms that uses con-
struction heuristics for the initialisation of the population as well as for the
recombination of individuals and local search after every generation.

– Iterated Local Search based on variable neighbourhood descent, random moves
perturbations, and a Simulated Annealing type acceptance criterion;

7We put emphasis on the argument of the competition because it exemplifies the characteristics of a
realistic context. In practice, indeed, there is a complex problem delivered by a client that has to be
solved within a limited time horizon, there are few instances to run the experiments, and we are asked
to deliver an algorithm with some guarantees on its performance, possibly the best that one can obtain.
Such characteristics are typical in the three business companies the author has been involved: Cybertec,
Eurobios, and AntOptima.

6.5 An engineering methodology for SLS methods 231

– Iterated Greedy Search is inspired by the homonymous method for graph colour-
ing (Culberson, 1992); this algorithm tries to overcome local optima by de-
structing and reconstructing a part or the whole assignment.

It is immediately clear that testing exhaustively so many possible combinations of
components, many requiring additional parameters to be set for finding the best possible
configuration, is a task that goes far beyond the actual computational power available.
An ingenious experimental methodology is therefore needed in order to maintain the
correct approach of experimental testing and to avoid the pitfall of relying only on the
developer’s intuition.

6.5.3. The racing algorithm for the experimental analysis

The goal of the experimental analysis for our UCTP-C can precisely be stated: finding
the best algorithmic configuration for the set of instances of the International Timeta-
bling Competition having about one month of time available for running the experi-
ments. The class of instances is well defined but the number of instances available is
small. The experimental design most suitable is therefore the “several runs on various
instances” design.

Deciding the number of runs for each pair (algorithm, instance) is a crucial decision
which can be avoided by using sequential testing. The application of this methodology
to our case corresponds to an extension of the racing algorithm called F-RACE intro-
duced by (Birattari et al., 2002).

We recall that in sequential analysis an initial set of candidate algorithms is evaluated
after a certain number of runs on all the available instances. Poor candidates are dis-
carded if there is statistically sufficient evidence against them and the candidates left
run again on the same instances. The elimination of inferior candidates speeds up the
procedure (since less candidate algorithms need to be tested on the instances) and al-
lows a deeper analysis of the most promising ones (see also Section 3.7). In the case
under study, a stage, i.e., the elementary experimental unit, consists in testing all surviv-
ing candidates on the available instances, with a single run on each instance. At the end
of each stage a decision is made on which candidate configuration should be discarded.

In the competition, ten instances were made available since the beginning (Set A),
while other ten were published only 15 days before the deadline for the submission of
the algorithms (Set B). The first phase of the race consisted of one single stage and was
conducted on the Set A of instances. Therefore, each of the candidates performed at
least 10 runs, one on each of the 10 instances, before being discarded. When the Set
B of instances was released, we were ready to start the second stage of our race with
a number of surviving candidates that had already dropped to one sixth of the initial
number. From then on, each stage of the race consisted in running once each surviving
candidate on each of the 20 available instances.

From the second stage, the statistical tests used were the Friedman test of Equation
3.18. If the null hypothesis of no difference among all candidates was rejected, we pro-
ceeded with all-pairwise comparisons based on the extension of the Friedman test of
Equation 3.19. In the first stage, the Friedman procedures of Equations 3.7 and 3.11

232 Course Timetabling

were substantiated by the Wilcoxon matched-paired signed rank tests with Holm’s ad-
justment. After the 20th stage, two configurations were not significantly different. We
based, then, our final selection on the indication of the exact binomial test on best results
only, collected for the two algorithms on each instance during the whole race.

Contrary to the original F-RACE, which is a completely automatic procedure, we used
in this context an interactive approach in which statistical tests and graphical visualisa-
tions were used at each stage for general indications arising from the results. On the
basis of those indications it was possible, at the end of each stage, to insert new candi-
dates combining features or refining good performing candidates already tested. Newly
entered candidates were run on each instance for a number of times equal to the current
number of runs before taking part in the test for survival. In our UCTP-C case we had
an initial number of 879 candidate algorithms while the total number of candidates that
the selection procedure considered reached a final value of 1185. This interactive ap-
proach constituted a helpful feature of our experimental testing. Indeed, the algorithm
that finally won the competition was one of these newly inserted configurations.

Figure 6.1 reports graphically the details of the race in the UCTP-C case. The total
surface covered by the gray and white bars represents the total amount of computation
time required by the racing algorithm. The whole procedure took about one month of
alternating phases of computation, analysis, and human decision, and involved up to a
maximum of 30 PC running Linux, with CPU clock speed in the range between 300 and
1800 MHz, each using its own benchmark time given by the competition benchmark
code (running the race on a single machine – like the one mentioned in Section 4.4 –
would have required 270 days, more than 9 months). In the Figure, the surface of the
race is equal to the one covered by the dashed box: this indicates that a brute-force
selection method in the same time would have performed only one single run of each of
the initial candidates on 18 instances. The race permitted, instead, to collect 390 runs for
each of the 5 best configurations that reached the last stage, corresponding to 19 runs
for each instance of the Set A and 20 runs for each instance of the Set B. Running all the
1185 configurations 19 times on all the 20 instances would have required about 15 years
on a single machine.

At the end of the race, we had still time to run the selected candidate 77 more times on
each of the 20 available instances (Set A + Set B) to choose the best solutions to submit
to the competition out of 96 runs per instance.

6.5.4. General indications from the race

As already mentioned, the race can be used in a broader concept than merely determin-
ing the best algorithm. It can also be used indeed for gaining insights of more general
significance with respect to the problem and algorithms. Den Besten (2004) uses this
approach systematically in his study of iterated local search algorithms for scheduling
problems. He suggests that candidates can be grouped by common features, such as,
for example, candidates which use Simulated annealing and whose only difference is in
the different initialisation of parameters, or candidates based on ant colony optimisation
but with different population size. The survival rate during the race is then computed
for each candidate and analysed. The groups, whose survival rate drops to zero after

6.5 An engineering methodology for SLS methods 233

Stage 1
Stage 2

Stage 3
Stage 4
Stage 5

Stage 6
Stage 7
Stage 8
Stage 9

Stage 10
Stage 11
Stage 12
Stage 13
Stage 14
Stage 15
Stage 16
Stage 17
Stage 18
Stage 19
Stage 20

N
um

be
r

of
ru

ns
Algorithms

118511851000800600400200860
10
30
50
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390

Stage
number

Configurations
in the race at the

beginning of stage

Sets of
instances

1 1185 A only
2 200 A & B
3 86 A & B

4-5 45 A & B
6-9 20 A & B

10-20 5 A & B

Figure 6.1.: Graphical visualisation of the race including all configurations which were finally
tested. The y-axis reports the number of runs collected for each individual configuration. Runs
on the Set A of instances are represented in gray, while runs on the Set B are represented in
white. Stage 1 was an exception in the race because it considered only instances of Set A. The
dashed box is relative to a brute force approach which would take the same computational time
as the whole race. The table provides in a numerical form the same information conveyed by
the graph.

few steps of the race, use very likely a wrong approach to solve the problem.
The following observations arose in our case study from such a kind of analysis.

• The local search scheme we describe in detail later in Section 6.6.5 is preferable to
the one proposed by Rossi-Doria et al. (2002) and the acceptance of a certain num-
ber of non worsening moves in all local search procedures contributes to improve
the final solution quality.

• The use of variable neighbourhood descent strongly enhances local search, as its
presence was common in all candidates with high survival rate.

• Concerning the approach to solve the constraints, it was clearly preferable to keep
hard and soft constraints separated, first finding a feasible solution and proceed-
ing next to minimise soft constraint violations while maintaining feasibility. This
approach was preferable over weighted sum combinations of hard and soft con-
straints violations.

• Algorithms which alternate local search with other heuristic mechanisms, like per-
turbations in iterated local search, reconstruction in iterated greedy, or recombina-
tion in evolutionary algorithm, work better if the feasibility is not broken during
these passages. In general, reproducing feasibility was found to be very expensive

234 Course Timetabling

in terms of soft constraints. (Since no way for doing this in iterated greedy was
found, its survival rate remained very low.)

• Tabu Search for the soft constraints had also a low survival rate in spite of several
attempts to reinsert it in the race with improved features. Its main drawback is the
need of exploring exhaustively a neighbourhood which is too large. No effective
way to restrict considerably the neighbourhood was found.

• Population based metaheuristics perform poorly when not enhanced with strong
local searches. This is shown by the low survival rate of Evolutionary Algorithms
and MAX -MIN Ant System. The latter method, however, enhanced by a pow-
erful local search exhibits the same high survival rate as the finally selected algo-
rithm based on Simulated Annealing. This fact may be regarded as an indication
that the choice trajectory-based or population-based is not determinant for the
final success of the algorithm and that other choices are more important.

• Finally, some indication was given that the choice of an initial solution from a set
of solutions constructed by several construction heuristics performs better than the
same algorithm with one single initial solution. The difference between these two
configurations arose only at the last stage.

Some candidates were also run only with the purpose of gathering specific pieces of
information. For instance, candidates made solely of variable neighbourhood descent
were used to understand which was the best order for the neighbourhoods. Single
local searches were also used as candidates to distinguish between different examination
strategies (i.e., best improvement against first improvement or whether side walks moves
should be accepted).

In general, such candidates confirmed that the use of problem specific knowledge is
very important. Insights to restrict the neighbourhood of local search to only promising
solutions, recognition of subproblems to which fast exact algorithms can be applied,
ingenious ways to perturb or construct a solution, known theoretical results concerning
the problem or subproblems were all elements which provided improvements over basic
implementations. Finally, code optimisation played also a strong role and the fast evalu-
ation of neighbour solutions by considering only local changes has a tremendous impact
on the performance of all SLS algorithms. Stronger candidates with high survival rate
were obtained by combinations of all these elements.

6.6. An effective algorithm for course timetabling

In the present section, we describe and analyse the final algorithm obtained by the use
of the methodology described. We proceed in a top-down approach, first giving a high
level view, then going through the details of the sub-procedures.

6.6 An effective algorithm for course timetabling 235

Function UCTP-C-Solver(Ik)%Ik ∈ I is an instance of the

competition

Preprocessing();
Â → ∅;
for i = 1 to |H|%H is the set of construction heuristics

do
ai ← Build_Assignment(hi) %hi ∈ H
ai ← Hard_Constraint_Solver(ai);
ai ← Look_Ahead_Iterative_Improvement(ai);
Â → Â ∪ {ai};

end
abest ← Select_Best_Assignment(Â);
abest ← Soft_Constraint_Optimiser(abest);
return abest

Algorithm 6.1: High-level pseudo-code for the UCTP-C Solver.

6.6.1. High level procedure

The algorithm starts by creating several feasible assignments, selecting the most promis-
ing one and improving it until the maximal computation time is exceeded. Algorithm 6.1
schematically reproduces this procedure that can be summarised in three steps: first
a group of initial assignments is constructed by Build_Assignment; next each assign-
ment is made feasible by the Hard_Constraint_Solver and assessed by a fast local search
Look_Ahead_Iterative_Improvement. Finally, the best assignment is selected (Select_Best_As-
signment) and further improved by means of procedure Soft_Constraint_Optimiser.

Build_Assignment constructs one assignment for each construction heuristic hi ∈ H,
whereH is a set of 60 different construction heuristics. Preliminary experiments showed
that the initial assignment produced by such heuristics is never feasible, hence, the pro-
cedure Hard_Constraint_Solver is used to make them feasible. The two sub-procedures
Hard_Constraint_Solver and Soft_Constraint_Optimiser are two local search based proce-
dures that deal with hard and soft constraints, respectively. When trying to find a
feasible solution, soft constraints are not taken into account, while when minimising the
number of soft constraint violations, it is not allowed to break any hard constraint.

6.6.2. Data management

Some data provided by the instances can be processed at the start of the algorithm to
obtain more synthetic information. In particular, the features and sizes for the rooms,
FR and SR are useful solely to determine which rooms are suitable for each event on the
basis of FE and LE. In addition to this, we use these data to create a matrix representation
of the graph G′T determined by the events that cannot be scheduled in the same timeslot
according to Definitions 6.1 and 6.2. We also maintain some redundant data structures
which are useful for speeding up the neighbourhood exploration in the local search.
The overall data are:

236 Course Timetabling

R
oo

m
s

Timeslots
T1 T2 Ti Tj T45

R1 −1 E4 · · · E10 · · · E14 · · · −1
R2 E1 E5 · · · E11 · · · E15 · · · −1
R3 E2 E6 · · · E12 · · · −1 · · · −1
...

...
...

...
...

Rr E3 E7 · · · E13 E16 · · · −1

Figure 6.2.: The assignment matrix representation. Events are assigned to rooms and timeslots;
for example, event E1 is assigned to room R2 in timeslot T1, while room R1 has no event assigned
in the same timeslot. Bold face is used for emphasising the events used in the example to describe
Kempe chain interchange (see text).

• a matrix of size |E| × |R| where each entry indicates whether a room is feasible for
an event.

• a list for each room with the events that can take place in it,

• a matrix of size |E| × |E| representing the adjacency matrix of the graph G′T,

• a list for each event with the students that attend it,

• a matrix of size |S| × |E| where each entry indicates if a student has to attend an
event.

The Standard Template Library of C++ is used for defining and handling these data
structures.

6.6.3. The assignment representation

An assignment of events to rooms and timeslots can be represented by a rectangu-
lar matrix X|R|×|T|, such that rooms correspond to rows and timeslots to columns,
and |R| and |T| are the number of rooms and timeslots, respectively. A number k ∈
{−1, 0, . . . , |E| − 1}, corresponding to one of the |E| events or to none of them (−1), is
assigned to each cell of the table. If Xij = k, then the event Ek is assigned to room Ri in
timeslot Tj, if Xij = −1, then the room Ri in timeslot Tj is free. With this representation,
we assure that there will be no more than one event in each room at any timeslot, which
implies that the constraint H1 will always be satisfied. An example assignment is given
in Figure 6.2.

The room assignment can be done through the local search algorithm conjointly to
the assignment of timeslots or it can be done by an exact algorithm once events have
been assigned to a timeslot. In this latter case, the problem to be solved is a bipartite
matching (Papadimitriou and Steiglitz, 1982). Bipartite matching can be treated as a max
flow problem and it can be solved by push-relabel algorithms in O(

√|V||C|), where V
is the union of the set of events assigned to the timeslot and of the set of possible rooms
for the events, and C is the set of possible connections between the events and the rooms

6.6 An effective algorithm for course timetabling 237

at hand (Sedgewick, 1988; Rossi-Doria et al., 2002). Nevertheless, we preferred a breadth
first search augmenting path algorithm, which, despite its higher worst case complexity
of O(|V||C|), was considerably faster on the small matching instances that we have to
solve in the UCTP-C (from Table 6.1, the number of rooms involved in the matching
never exceeds 11 and the feature rooms/event is always a small value). The analysis of
this algorithm as well as its implementation is due to Setubal (1996). We identify it as
Matching. We will make explicit when the matching algorithm is used, as, by default, we
assume that the assignment of rooms is done conjointly to the assignment of timeslots
in the local search procedure.

6.6.4. Construction heuristics

To build initial assignments we use construction heuristics, which were mainly devel-
oped in a separated work by Rossi-Doria and Paechter (2003). These are sequential
algorithms that insert events into the assignment matrix one at a time. At each step, first
a still unscheduled event is selected and then a pair timeslot-room for it is decided. The
process can be presented as follows:

Step 1. Initialise the set Ê of all unscheduled events with Ê = E.

Step 2. Choose an event Ei ∈ Ê according to a heuristic.

Step 3. Let X̂ be the set of all positions for Ei in the assignment matrix in which
the number of violations of constraints H2 and H3 is minimised.

Step 4. Let X̄ ⊆ X̂ be the subset of positions of X̂ in which the cost due to
violations of the soft constraints Σ is minimised.

Step 5. Choose an assignment for Ei in X̄ according to a heuristic.

Step 6. Remove Ei from Ê, and go to step 2 until Ê is not empty.

Two heuristics, one to choose which event to insert next in the timetable and one to
choose the position in the matrix for the chosen event, are needed at Step 2 and Step
5, respectively. We considered 6 heuristics to choose the next event and 10 heuristics to
choose the position in the matrix, i.e., the pair timeslot-room. Recalling that two events
are adjacent if there is an edge between them in the graph G′T, the different heuristics at
Step 2 choose:

– an event with a maximal number of adjacent events;

– an event with a maximal number of adjacent events weighted by the number of
students shared;

– an event with a maximal number of students and a maximal number of adjacent
events;

– an event with a minimal number of possible rooms and a maximal number of
adjacent events;

238 Course Timetabling

– an event with a maximal number of required features and a maximal number of
adjacent events;

– an event with rooms suitable for a maximal number of other events and a maximal
number of adjacent events.

Unresolved ties are broken by label order (an alternative choice would be to use random
selection).

The set X̄ is implemented as an ordered list of pairs room-timeslot which represent
positions in the assignment matrix X where violations of the constraints H2, H3 and
Σ are minimised; higher priority is given to H2 and H3. We note that X̄ is not empty,
otherwise the instance is unsolvable because it has more events than places available.
The list is ordered by labels in case of unresolved ties. The following heuristics are used
to select the pair room-timeslot from X̄:

– the smallest possible room and ties broken in favour of a timeslot with the largest
number of events already assigned to it;

– the least used room and ties broken in favour of the timeslot with the lowest label
number;

– the latest timeslot in the last day and ties broken in favour of the room suitable for
the least events;

– the room suitable for least events and ties broken in favour of the latest timeslot;

– the room suitable for least events and ties broken in favour of the timeslot with the
lowest label number;

– the timeslot among those earliest in the day that has most parallel classes and ties
broken in favour of the room with lowest label number.

– the timeslot according to a pre-established timeslot order that tries to keep difficult
events spread out in the timetable and not in adjacent timeslots (we use three
different orders, suggested by Terashima-Marín et al., 1999, that give rise to three
different heuristics), and ties broken in favour of the room with the lowest label
number;

– the pair with lowest label number in the list.

All 60 possible combinations of these heuristics are used in the algorithm. Preliminary
experiments did not indicate any of them as being clearly dominating the others (see
also the discussion in Section 6.7).

6.6.5. Iterative Improvement

Once a complete assignment has been created, it is made feasible by local search meth-
ods. Local search methods are also used for minimising the number of soft constraint
violations when a feasible colouring is found. We describe their common components.

6.6 An effective algorithm for course timetabling 239

Neighbourhood structures

Different neighbourhood structures are used when dealing with hard and soft con-
straints. When only hard constraints are considered, we use two neighbourhoods:

1. The neighbourhood N1(a) is defined as the set of assignments obtained from a by
moving a single event to a different room and timeslot. More formally, given a
with an event Ek assigned to Ri in Tj and a free cell Xlm in the assignment matrix,
a neighbour assignment a′ is obtained from a by setting Xij = −1 (i.e., making cell
Xij free), Xlm = Ek, and all other positions left unchanged.

2. The neighbourhood N2(a) is defined as the set of assignments obtained from a
by swapping timeslots and rooms of two events. More formally, given a with two
events Eh and Ek assigned respectively to Ri in Tj and to Rl in Tm, a neighbour
assignment a′ is obtained from a with Xij = Ek, Xlm = Eh, and all other position
unchanged.

In practice, similar neighbourhood restrictions as for the GCP are used. Thus a local
search in N1 considers only assignments obtained by moving an event involved in at
least one hard constraint violation, and a local search in N2 considers only assignments
obtained by swapping pairs of events of which at least one causes a hard constraint
violation.

If, in addition, soft constraints violations are considered in the local search, we de-
fine the two neighbourhoods N ′1 ⊆ N1 and N ′2 ⊆ N2, obtained by considering only
neighbours that do not introduce violations of the hard constraints. We also use two
additional neighbourhoods that do not affect hard constraints.

3. The neighbourhood N3(a) is defined as the set of assignments obtained from a by
swapping all events assigned to two timeslots. Formally, given two timeslots Ti
and Tj of an assignment a, a neighbour assignment a′ is the assignment a with the
two columns of the assignment matrix X.i and X.j swapped, and all other positions
unchanged. The feasibility of the assignment is preserved since no hard constraint
is involved.

4. The neighbourhood N4(a) is defined as the set of assignments obtained from a by
a Kempe chain interchange (see Section 4.6, on page 112, and for an application in
timetabling Thompson and Dowsland, 1998). A feasible assignment a corresponds
to a partition of events in independent sets, i.e., the timeslots. A Kempe chain K is
a connected component in the graph S induced by the events that belong to two
different independent sets Ti and Tj, i 6= j. A Kempe chain interchange produces a
new feasible assignment by swapping the events belonging to K. For an example,
consider Figure 6.2 of page 236. If we assume that event E15 cannot be scheduled
in the same timeslot as both events E10 and E12, then a Kempe chain interchange
of K = {E15, E10, E12} moves E15 to timeslot Ti and E10 and E12 to timeslot Tj.
We avoid the case K = Ti ∪ Tj, because the interchange would correspond to a
swap already obtainable by neighbourhood N3. After a Kempe chain interchange,
rooms are re-assigned by the matching algorithm defined in Section 6.6.3. In the
example, rooms are re-assigned for all events in timeslots Ti and Tj. If no feasible
matching of rooms can be found, the current Kempe chain interchange would
break feasibility, and, therefore, it is discarded.

240 Course Timetabling

Neighbourhood exploration and evaluation function

In all cases, the local search is a stochastic first improvement local search in which the ex-
amination of the neighbourhood is randomised and the first non worsening neighbour
is accepted. In the neighbourhoods N1, N2, N ′1, and N ′2 we decide to accept side walk
moves, given the conjectured presence of large plateaux (see also discussion in Sec-
tion 6.7.4). Side walk moves are not accepted, instead, in N3 and in N4, because we
observed that in those cases they slow down significantly the search.

In neighbourhood structures N1, N2, N ′1, and N ′2, a list of randomly ordered events
is created. The list is scanned in the order and for each event all possible moves are
tried. The first non worsening move found in this process is accepted and performed.
The search continues in the next local search iteration from the successive event in the
list. When the whole list of events has been scanned, and no improvement has been
found, the procedure ends and the current assignment is recognised as a local optimum
(side walk moves do not account for improvements). In N1 ∪N2 and N ′1 ∪N ′2, for each
event in the list a move in the first neighbourhood is attempted before than a move
in the second neighbourhood. Finally, in the neighbourhood structures N3 and N4 the
exploration is performed considering all possible distinct pairs of timeslots in random
order.

The evaluation function to minimise depends on whether we are trying to minimise
the violations of H2 and H3 or the violations of Σ. In this latter case the evaluation
function to minimise is the one defined in Section 6.3. In the former case, we define g(a)
for the hard constraints H2 and H3 as follows:

g(a) = g2(a) + g3(a)

where, g2(a) is the number of events which are assigned to a non suitable room, and
g3(a) is the number of events sharing students in the same timeslot.

In all cases possible violations of hard constraints are detected in linear time by means
of the data structures. This is chiefly important for the neighbourhoods N ′1 and N ′2.
For the soft constraints, instead, only local contributions to the evaluation function are
computed.

Comment

An important issue for local search is the connectivity of the search space, i.e., the exis-
tence of a path between any two solutions. In highly constrained problems, areas where
feasible solutions are located may be disconnected. This is a strong drawback for a local
search that tries to minimise soft constraints while maintaining feasibility, because the
search process could be trapped in regions not containing an optimal solution. Given
the multiplicity of neighbourhoods defined above and the instances of the problem at
hand, this seems not to be a problem in our case. Indeed, since an optimal solution al-
ways exists, there are always free slots in the matrix X (at least those in the last timeslot
of the days because of constraint S1) that can be used to move from one solution to an-
other without breaking hard constraints. This implies that there are at least 5× |R| free
places in the assignment matrix that can be used to move events without breaking hard

6.6 An effective algorithm for course timetabling 241

Function Hard_Constraint_Solver(Ik, a) %Ik ∈ I is an instance of the

competition, a ∈ A
loops← 0;
while a is infeasible and time limit not exceeded do

a← Iterative_ImprovementN1∪N2
(a);

if a is infeasible and loops > 5 and time limit not exceeded then
a← Tabu_SearchN1

(a);
end
loops← loops + 1;

end
return a

Algorithm 6.2: High-level pseudo-code for the hard constraint solver.

constraints. The landscape looks, therefore, connected, although it may not be possible
to walk through the path of minimal changes to go from one assignment to another. On
the instances of the UCTP-C, the higher is the difference between the number of events
and the places in the assignment matrix (i.e., its size) the easier the local search can move
from one assignment to another one.

6.6.6. Hard constraint solver

Algorithm 6.2 sketches the hard constraint solver. First, only Iterative_ImprovementN1∪N2

is applied. As mentioned in the previous section, this procedure may end in a solution
which is not precisely a local optima. It was observed experimentally that if re-started
the local search finds other improvements (this is due to the fact that it accepts also
side walks moves which may cause to move through the plateau and find an exit). Em-
pirically we determined that after 5 re-starts this capacity of producing improvements
diminishes drastically (clearly, this observation is restricted to the instances of the com-
petition). Hence, if after 5 runs of local search a feasible solution is still not found, a
second phase begins in which local search is alternated with Tabu Search. Tabu_SearchN1

implements a best improvement strategy and ends after a number of iterations in which
no improvement in the evaluation function is found. The local search at the beginning
provides a rapid descent towards assignments that violate only few hard constraints and
therefore exhibit a neighbourhood which may be effectively explored by Tabu Search.

More in detail, Tabu_SearchN1
is inspired by TSN1 for graph colouring (see Chapter 4).

A neighbour is forbidden if in it an event receives the same timeslot he had assigned
less than tl steps before. The tabu length is tl = ran(10) + δ · nc(a) where ran(10) is a
random number in {0, . . . , 10}, nc(a) is the number of events in the current assignment
involved in at least one hard constraint violation and δ is a parameter. An aspiration
criterion accepts a tabu move if it improves the best known assignment. The procedure
ends, when the best assignment is not improved for a given number of steps. We fixed
this number to 0.4 · |T| · |E| · |R| and δ to 0.6.

After a feasible solution has been produced, its quality with respect to the soft con-
straints, is assessed by means of Look_Ahead_Iterative_Improvement, which consists in a
single repetition of local search in, successively, N ′1 and N ′2. This procedure is very fast.

242 Course Timetabling

Function Soft_Constraint_Optimiser(Ik, a) %Ik ∈ I is an instance of the

competition, a ∈ A
repeat

a← Iterative_ImprovementN ′1(a);
a← Iterative_ImprovementN ′1∪N ′2(a);
a← Iterative_ImprovementN ′1_withMatching(a);
a← Iterative_ImprovementN ′1∪N ′2_withMatching(a);
a← Iterative_ImprovementN3

(a);
a← Iterative_ImprovementN4

(a);
until no improvement found ;
abest ← Simulated_AnnealingN ′1∪N ′2_withMatching(a);
return abest

Algorithm 6.3: High-level pseudo-code for the soft constraint optimiser.

6.6.7. Soft constraint optimiser

An outline of the soft constraint optimiser for minimising the soft constraint violations
is given in Algorithm 6.3. It consists of two parts. First, several local search opera-
tors (Iterative_Improvement) based on different neighbourhoods are applied until none of
them can improve further the assignment, giving rise to a Variable Neighbourhood De-
scent. Next, Simulated Annealing (Simulated_AnnealingN ′1∪N ′2_withMatching) is applied until
the end of the available time. Usually, Simulated Annealing reaches good performance
when long computation time is allowed. Here, we start Simulated Annealing from a
good solution rather than from a random one and this seems to help in getting good
quality solutions quickly. The experimental results indicated this as the best choice in
our case.

It was observed that after the application of the Variable Neighbourhood Descent
phase, finding further improvements becomes very difficult. It appeared therefore rea-
sonable in Simulated Annealing to trade speed in terms of the number of visited solu-
tions in favour of a deeper exploration of the neighbourhood. The matching algorithm
described, in Section 6.6.3, is then introduced for the assignment of rooms and experi-
mental results confirmed that this is a good choice. It is applied jointly with the neigh-
bourhoods N ′1 and N ′2. Every time a change in a timeslot is proposed by introducing
a new event or by swapping two events the rooms are re-assigned. The contribution of
this mechanism is that new changes are made available which were previously hidden
by the fact that few suitable rooms for the incoming event were already occupied. Note
that this mechanism is very similar to the re-assignment of colours to vertices in the set
T-colouring problem.

The instantiation of Simulated Annealing (SA) is based on the procedure introduced
in Section 2.4.3. The following are the components that deserve further comments.

Neighbourhood examination scheme: For each event chosen from a randomly ordered list
all timeslots are considered in lexicographic order. First, the possibility of inserting
the event in the destination timeslot with the aid of Matching without breaking fea-
sibility is checked (corresponding to a move in neighbourhood N ′1 with matching
of rooms). If the insertion is feasible, it is accepted with probability given by the

6.6 An effective algorithm for course timetabling 243

Procedure Simulated_AnnealingN ′1∪N ′2_withMatching;
while still time do

start: select randomly an event e1 and let t1 be the timeslot of e1;
update Temperature;
for t2 from 1 to 45 do

try to insert e1 into t2, t1 6= t2, by applying Matching on t1;
if the insertion is feasible then

if the SA probabilistic criterion accepts the move then
remove e1 from t1 and insert it in t2; continue from start;

end
end
for all events e2 in t2 do

try to swap e1 and e2 by applying Matching on t1 and t2;
if the swap is feasible then

if the SA probabilistic criterion accepts the move then
swap the events e1 and e2; continue from start;

end
end

end
end

end
return abest

Algorithm 6.4: An algorithmic sketch of Simulated_AnnealingN ′1∪N ′2_withMatching.

SA acceptance criterion (Equation 2.2, page 28) and the procedure restarts. If it is
unfeasible or not accepted, swaps with the aid of Matching with all events assigned
in the destination timeslot are tried (neighbourhood N ′2 with matching of rooms).
If a swap is feasible it is accepted with probability given by the SA acceptance
criterion. For the sake of clearness this scheme is also sketched in Algorithm 6.4.

Note that all events are processed and no restriction on their choice is active.

Initial Temperature: For determining the initial temperature a sample of 100 neighbours
in N ′1 ∪ N ′2 of the initial assignment passed to SA is considered. The initial tem-
perature is then determined by the average value of the variation in the evaluation
function multiplied by a factor κ (κ > 0).

Temperature schedule: We used a non monotonic temperature schedule obtained by the
interaction of two strategies: a standard geometric cooling and a temperature re-
heating. In the standard geometric cooling the temperature Ti+1 is computed from
Ti as Ti+1 = α× Ti where α is a parameter called the cooling rate (0 < α < 1).

The number of iterations at each temperature, i.e., the temperature length, is kept
proportional to the size of the neighbourhood, as suggested by the majority of SA
implementations (Johnson et al., 1991). We set this value equal to ρ · |E| · |R| · |T|,
where ρ is a parameter, and count as iteration each attempt to make a change in the
assignment, independently from the fact that the change is very soon discarded
because it breaks feasibility, or that it is accepted.

244 Course Timetabling

improvement?
any

5 loops?

Simulated Annealing
one−ex and swap

with Matching

It. Improvement
Kempe−chains

no

no yesfeasible?

yes
no

Add into Archive

yes

from Archive

yes
no

with matching

timeslot swap

It. Improvement
one−ex

It. Improvement
one−ex and swap

It. Improvement
one−ex and swap

It. Improvement
It. Improvement
one−ex and swap

Preprocessing

It. Improvement
one−ex

Tabu Search
one−ex

Select the best H
ar

d
Co

ns
tra

in
ts

So
lv

er

So
ft

Co
ns

tra
in

ts
O

pt
im

iz
er

Build
Assignment

heuristics
all

used?

Figure 6.3.: The flowchart of the hybrid algorithm. “Build assignment” constructs an initial
tentative timetable using a selected heuristic hi. Next, local search optimisation through Iterative
Improvement and Metaheuristics (Tabu Search and Simulated Annealing) is used to make the
timetable first feasible, and then good with respect to soft constraints.

When no improvement is found for a number of steps given by η times the temper-
ature length, where η is a parameter, the temperature is increased by adding the
initial temperature to the current temperature.The assignment that we consider for
testing improvements is the best since the last re-heating occurred.

The race indicated that the following was the best set of parameters: κ = 0.15, ρ = 10,
α = 0.95, η = 5.

A flowchart resuming the overall algorithm is given in Figure 6.3.

6.7. Analysis of the algorithm

6.7.1. Benchmark comparisons

The International Timetabling Competition gave us the opportunity to compare the final
algorithm output from our development methodology with the best results that current
researchers on timetabling are able to produce. According to the rules and the evalua-
tion methodology of the competition presented in Section 6.3, our algorithm scored the
lowest penalty value and therefore attained the best rank.

The evaluation methodology of the competition is influenced by the submissions of
all participants. We do not reproduce this evaluation here; the results are available

6.7 Analysis of the algorithm 245

Instance 1 2 3 4 5 6 7 8 9 10
Official Winner 45 25 65 115 102 13 44 29 17 61
Our Subm. 57 31 61 112 86 3 5 4 16 54
After Optim. 45 14 45 71 59 1 3 1 8 52
Instance 11 12 13 14 15 16 17 18 19 20
Official Winner 44 107 78 52 24 22 86 31 44 7
Our Subm. 38 100 71 25 14 11 69 24 40 0
After Optim. 30 75 55 18 8 5 46 24 33 0

Table 6.3.: Results on the 20 instances of the International Timetabling Competition. The first
two rows are the official submissions to the competition. A number in bold face indicates that
our algorithm wins. The third row reports the results out of 50 runs per instance attained by an
optimised version of our code.

on the official web site of the competition.8 We limit ourselves to compare our results
with those of the official winner who scored a penalty value clearly lower than all other
competitors. For a description of the algorithm we refer the reader to Kostuch (2003)
or Kostuch (2005). The best results attained by the two algorithms are compared in
Table 6.3. Our algorithm obtains a better solution on 18 out of 20 instances and the exact
binomial test recognises a significant difference between the two algorithms.

For the sake of fairness, it has to be said that the official winner of the competition
had much less runs available to choose the best submission (P. Kostuch, priv. comm.).
Yet, we deem that this fact gives further credit to the effectiveness of our experimental
methodology. With a brute force approach we could not have collected either one single
run per each of the 20 instances or we should have drastically reduced the number of
tested configurations, possibly leaving out the best one.

The competition proved, therefore, the effectiveness of our approach. Nevertheless,
it is also important to emphasise that even without the competition the experimental
approach adopted in our development methodology brings enough warranties on the
quality of the outcome algorithm. The statement, made possible by the race, “the algo-
rithm is the best out of 1185 other candidates” is indeed a strong argument in favour of
its reliability.

After the submission we polished and optimised the code of the algorithm and we run
it again 50 times on each instance. In Table 6.3 we present the best results attained while
in Figure 6.4 we show the distribution of the results by means of box-plots. The two
following considerations can be drawn: (i) some instances appear better solvable than
others because their solutions are closer, in terms of quality, to the optimal solutions
(in particular instance 20 is the easiest followed by instances 6, 8, 7); (ii) the harder the
instance the higher is the variance of the range in the distributions of the evaluation
function.

Recently, Kostuch (2005) has published new results for this set of instances, which are
better than the results of our optimised algorithm. Our intention is not to defend our
algorithm rather to sustain the appropriateness of the systematic development method-
ology introduced. We do believe there can still be room for improvements in both the
algorithms, but within the strict rules of the competition, above all within its fixed time

8B. Paechter, L.M. Gambardella, O. Rossi-Doria. “International Timetabling Competition”. 2003. http:

//www.idsia.ch/Files/ttcomp2002/ (October 2004).

http://www.idsia.ch/Files/ttcomp2002/
http://www.idsia.ch/Files/ttcomp2002/

246 Course Timetabling

limit (in fact, a very realistic circumstance), the use of the experimental methodology
proved to be the determinant factor of our success.

6.7.2. Contribution of algorithm components

In this section, we report about a post competition analysis aimed at the understanding
of the real impact of each component on the final performance of the algorithm. As a
logical consequence, we answer to the plausible concern whether all components are
really needed or whether the algorithm could be simplified.

A first relevant observation is obtained by profiling our code. Construction heuristics
and local searches on hard and soft constraints, consume only 10% of the total time
allowed for a run of the algorithm, while the remaining 90% is used by Simulated An-
nealing. This may suggest that possible further efforts in optimising the code should be
directed in the first place to that second part of the algorithm.

Construction heuristics

In order to understand if some heuristics are more useful than others, we run the al-
gorithm several times with different random seeds until the procedure Select_Best_As-
signment in Algorithm 6.1 is completed and we record the frequency with which each
construction heuristic provides the initial solution from which abest is derived. If some
heuristics were never selected we could discard them, while knowing which heuristics
are more used could help us in exploiting features of the problem. Unfortunately, these
are not the cases of our experiment.

In Figure 6.5, left, we report the histogram of the number of times each heuristic
produced the best assignment. Results are aggregated from a set of 50 runs for each of
the 20 instances. The Kolomogorov Smirnov test (Conover, 1999) indicates that there is
not enough significance to reject the hypothesis that the observed distribution is sampled
from a discrete uniform distribution. Visual evidence of this fact is given in Figure 6.5,
right. This is an interesting result: apparently, each heuristic has the same probability
of leading to abest. The same analysis repeated on each single instance, confirms that,
in all the instances except two, the distribution of the selection frequency remains not
significantly different from a uniform distribution. Note that, since all heuristics are
deterministic and generate an assignment which is still infeasible, the stochasticity of
the selection process is due to the hard constraint solver and the look ahead local search
that follows.

However, the use of the construction heuristics is not ineffective. Indeed, we com-
pared the algorithm that uses the 60 heuristics against an algorithm that generates 60
initial solutions in a semi-random manner. The semi-random construction can be sum-
marised as follows. First all events are assigned randomly to timeslots. Then an exact
matching algorithm is applied to each timeslot to assign rooms to events. If in the
timeslot there are more events than rooms or if it is not possible to schedule all events in
a suitable room, some events do not receive a room. After the matching algorithm has
been applied to all timeslots, the events left without room are assigned to suitable rooms

6.7 Analysis of the algorithm 247

in different timeslots, such that the number of violations of constraint H3 is minimised.
In the case of ties, priority between events is decided by label order. The comparison
shows that the use of the 60 heuristics is preferable, as it produces assignments which
are closer to feasibility, i.e., feasibility is reached in less time. This entails that more time
is left to the soft constraint optimiser to produce better final solutions.

We may conclude that, the use of the 60 construction heuristics described in Sec-
tion 6.6.4 is certainly not the main factor of success of our algorithm but they could
be substituted only by heuristics which are able to solve the hard constraints better.
Heuristics based on the principles of DSATUR in graph colouring appear definitely more
promising for this task. Indeed the algorithm of Arntzen and Løkketangen (2003) pre-
sented at the competition and based on this concept produces easily feasible solutions
for all the instances of the competition. However, preliminary experiments comparing
our algorithm modified to use only this heuristic 60 times against the version submitted
with the 60 heuristics did not reveal significant differences in their final results.

We recall instead that choosing among a set of initial solutions, rather than using
a single one, in order to have low soft constraint violations in the initial solution was
indicated as profitable by the race, although this was determined only at the last stage
by the binomial test. A set of 60 initial solutions, to which corresponds the use of 1/10
of the total running time, apparently is a good compromise between searching for good
initial solutions and leaving enough time to the soft constraint optimiser.

Hard constraint solver

Once a single initial assignment has been constructed by one of the construction heuris-
tics, making the assignment feasible is not a hard task. To exemplify this, we re-run our
algorithm 30 times on each instance and stopped it when it found a feasible solution.
The algorithm used only once a single construction heuristic (events assigned according
to the maximal number of adjacent events and rooms and timeslots in label order) and
then run the procedure Hard_Constraint_Solver. To represent the distribution of the time
needed to reach a feasible assignment over all the instances, we consider two statistics,
the median and the maximal time for each instance. In Figure 6.6, we plot the empiri-
cal cumulative distribution of the computation time for finding a feasible solution (the
time limit imposed by the competition was 1074 seconds). 9 Considering the maximal
time, represented by the dashed line, we observe that for any instance 15 seconds are
sufficient to find a feasible solution. Considering the median time (solid line), a feasible
solution for a given instance is produced already after only 1 second in 50% of the trials.
The insight that solving the hard constraints is not a hard task was already suggested
by the easiness of the graph colouring instances. In practice, this allowed us to invest
more time to improve the part of the algorithm which deals with minimising the soft
constraint violations.

9This experiment was run on a Pentium III, with a 700 MHz CPU, 256 KB cache, and 512 MB RAM.

248 Course Timetabling

 Variability of final assignment quality

Instances

Ev
al

ua
tio

n
fu

nc
tio

n
va

ul
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

Figure 6.4.: Box-plots of the distributions of the solution quality on the 20 instances of the
competition with the optimised code.

Construction heuristics

Se
le

ct
io

n
tim

es

0

5

10

15

20

25

30
Construction heuristics selection

1 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Construction heuristics

Se
le

ct
io

n
pr

ob
ab

ilit
y

Cumulative distribution function

1 10 20 30 40 50 60

Real distribution
Uniform distribution

Figure 6.5.: Diagnostic plots in support of the observation that heuristics are selected with equal
probability. The left plot gives the number of times each heuristic led to the best feasible solution.
The right plot gives the visual comparison between the cumulative observed frequency and a
discrete uniform distribution.

6.7 Analysis of the algorithm 249

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

Time (sec.)

Time to find feasible solutions

Su
cc

es
s

pr
ob

ab
ilit

y
median
maximum

Figure 6.6.: Empirical cumulative distribution of the median (solid line) and maximal (dashed
line) computation time needed to find a feasible solution. Results are derived from 30 runs on
each of the 20 instances.

Instance 1 2 3 4 5 6 7 8 9 10
Before SA 199 150 208 385 388 286 101 140 120 193
After SA 77 42 78 162 120 14 18 20 31 82

Instance 11 12 13 14 15 16 17 18 19 20
Before SA 210 228 260 263 229 115 356 156 273 157
After SA 58 143 109 49 5 24 121 46 68 4

Table 6.4.: The contribution of Simulated Annealing in terms of evaluation function values.
Reported are the median values on 96 trials per instance.

Simulated Annealing

Table 6.4 shows the improvement in solution quality brought by the application of Si-
mulated_AnnealingN ′1∪N ′2_withMatching. The improvement is relevant, and without the SA
phase, results in the competition would have been poor.

A typical profile of the temperature and the evaluation function value for the SA is
given in Figure 6.7. We observe that the re-heating feature is used on average 2-3 times
and that its effect is profitable, because in many runs the best solutions are obtained
close to the time limit. On average, SA performs 70× 104 iterations per second for a
total of about 40× 107 iterations. We recall however that we count as iteration every
single attempt of moving an event in the assignment matrix which may be also an
infeasible move. The cost of a single iteration, therefore, varies considerably depending
on how soon the proposed change is refused or accepted.

6.7.3. Qualified run time distributions

In order to analyse the behaviour of the algorithm over time we plot the qualified run
time distribution introduced in Section 3.8.1. We report them in Figure 6.8. They corre-
spond to different solution quality levels on instance 20, which was the easiest instance

250 Course Timetabling

0.0

0.5

1.0

1.5

2.0

2.5

Te
m

pe
ra

tu
re

Run A

0 10 20 30 40 50
0

100
200
300
400
500
600

Iterations 107

Ev
al

ua
tio

n
fu

nc
tio

n

Run B

0 10 20 30 40 50

Iterations 107

Figure 6.7.: Profile of temperature (upper graphs) and evaluation function value (lower graphs)
for two representative runs (left and right parts) of Simulated Annealing on instance 14. The
number of iterations is reported on the x-axis. The runs “A” and “B” ended respectively with
43 an 31 soft constraint violations and performed a different number of iterations. Since the
CPU time for the two runs is fixed, differences in the total number iterations are due to the
stochasticity inherent to the algorithm.

to solve. We observe that an assignment of cost at least 3 will be always reached in
the allowed time limit, while an optimal assignment will be found in about 30% of the
cases. We may conclude that longer run time could be profitable, as the slope of the
distributions is positive and improvements can still be expected. As a consequence of
this observation, we left our algorithm run longer also on instances 6, 7, 8 and, indeed,
we reached optimal solutions for these cases.

We check whether it is correct to leave the SA run on the same solution for all the
time available or whether it stagnates and restarts of the algorithm would be opportune
(Hoos and Stützle, 1999). To this end, we compare the empirical distributions with ex-
ponential distributions of parameters θ = 0 and λ = 1/t̄. The fit is not satisfactory.
This fact motivates the search for possible cut-off points. In Figure 6.8 we report the ex-
ponential distributions with inclination such that they touch the empirical distributions
in points where the steepness of the empirical QRTDs becomes lower than the one of
the exponential distributions. Those are the points where a restart could be opportune.
Nevertheless, in our case it arises that after those points the steepness of the empri-
cal QRTDs approximates the one of the exponential distributions. Given that a restart
would imply a new initialisation phase to be finished before seeing again a strong rise
of the QRTDs as in their first part, then we may conclude that a restart of the algorithm
is not needed.

6.7 Analysis of the algorithm 251

100 200 500 1000

0.0

0.2

0.4

0.6

0.8

1.0

Time (sec.)

Su
cc

es
s

pr
ob

ab
ilit

y

100 200 500 1000

Run−time distributions

0

1
2

3

Figure 6.8.: Run-time distributions for four different solution quality levels on instance 20.
At each time a point in the curve represents the empirical probability to find a solution of
the specified quality. Empirical data are taken from 25 runs. The superimposed dotted lines
represent exponential distributions while the vertical line is the total time limit on a machine
with processor AMD Athlon, 1 GHz CPU, 256 KB cache, and 512 MB RAM.

6.7.4. Landscape Analysis

From the description of the algorithm it emerges clearly that it is strongly based on local
search components. The characterisation of the search landscape may help therefore in
the understanding of its behaviour. In particular, we look for models based on the
features of the search landscape which explain the differences in the hardness of the
instances. A similar study is described for the Job Shop Scheduling problem by Watson
et al. (2003). Yet, given the hybrid nature of the algorithm under study, the search
landscape is not univocally defined but changes with each phase and with each different
neighbourhood. We decided therefore to restrict ourselves to consider only the search
landscape determined by the one-exchange neighbourhood, i.e.,N1, when the evaluation
function is determined solely by the soft constraints. After all, our main interest is on
the landscape when solving the soft constraints because we already showed that finding
a feasible solution is easy.

Every instance has an optimal solution to which corresponds a value of 0 in the eval-
uation function. It seems therefore reasonable to use as indicator of the hardness to
solve an instance the quality of the final solution found. Precisely, we define as cost of
solving an instance the median value of the final solution qualities found in 50 runs of
our algorithm. This corresponds to the median value of each distribution reported in
Figure 6.4. In this way we assume that the closer this value is to zero the easier it is
solving the instance. Alternative measures of the hardness are the number of iterations
or the time needed to reach an optimal solution or a given level of the solution quality.

Before proceeding in the analysis, we also define the distance between two solutions
in the search space. To this end, we assume a further simplification of the problem
by ignoring the room assignment and including the possibility of visiting an infeasible
assignment. The consequence of this simplification is that the distance between solu-
tions is in fact a lower bound of the real distance because the path made solely of one

252 Course Timetabling

exchanges may not be feasible due to the impossibility at some steps to find a feasible
room assignment.

In computing the one-exchange distance, we consider two assignments to be equal
if only days are permuted. Hence, the distance corresponds to the partition distance in
graph colouring. More precisely, we compute the distance between two assignments a1

and a2 in the following way. For each day of assignment a1 we compute the similarities
with each day of assignment a2 and we store these values in a 5× 5 matrix called matrix
of costs (5 is the number of days). The number of similarities is obtained by a matched
pairwise comparison of timeslots in the two days (i.e., between timeslots with the same
index in the two days), and corresponds to the number of events that are present in both
timeslots. Next, we look for the permutation of days in the assignment a2 that would
yield the maximal total number of similarities between a1 and a2. This is achieved by
solving the linear assignment problem on the matrix of costs Gusfield (2002). To this
end, we use, the algorithm of Jonker and Volgenant (1987).10 This is not a polynomial
time algorithm but it is very fast for the small instance size (5× 5) that we have to solve.

Quality of local optima.
The first feature that we consider is the quality of local optima. Intuitively, the worse the
quality of local optima the harder the problem is to solve. In our case, we define a local
optimum to be the assignment reached after the variable neighbourhood descent in the
soft constraint optimiser, as defined in Section 6.6. Note, however, that, the solution
after the variable neighbourhood search is not necessarily a strict local optimum.

For each instance, we generated 200 local optima and we considered the medians
of the distribution of their quality. In Figure 6.9, we show scatter plots of the median
quality of local optimum versus the instance cost. A linear regression on these points
attains an r2 of 0.503 and there is enough statistical significance to reject the hypothesis
of independence between the two variables. According to this result, the quality of
local optima after the variable neighbourhood descent explains to some extent the final
difficulty of the instance. Consequently, it could be possible to predict, with a certain
error, the final solution quality after just a few seconds of running the algorithm.

We investigated also the correlation between the quality of the initial feasible assign-
ment chosen after the look ahead local search and the final solution quality. A correla-
tion between these two features would indicate a certain importance of starting from a
good assignment and could justify the selection of the best candidate among the initial
set of candidates. However, in this case the null hypothesis that the two variable are
independent could not be rejected.

Local optima localisation
From the same sample of local optima of the previous paragraph we considered: (i)
the minimal distances of each local optimum from another local optimum and (ii) the
distances of each local optimum from the unique global optimum available. Clearly,
at point (ii) the distances may badly represent the actual distance from global optima
because there may be other global optima much closer. However, the unique global
optimum available may be part of a larger plateau. Therefore, in order to determine
the smallest distance, we apply to it a Tabu Search on the N ′1 and N ′2 neighbourhood

10MagicLogic Systems Inc. “Linear Assignment Problem - software downloads.”
http://www.magiclogic.com/assignment.html. (April 2005.)

http://www.magiclogic.com/assignment.html

6.7 Analysis of the algorithm 253

++ +++ ++++ ++++ ++ +++++ + + +++ ++ +++ + +++ ++ ++++ + ++ + +++++ ++ +++ + +++ ++ ++++ +++ +++ +++ ++ ++ ++ ++++++++++ + +++++ ++ ++ ++++++ ++ ++ +++ ++++ ++++ + ++++ ++++++ ++ ++ + ++ +++ +++ ++++ ++ + +++ ++ ++ ++ ++ ++ + ++++ ++++ + ++++++ + ++ ++++++ +++ ++ +++ ++ +

+++ ++ +++ ++++ +++++++ +++ ++++ +++ + + +++++ ++ ++++ ++ ++ +++ +++ +++ ++++ ++ +++ +++++ ++++++ ++++ ++ +++++ +++ ++ ++ ++++ ++ +++ ++++++ ++++ + ++++ ++ ++ +++ ++++ + ++ +++++ ++++ + ++++ ++ +++ + +++ ++++ +++ ++++++ +++ + ++ +++ ++ ++ +++ ++ ++ +++ +++ +++ +++ +

++ ++ +++ + + ++++ +++ ++++++ ++ +++ +++ +++ ++ +++ + +++++ ++ ++++++ ++ +++ + ++ ++ ++ +++ +++++ + + ++ ++ ++ +++ ++++ + ++ +++++ + +++ ++ +++ + ++ ++ ++++ ++ +++ ++ ++++ +++ + ++ + ++ +++ ++ +++ +++ + +++ +++ ++++ + +++ + +++ + +++++++ + +++ ++ ++++ ++++ +++ ++ ++ ++ ++ ++++

+ ++ + + ++ ++ ++ + ++++ +++++ ++ + ++ ++++ ++ ++++ ++ + +++ ++ ++ + ++ + ++ +++ ++ + +++ + ++ ++ +++ ++++ ++ + + ++++++ ++++ ++ ++ ++ +++ + ++ +++ ++ +++ + ++ + ++++ +++ ++ ++++ +++ + ++++ + ++ ++ ++ ++ ++ ++ + ++ + ++ ++ ++ ++ ++++ ++ +++ + ++++++ ++ ++++ +++ + ++++ + +++++ ++ + +++ +

+ ++++ ++ ++ ++ + ++ ++++++++ ++ +++ ++++ + + +++ +++ + ++ +++ ++ ++ + ++ +++++ ++ + + +++ + +++ ++ +++ + +++ ++++ +++ ++++ + +++++ + ++ +++ ++ + +++ ++ + ++ ++++ +++ ++++ +++ ++ +++ + + + + +++ ++ ++++ +++ +++ + +++ ++ + ++ ++ + +++ + +++ + ++++ + ++ ++ ++ + +++ + +++ + ++++ ++ +++ ++

+++ ++ ++ +++ ++ ++ ++ + +++ ++ + ++ + ++ + ++ ++ ++++ + ++ + ++ +++ ++ ++++++ ++ +++ +++ + ++ + ++++++++ + + ++++ +++ + ++ +++ ++ ++ +++ ++ +++ ++ +++ + ++ ++ ++ ++ +++ ++ +++ ++ + +++ +++ + + ++ ++++++ +++ +++ ++++ ++ +++ ++ +++ + ++ ++ ++ ++ +++ ++ + + ++++ ++ ++ ++ ++++ +++ + ++++
++ ++++ ++ +++++ ++ ++ ++ ++ ++ +++ ++++ + +++ + +++ ++ +++ ++ +++ ++ ++ +++ ++ + + ++++ ++++++ +++ ++ +++ +++ ++++ + ++ ++ ++ ++ ++ + +++ + ++ ++ ++++ ++ + +++ ++ + + ++ ++++ + + ++ + +++ +++ + +++ ++ + +++ +++ + +++++ ++ ++ +++ ++++ + +++++ + ++ ++ ++ + ++ +++ ++ + ++ + ++ ++++++ ++

+ +++++ ++ +++ ++ ++ +++ ++ + +++ + ++ ++ ++++ ++ + ++ ++ ++ ++++ + ++ ++ ++++ +++++ + +++ ++ ++++ +++ ++ ++ + ++ + ++++ ++ +++ +++ + +++ +++ ++++ ++ ++ ++++ ++ ++ +++ +++++ +++ + +++++ +++ +++ +++ +++ ++++ ++ ++ ++ + ++++ +++ ++ +++++++ + ++ ++ +++ ++ +++++++ +++ + +++ ++ + +
+++ +++ +++++++ +++++ ++ ++ +++ + ++++ +++ +++ + +++ +++ ++ +++++++ ++ ++ +++++ ++++ ++++++ +++ +++ +++++ ++ ++ +++ +++++ ++ +++ ++++ ++ + ++++ ++++ ++++ ++ ++ ++ ++ ++ ++++ ++ +++ +++++ +++++ +++++++ +++ ++ +++ ++ +++ + ++ +++ ++ ++ ++ ++++ + ++ ++++ + ++ +++ ++++

++ ++ ++ + ++ + +++ ++ ++ ++ ++ ++ ++ +++ ++ +++ ++++ +++ +++ ++ ++ + +++++ ++ + ++ +++ ++ ++++ ++ ++ ++ +++ ++++ ++ +++ +++ ++ + +++++++ + ++++ ++ +++ ++ +++ +++ ++ ++ + +++ ++ ++ +++ ++++ + ++ + ++ ++ +++ ++++ +++ ++++ + ++ ++ +++ + +++ +++ ++ +++ +++ ++ ++++ +++ ++++ ++ ++ +++

++++++ +++++ ++ +++ +++ ++++ + ++ + +++ +++ + +++ ++++++ ++++ ++ +++ +++++ + ++ +++++++++ + + ++++ +++ ++++ + +++ ++ +++++ + ++++ + +++++ +++++ +++ ++ +++ +++ ++++ ++ ++ + ++ ++ ++ + ++ ++ +++++ +++++ +++ ++ +++ ++ ++ ++ +++ ++ + ++ ++ + + ++ +++ ++ +++ +++ +++ + +++ ++ ++

+ ++++ ++ +++++ ++ +++++++++ +++ + + ++++++ ++ ++ ++ + ++ +++++ +++ +++ ++++ ++ + ++ + +++++ +++ ++ ++ + ++++ ++ +++ ++ +++ ++ +++++ + ++ + ++ ++ +++++ +++ + ++ + +++ + ++ ++ ++ + ++ ++ +++ ++ ++ + +++ + +++ + ++ ++ ++++ ++ +++++ ++ +++ +++ + ++ + ++ + +++ ++ + +++ ++ ++ ++++ +++ +

++++++ ++ +++ ++ ++ +++ +++ + ++ +++ + ++ ++ ++ ++ +++ ++ ++++ ++++ + ++ + +++ + ++++ + +++ + ++ ++++ +++++ +++ +++ ++++ +++ + ++ + ++ +++ + ++ +++ + +++ ++ ++ + + +++ + +++++ +++++ ++ + ++ +++++ ++ ++ + +++ ++ +++ + +++ +++ ++ +++ + +++ +++ +++ ++ +++ +++ + +++ ++++ +++++ ++ + ++

+++ + +++ +++ +++ + ++ +++ ++ ++ + + ++ ++ + ++ ++ ++ + ++ ++++ + ++ ++ +++ + + ++++ ++ + + ++ ++ +++ + + + ++ ++++ + + +++ + + +++++ ++ ++ ++ + ++ ++ +++ ++ + ++++ +++ + ++ +++ +++++ + ++ + +++ ++ + ++ ++ ++ + +++ ++ ++++ +++ + ++ +++ ++++ + ++ + ++++ + ++ +++ ++++ ++ + + +++ ++ ++ +++ + + ++ +

++ + + ++++++ ++ ++ +++ +++ + + ++++ + ++ +++ ++ ++ + +++++++ + + ++++ ++ ++ + ++ ++ + + +++ +++ + +++ ++ + + +++++ + +++ ++ +++ ++ ++++ +++ + ++++ ++ + + +++ ++ + ++ +++++ + ++ ++++ + + ++++ +++ +++ ++ ++ ++ ++++ ++ + +++ + + +++ ++ +++ ++++ ++++++ ++ + ++ ++ + ++ ++ + ++ + +++++ +++ ++ ++++ +++++ ++ +++ +++ ++ ++ ++++ ++ ++ ++ +++++ +++ ++ ++ +++ ++ ++ +++++++ + +++++ +++++ ++ + ++++ ++++ ++++ + ++ ++++ + +++++ +++ +++ ++ ++ ++++ + +++ + ++ +++++ ++ + +++ ++++++ +++++ +++ ++ +++++++++ + ++++ + ++ +++++ +++ +++++ ++ +++ ++ + +++ ++ ++ +++ ++++++ +

+ ++ ++++ + +++ ++ ++ + +++ ++ ++ ++++ + ++ +++ +++ +++ + + +++++ ++ + +++ +++++ ++++ + + +++ + + ++ ++++ + +++++ + ++ + ++ + ++ +++ +++ +++ ++ ++ + +++ + ++++ +++ + +++++ + ++ ++ +++ +++ ++ + ++ + +++++ ++++ + +++ + +++ + ++ ++++++ + ++ +++ + +++ ++ +++ + ++ + ++++ +++ ++ +++ ++ ++ ++

++++ ++ +++++ ++ +++ ++++ +++ +++ ++ ++++ +++ ++ +++++ ++++ ++++ +++++ +++++ ++ ++++ ++ + +++++ ++ +++++++ ++++ +++++ ++ + + ++++ ++ + ++ ++ + ++ ++ +++++ +++++ +++ +++ +++ +++++ ++++ +++ +++ ++ ++++++ +++++ +++ + +++ +++ +++++ ++++ ++ ++ ++++ ++ ++++++ ++++++

+++ ++++ ++ +++ + ++ ++++ ++ ++ ++ ++ ++++ +++ ++ +++ ++++ ++ +++++ ++ +++ +++ ++ ++ ++ ++++++ +++ + + + ++ ++ + +++ +++ ++ ++ ++++ ++++ + ++ ++++ + + ++ ++ +++ ++ ++ ++ ++ ++ + + ++ ++ + ++++ +++ ++++ + +++ + +++ ++ ++ ++ + + +++ + ++++ ++ ++ + +++ ++ +++ +++ + ++ +++ +++ ++ +++ +++

++ ++ ++++ ++ ++++++ ++++ + ++ ++++ + ++ + ++ ++ + +++ ++++ +++ +++ ++ ++ ++++ ++ + ++++ +++ ++ +++ +++ + +++ +++ +++ + ++ +++ + ++ ++++ ++ ++ + ++++ ++ + + ++++ ++++ ++++ +++ +++ ++ ++++ +++ +++ + ++ ++ ++++ ++++ + +++++ +++ ++ ++ ++ ++++ ++++ + ++++ + + +++ + +++ ++ + ++ + ++ +

100 200 300 400 500

0

20

40

60

80

100

Evaluation function value

In
st

an
ce

 h
ar

dn
es

Figure 6.9.: Scatter plot of the median costs of local optima versus the cost of an instance (median
costs of final solutions); a least-squares fit line is superimposed.

structures that minimises the distance while keeping fixed the value of the evaluation
function. The minimal distance of the local optimum from the global optimum is then
the minimal distance found in this search.

In Figure 6.10, we show the distributions of these distances when normalised by the
number of events. It shows clearly that solutions are all very far away from each other.
Indeed, both distributions peak at more than 0.9 normalised distance which means that
almost all events must be relocated to pass from one solution to the other. Usually,
the distance of local optima from global optima is a good indicator of the hardness of
solving an instance (Watson et al., 2003). Unfortunately, given that we had only one
global optimum available and given the similarity between the curves in the figure, it is
not possible to verify the truth of this statement in our case.

Finally, we mention that we also checked the relation between the minimal distance
of local optima from global optimum and the quality of local optima. Intuitively, as-
signment closer to optima should have better quality, but this was not confirmed by our
experiments, where no significance arose to reject the hypothesis that the two measures
are independent.

Plateaux size in local optima and global optima
In order to determine the size of the plateaux we implemented a local search procedure
that tries to explore the plateau by modifying as much as possible an assignment, while
maintaining fixed the value of the evaluation function. In order to avoid visiting twice a
same assignment, this procedure keeps an archive of the visited assignments. Contrary
to a Tabu Search approach, it records the whole assignment in order to be sure not to
count solutions twice. This makes the search computationally quite expensive.

This local search is triggered when a local optimum is reached (hence, again, after the
variable neighbourhood descent in the soft constraints optimiser), and we let it run for
10 times the usual time limit. If the exploration of the plateaus finishes before the time
limit is exceeded, a new local optimum is generated by restarting the whole procedure.
Note that this algorithm does not yield the exact size of the plateau because its result
depends on the trajectory. Nevertheless, for a qualitative indication of whether plateaux

254 Course Timetabling

Normalised distance

0

50

100

150
1 2 3 4 5

0

50

100

150
6 7 8 9 10

0

50

100

150
11 12 13 14 15

0.6 0.7 0.8 0.9
0

50

100

150
16

0.6 0.7 0.8 0.9

17

0.6 0.7 0.8 0.9

18

0.6 0.7 0.8 0.9

19

0.6 0.7 0.8 0.9

20

distance local−global distance local−local

Figure 6.10.: The distribution of distances within local optima and between local optima and
global optima on each of the 20 instances. The number of local optima considered is 200. The
normalised distance ranges from 0 to 1, although in the plot we show only the interval [0.5, 1].
The distributions’ densities are obtained by smoothing the empirical distributions.

are large or not, this algorithm may suffice.

In Figure 6.11, we report by means of bar-plots the size of the largest plateaus found
by the algorithm during one run per instance. We also report the same analysis for
the available global optima. We observed that in some instances the time was not even
enough to complete the exploration of one single plateau. With some few exceptions,
the size of the plateaux is very large. The largest counted 200 thousand assignments.
Surprisingly, when plateaux are small for local optima, the same holds also for global
optimum. The size of plateaux appears therefore a characteristic of the instance. We
were, however, unable to find any correlation between the size of plateaux and other
characteristics of the instance. Hence, this phenomenon remains unexplained.

The conclusion from Figure 6.11 is that plateaux are in general large. This fact justifies,
in part, our choice of accepting side walk moves but controlling that their acceptance
does not cause the search to remain trapped in a single plateau (as described in Sec-
tion 6.6.5 each local search accepts the first non worsening move but ends if the last |E|
moves were all side walks).

In each single run of our algorithm the number of side walk moves is, on average, 9
times greater than the number of improving moves. Side walk moves are then positively
correlated with the size of largest plateaux in the instances. In contrast, no significant
correlation exists between the number of side walk moves and the hardness of the in-
stance or the final solution quality.

6.7 Analysis of the algorithm 255

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instances

0

5 × 104

10 × 104

15 × 104

20 × 104

The size of plateux in local optima

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instances

0

5 × 104

10 × 104

15 × 104

20 × 104

The size of plateux in global optima

Figure 6.11.: A qualitative view of the size of plateaux in local optima and global optima. The
size has to be intended as solely indicative.

Search space connectivity
We mention that on instance 20, where we had available more than one global optimum,
we succeeded in finding a path from one solution to another. This was achieved by a
local search in N ′1 ∪N ′2 that minimises the distance between the current solution and a
target solution, i.e., an other global optimum, and that is not allowed to break feasibility.
The success of this experiment gives further credit to the conjecture that the search space
in the neighbourhood N ′1 ∪N ′2 is indeed connected.

6.7.5. Further analyses

Modelling the hardness of an instance
In a real context it may be useful to understand which are the features of an instance,
known a priori, that have an influence on the final solutions produced by our algorithm.
In a university, once these features are known, it may be possible to negotiate them
with other departments, or to undertake other preventive measures in order to obtain
better timetables in the future. Linear regression techniques could already unveil some
important patterns. We attempted this kind of analysis on the results available. Namely,
we search for good models to predict the hardness of an instance, indicated again by
the median values of Figure 6.4, denoted here as f̃ (i), where i is the instance. Several
quantitative variables were considered and their correlation with f̃ (i) is reported in
Table 6.5. The highest correlation is for the average event degree of the instances and
was statistically significant based on the randomisation test of independence (Cohen,

256 Course Timetabling

Correlation with f̃ (i)
events 0.096 AV

(
students

/
event

) −0.172
students −0.169 SD

(
students

/
event

) −0.112
rooms −0.311 AV

(
d(G′T)

)
0.456

AV
(
rooms

/
event

) −0.370 SD
(
d(G′T)

)
0.153

AV
(
events

/
student

)
0.253 χ̂(GT) 0.036

SD
(
events

/
student

) −0.174 χ̂(G′T) 0.469

Table 6.5.: Correlation between quantitative variables to explain the hardness of an instance
represented by f̃ (i). The number in bold face indicates where independence is significantly
rejected.

1995). However, the regression model between average event degree and f̃ (a) gave
an adjusted r2 value of 0.164, which is quite low. Also the chromatic number of the
underlying graph presents a statistically significant correlation with the hardness of the
instances. However, inducing a variation of the chromatic number of the underlying
graph may not be easy due to the fact that it is not merely influenced by the average
event degree but it is rather the effect of the global structure of the graph, which is hard
to control. Therefore, the practical importance of this finding is limited.

A finer analysis is possible by the use of multiple linear regression techniques. Using
a heuristic approach, namely the “stepwise multiple regression”, where the significance
of predictors is checked by Fisher tests (Cohen, 1995), we arrived to following model
which has R2 = 0.676:

f̃ (i) = 2.44 · AV
(
d(G′T)

)
+ 1.20 · |E|+ 66.93 · |R|+ 1.83 · SD

(
d(G′T)

)− 6.36

The analysis of the mutual correlation between terms in the formula indicates that
their independence cannot be rejected, and, therefore, their inclusion in the formula
is not redundant. We can conclude that the predictors with a significant effect on the
quality of final solutions are:

• the average event degree, AV
(
d(G′T)

)
,

• the standard deviation of the event degree, SD
(
d(G′T)

)
,

• the number of events |E|,
• the number of rooms |R|.

Admittedly, the number of available data (only 20 instances) is quite low for consid-
ering such an analysis reliable and its inclusion in our discussion has to be regarded
mainly as an example rather than oriented to any important conclusion on the UCTP-
C. However, a similar analysis on this problem with much more data is developed by
Kostuch and Socha (2004) and their results confirm, in general, our findings.

Conflicting constraints analysis
As noted for the set T-colouring problem, in a multi-objective context an important issue
is whether objectives are really in contrast with each other or whether optimising one
implies automatically optimising also the other. In the UCTP-C we can treat each type
of constraint as a different objective defined in Section 6.3 and Section 6.6.5.

We generated 1000 assignments per instance with the semi-random construction heuris-
tic and computed the median over all the instances of the correlation for each pair of

6.8 General guidelines for the application of SLS methods 257

constraint types. The correlation is in general very close to zero. The only exceptions are
a negative correlation of value −0.20 between H2 and S2, and of value −0.13 between
S1 and S2. This indicates that it can be hard to minimise the constraint violations S2,
because minimising them we may cause an increase of the violations of the other two
types. The negative correlation is reasonable. Indeed, trying not to schedule classes in
non suitable rooms can have the effect of spreading them in different timeslots likely
causing students to have classes in a row. H2 has, however, higher priority in our al-
gorithm. Under the point of view of our soft constraint optimiser, the slight negative
correlation between S2 and S1 is more relevant. It indicates that scheduling at least one
timeslot free after a couple of timeslots in which a student already attends a course may
cause some event to be assigned to the last timeslot of the day. In contrast, the constraint
S3 is not negatively correlated with any other constraint typology. Accordingly, it can
happen that satisfying other constraints contributes also to satisfying S3.

It would also be interesting to understand the relative hardness of these constraints
but this task requires, unfortunately, a normalisation of results which appears quite
problematic.

6.8. General guidelines for the application of SLS methods

The International Timetabling Competition received 24 feasible submissions from all
over the world. According to the rules of the competition, our algorithm ranked the
best. It is however important to note that 10 out of the 11 best ranked methods where
SLS algorithms, that is, metaheuristics and hybridisations thereof. They sometime differ
for the methods they use for producing feasible solutions but then, when soft constraints
are to be minimised, SLS algorithms are the choice. In particular, the official winner is
an algorithm defined in three phases, which as our own algorithm, strongly relies on
Simulated Annealing (Kostuch, 2005).

Our hybrid algorithm is based on a framework which consists in the successive ap-
plication of construction heuristics, Variable Neighbourhood Descent, and Simulated
Annealing. Simulated Annealing can then be further alternated with Variable Neigh-
bourhood Descent. This framework is of general applicability. For example, we par-
ticipated also to the ROADEF’05 competition on a car sequencing problem.11 In that
case, we adopted a similar engineering methodology, although not based uniquely on
sequential analysis but also on experimental design, which was possible given the larger
amount of time available for the development than for the UCTP-C. Interestingly, the fi-
nal algorithm, although developed independently from the one discussed here, resulted
using the same high level framework (Risler et al., 2004). In that competition the algo-
rithm ranked finally fourth in its category (while it was first after the first phase of the
competition).

It may be opportune at this point trying to summarise some guidelines for the ap-
plication of SLS methods to highly constrained combinatorial optimisation problems. These

11Van-Dat Cung. “Challenge ROADEF’2005”. March 2005. http://www.prism.uvsq.fr/~vdc/ROADEF/

CHALLENGES/2005/. (April 2005.)

http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/
http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/

258 Course Timetabling

guidelines stem from the studies presented in this thesis and from other complemen-
tary experiences of the author. They are “suggested” by empirical observations and hence
strongly dependent on the problem situation in which these observations were collected. As we
saw for very large scale neighbourhoods, there is no guarantee that a result observed
on a problem is valid also on another and evidence can be gathered only by testing. In
this sense the guidelines below do not have any other pretension than being regarded
as mere “starting hints”.

• Start by devising construction heuristics. This entails a better understanding of the
problem and where its difficulties lay. Often, the same rules used in backtracking
approaches, most constrained first or least constrained last (as shown for the set
T-colouring problem on page 185) work fine.

• Develop good local searches. Recall its four components: (i) solution representa-
tion, (ii) evaluation function, (iii) neighbourhood structure, and (iv) search strategy.

The possible combinations are many and a priori there are few elements to guess
what is best to do. The ultimate answer should necessarily come from experimen-
tal testing. However there may be some general ideas for how to start:

(i) choose a solution representation that allows to satisfy by construction as many
constraints as possible;

(ii) A prerequisite for the application of SLS algorithms is a fast evaluation of
solutions. If this is not possible for the problem at hand, consider the substitution
of the evaluation function with a surrogate function, and reduce the number of
times the original function is computed. If more than a choice is possible, prefer
the one that produces less ties between solutions.

(iii) develop as many neighbourhoods as are devisable. This part is the most im-
portant for the success of the overall SLS algorithm, therefore invest time here. The
application of metaheuristics afterwards is often straightforward. The real break-
through in SLS algorithms is given in the first place by the neighbourhood used
in the local search. Usually, inspiration for the neighbourhood structures comes
from well known standard problems and may consists of exchanges, insertions,
reverses, etc. but ad hoc neighbourhoods as we have seen for timeslot exchanges,
or colour re-assignment in set T-colouring, or room matching are also possible.
Combine them intelligently. Usually, heuristic rules may be applied; otherwise the
most straightforward approach is to alternate the search among neighbourhoods
in the fashion of Variable Neighbourhood Descent. Exploit as much as possible
implementation tricks for speeding up the execution of moves.

(iv) The way the neighbourhood is explored is crucial for its success. On this as-
pect the size of the neighbourhood has a strong impact, therefore, try to reduce it
by considering only promising neighbours (this corresponds to the use of a candi-
date list, as denoted by other authors). A way for achieving this is the involvement
of problem constraints, possibly controlling that the search space does not become
disconnected. A second issue is the evaluation of the neighbours. Here, all pos-
sible tricks must be devised for a fast evaluation. A good praxis is the use of
auxiliary data structures to compute only the local contribution to the evaluation
function. A best improvement strategy works well only with small neighbour-
hoods. In the other cases, the choice is necessary for a first improvement strategy,

6.8 General guidelines for the application of SLS methods 259

or, alternatively, for searching the best in a random sample of the neighbourhood.
The acceptance of side walk moves has to be considered carefully. In general, if
used sapiently, it can be profitable.

• The application of metaheuristics should come only after all possibilities from the
previous two points have been exploited. However, at this point the first rule
should be: keep it simple. The problem of simplicity is a controversial philosophical
issue. Our assertion is based on the following three criteria:

– smaller number of freely adjustable parameters;

– higher degree of heuristic guidance with respect to chance-like decisions. In
other terms do not make abuse of randomness. Clearly, the extreme case of
generating solutions completely at random is a bad approach to solve the
problem. Hence, the use and test of rules is to be preferred because it enables
to exploit problem knowledge.

– lower number of components. Be critical with everything that is added to the
algorithm, test empirically, and do not hesitate to remove something if it does
not yield a significant improvement.

• General hints on the metaheuristics have much lower evidence than the previous
ones. It is hard to forecast the behaviour of a metaheuristic and a valid guideline
in this context is: implement more than one and compare them. In new problems,
where no benchmarks are available this is also a good way for obtaining an as-
sessment of the results. Each single metaheuristic can then be arbitrarily modified
in order to enhance its performance. The comments that follow refer to the basic
principles inherent to each metaheuristic as outlined in Chapter 2, Section 2.4.3.

(i) Iterated Local Search is very easy to apply and it is therefore the first thing to
try. It constitutes a good reference algorithm which is often not outperformed by
other metaheuristics. There is no indication on the strength of the perturbation
which can vary from problem to problem. Sequences of random moves or some
move in a different neighbourhood may be used to remain somehow “close” to
the local optima found. It is important, however, to avoid that the perturbations
be easily undone. At the other extreme there is the complete reconstruction of
the solution. Random restart, typically performs poorly, but Greedy Randomised
Adaptive Search Procedure and Adaptive Iterated Greedy are appealing when
several construction heuristics are available and when they can be randomised.

(ii) Tabu Search, Guided Local Search, and other probabilistic methods such as the
Min-Conflicts heuristic and Novelty+ are alternative methods to implement the
same concept, that is, improving the exploration of the search space around the
local optima. Yet, it is often more complicated to control what is happening and
to tune these metaheuristics correctly with respect to Iterated Local Search. Tabu
Search may be a good choice with small neighbourhoods where a best improve-
ment strategy is feasible. The length of the tabu list may be crucial; linking it to the
size of the neighbourhood is a choice which allows to control the fraction of neigh-
bourhood forbidden. The introduction of reactive mechanisms which modify the
length of the tabu list during the search increases the complexity of the algorithm

260 Course Timetabling

and requires additional efforts in tuning. The other methods are instead more ap-
propriate than Tabu Search for large size neighbourhoods. All these methods can
be used as local search procedures in Iterated Local Search.

(iii) Simulated Annealing is promising with long run times and deals well with
large neighbourhoods. Nevertheless, it is very sensible to its parameters and re-
quires an adequate tuning which is strongly dependent on the instance class and
on the time limit. In all cases in which a time limit is not fixed or too short, Sim-
ulated Annealing is ineffective because it cannot be properly tuned. Another case
where Simulated Annealing is ineffective is when the evaluation function is a sur-
rogate for the effective quality of the solution. In this case Simulated Annealing
introduces further noise in the search which is very hard to control. Although
somehow in contrast with its principles, we saw that Simulated Annealing seems
to perform better when applied from a good starting solution as the one obtained
by a Variable Neighbourhood Descent.

(iv) Population based methods such as Ant Colony and Evolutionary Algorithms
should be applied when the contributions of the previous methods have been thor-
oughly exploited and there are still computational resources left (i.e., computation
time, or parallel computers). All the heuristics rules that exploit problem knowl-
edge and that have devised for the other methods can be used as part of their
heuristic component (ant colony) or recombination component (evolutionary algo-
rithm). The hybridisation with a powerful local search seems also recommendable.

6.9. Discussion

This chapter completed our path from simple theoretical problems to real world appli-
cations. We gave evidence of the connections between timetabling and graph colouring
problems. Both are assignment problems with constraints and ideas for the solution meth-
ods can be successfully transferred from one case to the other. Some of these ideas are:
the inclusion of constraints in the solution representation, which was suggested in the
set T-colouring problem; the transfer of the neighbourhood structures one-exchange,
swaps, and Kempe chains; the restriction of the neighbourhood by considering only
events that are involved in violations and the use of Tabu Search when the neighbour-
hood is restricted enough, which arose in the graph colouring; the feasibility of solving
exactly small sub-problems, which brought advantages in the set T-colouring problem;
the use of sequential heuristics that order events according to their degree of involve-
ment in constraints, similarly to DSATUR for graph colouring problems.

Nevertheless, we argued that the application of SLS methods for solving new com-
plex problems requires a systematic methodology. In the previous chapters we saw that
it is difficult to predict the behaviour of an SLS algorithm before testing it empirically.
Therefore, general, prescriptive rules may be misleading. The results on standard prob-
lems such as GCP, TSP, MAX-SAT, etc., which have been well investigated in academic
studies, are the starting point. Recognising one of these problems in the application
at hand allows to restrict the attention to a certain collection of promising components

6.9 Discussion 261

for SLS methods. These components must then be adapted to the current problem. As
noted in the previous chapters the elements to forecast a priori the behaviour of an SLS
component or algorithm are very few. Theoretical results are also often not helpful and
the only final judgement must come from empirical tests. A well defined experimen-
tal methodology for doing this is helpful. We believe, and results in the International
Timetabling Competition, support us, that experimental design and sequential testing
are appropriate. The methodology that we adopted, based on the racing algorithm of
Birattari et al. (2002) has the advantage of reducing the experiments to only those that
are strictly necessary. As a matter of consequence, the number of configurations that is
feasible to test in reasonable time increases. In our specific case the racing algorithm has
been extended to the “several runs on various instances” experimental design, which is
imposed when the number of available instances is small. Moreover, the race has been
used in an interactive manner. This latter point is the main novelty of our methodologi-
cal approach: the race, or sequential testing, is used not only for tuning SLS algorithms
but mainly for guiding the design and development process of these algorithms by
providing indications on which are the profitable heuristic rules and by inspiring new
algorithms to be inserted in the race to compete against the previous survivors. By such
refinements of well performing algorithms, it is possible to obtain in feasible times a
final optimiser highly fitted for the application at hand.

We gave evidence that this methodology is successful. On the one side we showed that
the algorithm developed in this manner ranked the best at the International Timetabling
Competition. On the other side, a post development analysis unveiled the appropriate-
ness of each algorithmic component and the correctness of their tuning. We showed that
the construction heuristics can be simplified and that attaining feasible solutions is very
easy and can be done quickly for the instances of the International Timetabling Compe-
tition. We then gave evidence of the importance of the Simulated Annealing part and
investigated its profile which indicates the usefulness of the reheating feature. Finally,
we considered qualified run time distributions and characterised the curves with expo-
nential distributions thus unveiling that longer run time could be profitable for further
improving solution quality and that apparently restarts of the algorithm are not needed.

Further analyses on the search landscape of the problem are contingent to the numer-
ous simplifications that we applied. However evidence arose that the quality of local
optima found after the Variable Neighbourhood Descent is correlated with the final so-
lution quality. This fact makes it possible to predict the final quality of a solution after
few seconds of running the algorithm, or, equivalently, to understand whether an in-
stance is easy to solve or not. We were instead unable to find any correlation between
distances of local optima and global optima in the search space while we substantiated
with empirical observations the conjectured connectivity of the search landscape and
the presence of large plateaux. In addition to landscape analysis, we attempted to de-
rive a model for the prediction of the hardness of an instance from its a priori features.
Enough evidence arose that the distribution of vertex degree in the constraint graph
derived from the instance and the number of rooms and events are good predictors.
Such kind of analysis may be particularly useful in a university that could then un-
dertake corrective measures for improving its timetabling acting on the factors of main
importance.

The work in this chapter advances the application of SLS methods in the specific

262 Course Timetabling

area of timetabling. The main characteristic of timetabling is the high specificity of its
constraints that vary from situation to situation. SLS methods are appealing in such
a context because they are flexible and attain satisfiable performance. Nevertheless,
it is desirable to reduce the efforts inherent in their application. Case-based systems
(Burke et al., 2004b), hyper-heuristic systems (Burke et al., 2003), and frameworks for
metaheuristics go in this direction. Our methodological approach based on methods
from statistics is complementary to all these systems and above all it is the only one
that can provide with an objective guarantee of performance, this latter aspect being of
main importance in a context like timetabling where, due to the high specificity of the
problem, the way to assess solvers is not yet fully understood.

Chapter 7.

Conclusions

In which we summarise the advances in the application of SLS methods which have been
achieved with this thesis.

7.1. Main themes of this thesis

In this thesis, we put forward the view of SLS algorithms as modular methods with
the main components being Construction Heuristics, Iterative Improvement procedures,
and Metaheuristics. We maintained the analysis of these main components separated,
and studied the computational results of their combinations. These combinations can
be regarded as instantiations of general SLS methods for solving a specific problem. This
way of proceeding implies a certain involvement in coding and the assembly of different
components. We contributed to make this “SLS algorithm engineering” process more
effective by defining a systematic methodology for its guidance based on empirical tests.

A central issue in the methodology is the selection among several alternative algorith-
mic configurations. For this goal, the definition of quantitative evaluation methods and
assessment tools that take into account the stochastic nature of these algorithms is of es-
sential importance. This should, in fact, be one of the priorities of scientific research in
general, as emphasised in a recent report to the European Commission by a panel of ex-
perts (Bibel et al., 2004). In our field, the need for these tools is amplified by the recent
explosion of publications on SLS algorithms all claiming the competitiveness of their
new algorithms but, ultimately, leaving the SLS practitioner confused and overwhelmed
with sometimes contradicting pieces of information.

We addressed the issue of defining quantitative methods for the comparison of al-
gorithms for optimisation in Chapter 3, with particular emphasis on the Experimental
Design theory from the field of Statistics. The defined methods are used for the compar-
ison of SLS algorithms for two standard problems, the graph colouring problem and one
of its most important generalisations, the set T-colouring problem. The results of our
analysis are replicable and show which are the most appropriate SLS components and
algorithms for these problems. The study is extensive and gives comprehensive results,
similar in spirit to previous studies on the travelling salesman problem or the satisfi-
ability problem in propositional logic. Systematic experimental analyses on standard
problems are necessary in the field of SLS algorithms in order to create the basis for the

264 Conclusions

selection of SLS components when new problems are faced and for the understanding
of general guidelines on the application of these techniques.

We also applied statistical methods in the practical process of engineering SLS algo-
rithms for solving a realistic timetabling problem. In this case, we could base the design
of the SLS components on those developed for the two previous problems, given their
relatively close relationship (graph colouring is at the core of timetabling problems).
Their implementation and combination is conducted interactively with experiments and
analysis of results. This case study exemplifies a methodology for the application of SLS
methods that consists in three phases: (1) modelling the problem, (2) devising SLS com-
ponents by recognising underlying standard problems, (3) adapting, configuring and
combining these components for the problem at hand by interactive testing.

7.2. Contributions and results

The following is a detailed summary of the main contributions and results of this thesis.

On statistical methods for the analysis of SLS algorithms

We defined the experimental design scenarios that are appropriate for the analysis of
stochastic optimisers like SLS algorithms. For each scenario, we indicated the appro-
priate tests statistics for three statistical approaches: parametric, rank-based, and per-
mutation tests. The parametric analysis (ANOVA) entails complicated transformations
of results to meet the assumptions of normality, independence, and homoschedastic-
ity of the observed data. Despite these efforts, often these assumptions are not met
and indeed their validity for results from stochastic optimisers may be arguable. Non-
parametric methods are safer alternatives in this case. Rank-based tests are well known
non-parametric methods with a large amount of research efforts and literature behind.
Permutation tests are not yet well established and their use in the analysis of algorithms
is new. In particular, we focused on synchronised permutation tests for two-way factorial
designs, and for all-pairwise comparisons carried out by means of confidence intervals.
In this latter context, the algorithms for the statistical analysis that we developed make
a new contribution to the application of permutation tests.

A simulation study to compare the type I error rate and the statistical power of these
three tests revealed that parametric tests are quite robust against the violation of the
assumption of normality of distributions, while permutation tests require further efforts
in their calibration. Rank-based tests result, however, to be comparable in power even
with parametric tests under the cases considered and are, hence, preferable because of
the fewer assumptions on the underlying data with respect to parametric tests.

Besides this, we extended a classical graphical representation of confidence intervals
for the parametric case to the two other non-parametric tests. This representation al-
lows for an immediate and easy evaluation of algorithms by visual inspection and is
a helpful tool to support tables with numerical results. Most importantly, it allows to
summarise a large number of data from statistical tests, i.e., results on many instances
and comparisons of many algorithms.

7.2 Contributions and results 265

On the graph colouring

Experimental analysis. We carried out a systematic analysis of algorithms for solving
the chromatic number problem. We clearly defined the experimental setting, imple-
mented all the algorithms under study in a same framework, and allowed each algo-
rithm to make the same use of computational resources. This guarantees the replicabil-
ity of our analysis and emphasises the heuristic principles of the algorithms avoiding
biases of implementation details. For the analysis of results we relied on statistical tests
based on ranks. This study is an advancement with respect to previous analyses of
stochastic optimisers for the graph colouring problem which were based on best results,
frequency of attainment of best solutions, and widely different experimental settings.

Analysis of construction heuristics. We considered three known construction heuris-
tics: the greedy sequential heuristic, DSATUR, and RLF. The superiority of RLF over the
others with respect to solution quality was known. Our contribution has been to extend
this result to several classes of instances, to support it by sound statistical evidence, and
to provide an indication of the computational costs of all three heuristics.

A very large scale neighbourhood structure. We throughly studied the application of
a very large scale neighbourhood for local search. In particular, we focused on a cyclic
exchange neighbourhood structure. This neighbourhood is of exponential size but it can
be examined effectively by solving an all-pairs shortest path problem in a corresponding
improvement graph. We gave a dynamic programming algorithm for solving exactly this
problem, that is inspired by the work of Dumitrescu (2002). We then extended this algo-
rithm to return also improving path exchanges. We showed analytically the desirability
of the union of these two neighbourhood structures that entails a search space with less
local optima then smaller neighbourhoods like the one-exchange neighbourhood, and
we quantified experimentally the incidence of this feature on the quality of solutions for
small graphs. Yet, when larger graphs are to be solved, the neighbourhood examination
algorithm becomes very costly and heuristic rules must be adopted for truncating it
when opportune. We analysed these rules showing that, despite the loss of some cyclic
and path exchanges, the new neighbourhood remains preferable to smaller ones.

Nevertheless, when the cyclic and path exchange neighbourhood is used together
with metaheuristics like Tabu Search we registered an “unexpected failure”, since a Tabu
Search with a one-exchange neighbourhood performed better by quite a large margin.
This shows that promising very large scale neighbourhoods may be difficult to exploit
in practice. Only computational experiments may ascertain their competitiveness and it
is, therefore, important to report also such negative results.

We indicated in the large loss of promising path exchanges the main cause of this
failure. This loss is mainly due to the heuristic rules adopted. Unfortunately, devising
similar rules that guarantee path exchanges to be maintained and, at the same time,
provide significant reduction of the search effort, emerged to be infeasible within our
algorithmic framework.

Comparison of SLS algorithms. We re-implemented and studied five of the best known
and best performing approximate algorithms for graph colouring: Tabu Search with

266 Conclusions

one-exchange moves (originally by Hertz and de Werra, 1987, and later improved by
Dorne and Hao, 1998a), a Tabu Search variant of the Min-Conflicts heuristic (Stützle,
1998), the Hybrid Evolutionary Algorithm (Galinier and Hao, 1999), Simulated Anneal-
ing with Kempe chains, and XRLF (these last two both by Johnson et al. 1991). For
this latter algorithm, we studied in-depth the behaviour of its components in order to
include an automatic tuning of some of its parameters for the final comparison.

In addition to Tabu Search with a very large scale neighbourhood, we applied for
the first time other SLS methods to the graph colouring problem. These are Iterated
Local Search, Guided Local Search and Novelty+ which were chosen because of their
good performance on related problems such as the maximum satisfiability problem and
constraint satisfaction problem. The main results of the study are the following:

• The simple Tabu Search with one-exchange neighbourhood remains a very com-
petitive algorithm and often its combination with further Metaheuristics does not
introduce any significant further improvement. It gives the best run-time versus
solution quality trade off.

• Besides Tabu Search, a new result is the superiority of Guided Local Search on
Geometric graphs or, more in general, on graphs whose clique number is very
close to the chromatic number.

• The performance of the Hybrid Evolutionary Algorithm resulted to be inferior
to what was expected. Its results are significantly the best only on one class of
instances. Even favourable results on random graphs with edge density 0.5 are
not confirmed by our large size experiments. We pointed out that the reason for
such differences may be the relatively short running-time allowed in this work and
that HEA requires an instance specific parameter tuning.

• Other two well known algorithms, Simulated Annealing and XRLF, are only rarely
competitive. Given also the difficulty of tuning these methods they are not recom-
mendable.

Problem instances. We observed that graphs coming from real life applications are
easier to solve than random graphs. The study of random graphs remains nevertheless
meaningful because algorithms that perform well on challenging graphs perform well
also on real world graphs. We used an additional, new set of 1260 random graphs
to make the results of the comparison among algorithms more reliable. Graphs that
have a clique number very close to the chromatic number are easily solvable by Ex-
DSATUR implemented by Mehrotra and Trick (1996) even if their size is 1000 vertices.
Geometric random graphs often exhibit this property. However, if Ex-DSATUR does
not finish in short time it will probably require exponentially longer computation times
and in that case SLS algorithms provide much better results than simple construction
heuristics or prematurely stopped exact algorithms. A Guided Local Search algorithm
with one-exchange resulted as the most suitable algorithm for solving geometric graphs.
This algorithm has been newly developed for the first time and constitutes an original
contribution of this thesis.

7.2 Contributions and results 267

On the graph colouring generalisations: the set T-colouring problem

The set T-colouring problem corresponds to the frequency assignment problem when
the latter is polished from specific technicalities; therefore, we extended our study to
algorithms proposed in that context. We focus on the common objective of minimising
the span of the colouring, that is, the difference between the largest and the smallest
colour used.

Construction heuristics. Many possible choices arise for assembling construction heu-
ristics. We presented an extensive study to identify the best combination of choices
by using a factorial design. The previous belief was that the available heuristics rank
differently on the instances and that the best possible approach was to try them all. We
showed instead that, for both Uniform and Geometric random graphs with a defined
group of constraints, this is not true, and that a generalised form of DSATUR is clearly
superior to all other heuristics. This heuristic works on the T-colouring transformation
of the set T-colouring problem.

Comparison of SLS algorithms. The known SLS algorithms included in the analysis
were a Tabu Search with one-exchange neighbourhood (Dorne and Hao, 1998b; Hao
et al., 1998), an incomplete randomised Backtracking algorithm (Prestwich, 2002b), and
an extension of the Adaptive Iterated Greedy algorithm combined with Tabu Search
(Lim et al., 2003). The re-implementation of this algorithm enhanced its performance
with respect to the original proposal that left several implementation details open (Lim
et al., 2003). In addition, we adapted the most promising algorithms for the “classical”
graph colouring problem, such as the Hybrid Evolutionary algorithm, Guided Local
Search, and the Min-Conflicts heuristic that were all used for solving the set T-col-
ouring problem transformed into the T-colouring problem. Finally, we enhanced the
one-exchange neighbourhood with the possibility to reassign all the colours of a single
vertex in such a way that all the constraints involving that vertex are satisfied. The main
results of the comparison are the following:

• Among the different approaches, the best is solving a sequence of set T-colouring
decision problems. Moreover, the local search methods studied work better on the
original problem rather than on its transformation in T-colouring problem. The
former approach implies the use of the vertex constraints in the definition of the
solution representation, thus, restricting the search space.

• On Geometric random graphs, the best performing algorithm is clearly Adaptive
Iterated Greedy and the results presented improve the best known results on 25
out of 28 instances.

• On Uniform random graphs, the best overall algorithm is still Adaptive Iterated
Greedy but on graphs of edge density around 0.5 it is outperformed by a Tabu
Search with the one-exchange neighbourhood enlarged by exact reassignments of
colours at the vertices. These results remain robust to a certain degree of variability
of the vertex requirements and distance constraints.

268 Conclusions

We gave evidence that solving the set T-colouring problem is much more compu-
tationally expensive than solving the classical graph colouring problem. Two conse-
quences derive from this fact. On the one side, exact algorithms are impracticable even
on graphs that can be easily solved when used them as graph colouring problem in-
stances. On the other side, SLS algorithms require much longer run time and even
for the longest run times attempted, the probability of finding improvements remained
high. This compelled us to reduce considerably the size of the instances used in the
experiments with respect to those for the classical graph colouring.

On the timetabling

We have been concerned with a particular case of university course timetabling. This
problem has been proposed in the context of the International Timetabling Compe-
tition and included some of the constraints that often arise in practical cases. More
than one thousand algorithmic configurations were tested, including several Construc-
tion Heuristics, several neighbourhood structures for Iterative Improvement, and several
Metaheuristics. The selected algorithm resulted to be the best at the International Time-
tabling Competition. It is based on a framework that may be reusable. It first finds a
feasible solution by satisfying the hard constraints and then improves this feasible solu-
tion by minimising the violations of soft constraints. It applies, sequentially, Construc-
tion Heuristics, and Iterative Improvement algorithms in several neighbourhoods in the
fashion of Variable Neighbourhood Descent. For finding feasible solutions with respect
to the hard constraints, it uses Tabu Search. Finally, when all previous methods have
lost their capability to provide improvements, it continues with Simulated Annealing,
which gives its contribution in the long term by slowly improving the solution quality
in a large neighbourhood. A further feature of the algorithm is the exact reassignment
of rooms in some phases of the search.

Such a complex algorithm could be assembled and tuned only thanks to the use of
a systematic methodology for algorithm selection. This methodology is based on the
interaction between development and experimental analysis which is carried out by
sequential testing like in the racing algorithm of Birattari (2004b). The success in the
competition sheds credit on the appropriateness of such a methodology in the applica-
tion of SLS algorithms whose behaviour is hard to forecast and can only be ascertained
by computational experiments.

Our work makes also a contribution to the specific field of timetabling indicating for
the existing algorithmic frameworks in this field the appropriate tools for the automatic
or semi-automatic selection of configurations. This is chiefly important in a field where
the specification of the problem is almost always different from case to case.

7.3. Open issues

It is now a few decades that academic research has been studying Stochastic Local Search
techniques. They became well established methods for solving large scale optimisation

7.3 Open issues 269

problems and are widespread in industry. Yet, very little is understood about these
techniques and how algorithm components can be matched to problem characteristics.

We believe that the most important advance for the application of SLS techniques in
the next years should be the development and refinement of a theory of practice. Pre-
scriptive rules may guide only an high level configuration of the algorithms and have
only weak impact. An experimental approach for the final configuration of these algo-
rithms is needed and we showed in this thesis which are the methods for this approach
and how they can be applied in practice. Yet, the elements in use in our proposed “SLS
engineering approach” still require further progress. We identify three different levels
for future research. These levels act on different degrees of detail and on different issues
concerned with SLS techniques. To a certain extent, they all have been touched in this
thesis but a lot more needs to be done because of the complexity of the field.

7.3.1. Experimental methodology

In this context, the practice of SLS techniques may borrow methods from biostatistics.
Differently from biology and medicine, optimisation problems are abstract and can be
studied mathematically. Nevertheless, we showed that the impact of theoretical results
must be verified in practice and even exact algorithms must be tested empirically be-
cause their behaviour in terms of computation time depends strongly on the particular
problem instance to be solved. There is the need to use empirical tests to classify the al-
gorithms on different combinatorial problems and on various instance classes that have
relevant practical applications. This situation is similar to the field of biostatistics, where
treatments are to be classified for different pathologies and on different typologies of pa-
tients. In that field design and analysis of computational experiments are used to extract
reliable knowledge from clinical trials. Similarly, these methodologies are helpful to or-
ganise the knowledge in the field of combinatorial optimisation. This approach has not
yet been followed in a systematic manner and in some contexts of analysis the defini-
tion of the methods for a correct design and test of experiments is still missing. In this
work in Chapter 3, we defined the experimental methodology for testing SLS algorithms
when their performance is assessed only by the quality of their approximation to the op-
timal solution. A further development in this context might be the use of tests that do
not rely on the assumption of homoschedasticity of results. Nevertheless, the univariate
case of solution quality is only one of the possible relevant scenarios in the analysis of
algorithms for optimisation. The definition of the correct methods of analysis is urgent
in the following further contexts.

• assessment of algorithm performance through multivariate measures, such as the
combination of solution quality and computation time for its attainment;

• comparison of algorithms’ profile curves that describe the development of solution
quality over time;

• classification of algorithms matching instance features.

270 Conclusions

7.3.2. A library of basic SLS components

A central goal of academic studies is mapping SLS components with best performance
on standard problems, like the graph colouring problem and its generalisations. The
classification should be enough fine-grained in order to distinguish among instance
characteristics, solution quality and running time. It should also provide the best set of
parameters required by the algorithms. The statistical tools envisaged in the previous
point should be used for accomplishing this classification.

Ideally, this collection should be supported by publically available libraries with high-
ly optimised modules for accomplishing well specified tasks. For example, optimised
neighbourhood search is a very important element of SLS algorithms and our experience
showed that the use of several neighbourhoods in a Variable Neighbourhood fashion is
often a profitable choice. Such libraries would be essential to speed up the work of SLS
practitioners who are typically overwhelmed by other technicalities when facing real life
applications.

The SLS practitioner could recognise the type of problem, consult the library, and
select the components that best match its application scenario, that is, with the features
of the instances he has to solve in a given time. In a next step, he can include or adapt
the pieces of code for its own more complex application. Using an hazardous parallel
with medicine, this process resembles the process of a doctor while serving medical
care. He visits his patient and recognises some symptoms typical of some well-known
diseases. Then, he consults a database where diseases and best cures are archived and,
finally, prescribes one or more opportune treatment. The archive is organised according
to the results given by studies of bio-statisticians. The SLS practitioner act like the doctor
and our prefigured collection of SLS components for standard problems takes the place
of the archive. Clearly, the archive may be extended by the experience and additional
pieces of information of the SLS practitioner but making knowledge transmissible is a
higher achievement that must be pursued.

7.3.3. The algorithmic context

The central issue in the field of SLS methods for combinatorial optimisation remains
however the improvement of the existing algorithms. Construction heuristics and neigh-
bourhood structures are very important and often determine the success of SLS algo-
rithms. New ideas in these and other SLS components are possible and require detailed
studies on specific combinatorial optimisation problems, similar to the one presented
here for the graph colouring problem and the set T-colouring problem.

An important issue that needs further investigation is the understanding of the cases
where VLSNs can be effective. We presented a negative example on the graph colouring
problem but for the travelling salesman problem a large neighbourhood is at the core of
the best performing SLS algorithms. Moreover, even on the graph colouring problem,
the attempt to use a VLSN proposed in this work should not be considered exhaustive.
In particular, the empirical results presented in this thesis indicated that path exchanges
are more helpful than cyclic exchanges. It could then be worth trying to devise a differ-
ent algorithm that searches for path exchanges and omitts cyclic exchanges. In addition,

7.3 Open issues 271

it is certainly necessary to enlarge the application of the cyclic exchange neighbour-
hoods to classes of graphs with different structure with respect to the random graphs.
Indeed, the graph structure is very likely to influence considerably the performance of
algorithms and there may exist special graphs in which the contribution of the cyclic
exchange neighbourhood becomes prominent.

Further developments of SLS algorithms for graph colouring are possible even at a
more general level, as many ideas remained unattempted. Above all, we believe that
the potential of Iterated Local Search has not yet been fully exploited. In recent publi-
cations (Williams et al., 2003; Glass and Prügel-Bennett, 2005), ideas arose for profitably
modifying or precolouring part of the graph that captures the overall combinatorics of
a problem instance. It would be interesting, then, to study similar ideas for obtaining
perturbations in Iterated Local Search.

In addition to this, the generalisations of graph colouring gives rise to a class of
problems that is particulary interesting for its many real world applications but that
has not yet been studied comprehensively. These problems exhibit different types of
constraints whose influence would be worthwhile to be analysed. The generalisation of
existing heuristics for solving the “classical” graph colouring problem is not guaranteed
to be the best possible choice and specialised heuristics can be devised for each case.
Hence, these problems are the ideal context for further developments of SLS techniques
on assignment problems.

In conclusion, the literature on SLS methods has shown that large scale experimen-
tal studies like those for the travelling salesman problem and satisfiability problem in
propositional logic lead to a significant progress in the research on combinatorial op-
timisation. We hope that the new studies presented here and the new methodological
techniques applied make a very significant contribution to this type of research and that
they further foster interest in a theory of practice of SLS algorithms.

Appendix A.

A Formal Study on Iterative Improvement
for Graph Colouring

In this appendix, we present an analytical study of the neighbourhood structures for
local search in graph colouring. More specifically, we focus on the iterative improvement
paradigm with best improvement strategy for solving the k-colouring problem. The
solution representation is a complete (possibly infeasible) colouring and the objective
function to minimise is the number of edges that are in conflict in the colouring. For
an introduction to the notation and the definition of the neighbourhood structures, we
refer the reader to the Sections 4.2 and 4.8.1, respectively.

The appendix is organised in two sections. In the first, we formalise the conditions
for local optimality for each neighbourhood. In doing this, we also show that the eval-
uation of neighbours can be done in constant time by maintaining some auxiliary data
structures during the search. Updating these auxiliary data structures at each step of
the local search can be accomplished in O(|V|).

In the second section, we give the formal proof of the claim that the use of cyclic
and path exchanges in the neighbourhood structure increases the number of infeasible
colourings in the search space that are not better than those in which the local search
ends. This effect can be formalised through the concept of dominance number introduced
by Glover and Punnen (1997) (see also Gutin et al. 2003, 2005). This corresponds to
the first attempt to show analytically the superiority of a local search method through
dominance analysis in the graph colouring problem.

A.1. The conditions of local optimality

We pose here the conditions of local optimality in each neighbourhood structure. We
first introduce the following propositions and remarks that follow from the definitions
given in Section 4.2:

Remark A.1 The particular case |A{u}(v)| = |A{v}(u)|, with u, v ∈ V, is 1 if (u, v) ∈ E and
0 otherwise.

Proposition A.1 Given two sets of vertices T and U, both subsets of V, the number of edges
connecting vertices in T with vertices in U is the sum of the number of vertices in U \ T adjacent
to vertices in T and half of the number of vertices in T adjacent to vertices in T, i.e.,

|EU(T)| = ∑
v∈T
|AU\T(v)|+ 1

2 ∑
v∈T
|AT(v)|, ∀T ⊆ U ⊆ V.

274 A Formal Study on Iterative Improvement for Graph Colouring

Proof. The Proposition is an immediate consequence of Remarks 4.1 and 4.2.

|EU(T)| =
∣∣∣ ⋃

v∈T

EU(v)
∣∣∣ =

∣∣∣ ⋃
v∈T

EU\T(v) ∪ ⋃
v∈T

ET(v)
∣∣∣ =

=
∣∣∣ ⋃

v∈T

EU\T(v)
∣∣∣+ ∣∣∣ ⋃

v∈T

ET(v)
∣∣∣ = (for Remark 4.2)

= ∑
v∈T
|EU\T(v)|+ 1

2 ∑
v∈T
|ET(v)| = (for Remark 4.1)

= ∑
v∈T
|AU\T(v)|+ 1

2 ∑
v∈T
|AT(v)|.

2

Proposition A.2 Given two sets of vertices T and U, T ⊆ U, both subsets of V, and a set
Z : Z ∩U = ∅, (hence, also Z ∩ T = ∅) it is:

|EU\T∪Z(|) =
1
2 ∑

x∈U
|AU(x)|+ 1

2 ∑
x∈T
|AT(x)|+ 1

2 ∑
x∈Z
|AZ(x)|+

+ ∑
x∈Z
|AU(x)| − ∑

x∈Z
|AT(x)| − ∑

x∈T
|AU(x)|

Proof. From Remarks 4.2 and 4.1 it derives that

|EU\T∪Z(|) =
1
2 ∑

x∈U
|AU\T∪Z(x)| − 1

2 ∑
x∈T
|AU\T∪Z(x)|+ 1

2 ∑
x∈Z
|AU\T∪Z(x)|.

For the hypotheses on T, U and Z, each term of the sum can be decomposed in:

∑
x∈U
|AU\T∪Z(x)| = ∑

x∈U
|AU(x) \ AT(x) ∪ AZ(x)| =

= ∑
x∈U
|AU(x)| − ∑

x∈U
|AT(x)|+ ∑

x∈U
|AZ(x)|,

∑
x∈T
|AU\T∪Z(x)| = ∑

x∈T
|AU(x)| − ∑

x∈T
|AT(x)|+ ∑

x∈T
|AZ(x)|,

∑
x∈Z
|AU\T∪Z(x)| = ∑

x∈Z
|AU(x)| − ∑

x∈Z
|AT(x)|+ ∑

x∈Z
|AZ(x)|,

and the rest of the claim follows trivially by noting that

∑
t∈T
|AU(t)| = ∑

t∈T
∑

u∈U
|Au(t)| = ∑

u∈U
∑
t∈T
|At(u)| = ∑

u∈U
|AT(u)|

and substituting the terms in the sum. 2

The following remarks descend from Proposition A.2.

Remark A.2 |EU\{u}(|) = 1
2 ∑x∈U |AU(x)| − |AU(u)|, ∀U ⊆ V, u ∈ U.

Remark A.3 |EU∪{v}(|) = 1
2 ∑x∈U |AU(x)|+ |AU(v)|, ∀U ⊆ V, v ∈ V \U.

Remark A.4 |EU\{u}∪{v}(|) = 1
2 ∑x∈U |AU(x)|+ |AU(v)| − |AU(u)| − |A{u}(v)|, ∀U ⊆

V, u ∈ U, v ∈ V \U.

A.1 The conditions of local optimality 275

We have now the elements to express analytically the conditions of local optimality of
an infeasible colouring C with respect to a given neighbourhood structure.

Theorem A.1 A k-colouring C is a local optimum for the neighbourhood structure N1 if and
only if ∀v ∈ Vc and ∀i ∈ Γ \ {ϕ(v)}:

|ACϕ(v)(v)| ≤ |ACi(v)|

Proof. InN1 a neighbour C ′ is obtained from C by replacing Cϕ(v) with C′ϕ(v) = Cϕ(v) \ {v}
and Ci with C′i = Ci ∪ {v} for a vertex v ∈ V and a colour i ∈ Γ. Hence,

f (C ′) = f (C)− |Ec
Cϕ(v)
|+ |Ec

C′
ϕ(v)
| − |Ec

Ci
|+ |Ec

C′i
|

Using Remark A.2 to make explicit the terms and simplifying, it follows that:

f (C ′) = f (C)− |ACϕ(v)(v)|+ |Aci(v)|
which, according to the definition of local optimum (Definition 2.1), proves the state-
ment. 2

Theorem A.2 A k-colouring C is a local optimum for the neighbourhood structure N2 if and
only if ∀v ∈ Vc and ∀u ∈ V:

|ACϕ(v)(v)|+ |ACϕ(u)(u)| ≤ |ACϕ(u)(v)|+ |ACϕ(v)(u)| − 2 · |A{u}(v)|

Proof. In N2 a neighbour C ′ is obtained from C by replacing Cϕ(u) and Cϕ(v) respectively
with C′ϕ(u) = Cϕ(u) \ {u} ∪ {v} and C′ϕ(v) = Cϕ(v) \ {v} ∪ {u} for a pair of vertices
u, v ∈ V. Hence,

f (C ′) = f (C)− |Ec
Cϕ(u)
|+ |Ec

C′
ϕ(u)
| − |Ec

Cϕ(v)
|+ |Ec

C′
ϕ(v)
|

Using Remark A.4 and simplifying it follows that:

f (C ′) = f (C)− |ACϕ(v)(v)|+ |ACϕ(v)(u)| − |ACϕ(u)(u)|+ |ACϕ(u)(v)| − 2 · |A{u}(v)|

from which the statement descends trivially. 2

Theorem A.3 A k-colouring C is a local optimum for the neighbourhood structure N3 if and
only if ∀u, v ∈ V : ϕ(u) = ϕ(v), (u, v) ∈ E, and ∀w ∈ AV(u), x ∈ AV(v) : ϕ(w) 6= ϕ(x):

|ACϕ(u)(u)|+ |ACϕ(v)(v)|+ |ACϕ(w)(w)|+ |ACϕ(x)(x)| ≤
|ACϕ(w)(u)|+ |ACϕ(x)(v)|+ |ACϕ(u)(w)|+ |ACϕ(u)(x)| − 3− |A{v}(w)| − |A{u}(x)|

Proof. In N3 a neighbour C ′ is obtained from C by replacing Cϕ(u), Cϕ(w) and Cϕ(x)
respectively with C′ϕ(u) = Cϕ(u) \ {u, v} ∪ {w, x}, C′ϕ(w) = Cϕ(w) \ {w} ∪ {u} and C′ϕ(x) =
Cϕ(x) \ {x} ∪ {v} for the vertices u, v ∈ Vc, w ∈ AV(u), and x ∈ AV(v). Hence,

f (C ′) = f (C)− |Ec
Cϕ(u)
|+ |Ec

C′
ϕ(u)
|+ |Ec

Cϕ(w)
|+ |Ec

C′
ϕ(w)
|+ |Ec

Cϕ(x)
|+ |Ec

C′
ϕ(x)
|

276 A Formal Study on Iterative Improvement for Graph Colouring

Using Proposition A.2 on |Ec
C′

ϕ(u)
| and Remark A.4 on the other terms, it follows that:

f (C ′) = f (C) + ∑
t∈{w,x}

|ACϕ(u)(t)| − ∑
t∈{w,x}

|A{u,v}(t)| − ∑
t∈{u,v}

|ACϕ(u)(t)|+

+
:11

2 ∑
t∈{u,v}

|A{u,v}(t)|+
:01

2 ∑
t∈{w,x}

|A{w,x}(t)|+

−|ACϕ(w)(w)|+ |ACϕ(w)(u)| − |A{w}(u)| − |ACϕ(x)(x)|+ |ACϕ(x)(v)| − |A{x}(v)|

and substituting |A{u}(v)| = |A{v}(u)| = |A{w}(u)| = |A{x}(v)| = 1 as from the defini-
tion of the neighbourhood (Definition 4.3):

f (C ′) = f (C)− |ACϕ(u)(u)| − |ACϕ(v)(v)| − |ACϕ(w)(w)| − |ACϕ(x)(x)|+ |ACϕ(u)(w)|+
+ |ACϕ(u)(x)|+ |ACϕ(w)(u)|+ |ACϕ(x)(v)| − 3− |A{v}(w)| − |A{u}(x)|

that, together with the definition of local optimum (Definition 2.1), proves the statement.
2

Theorem A.4 A k-colouring C is a local optimum for the neighbourhood structure N4 if and
only if ∀m ≤ k and ∀V ′ = {v1, . . . , vm} ⊆ V : ϕ(vi) 6= ϕ(vj), ∀ i ∈ {1, . . . , m}:

m

∑
i=1
|ACϕ(vi)

(vi)| ≤
m

∑
i=2

(
|ACϕ(vi)

(vi−1)− |Avi−1(vi)|
)

+ |ACϕ(v1)(vm)| − |Av1(vm)|

Proof. We consider a colouring C ′ obtained by C by a cyclic exchange of the set of vertices
{v1, . . . , vm} as defined by Definition 4.4. We denote C′ϕ(vi)

= Cϕ(vi) \ {vi} ∪ {vi−1}, ∀i ∈
{1, . . . , m}, with the notational artifice of v0 ≡ vm. Then it is

f (C ′) = f (C)−
m

∑
i=1
|Ec

Cϕ(vi)
|+

m

∑
i=1
|Ec

C′
ϕ(vi)
|

Using Remark A.4 and simplifying we obtain

f (C ′) = f (C) +
m

∑
i=1

(
|ACϕ(vi)

(vi−1)| − |ACϕ(vi)
(vi)| − |Avi−1(vi)|

)
from which, rewriting the sum avoiding the use of v0, the statement is derived. 2

Theorem A.5 A k-colouring C is a local optimum in the neighbourhood structure N5 if and
only if ∀m ≤ k and ∀V ′ = {v1, . . . , vm−1} ⊆ V : ϕ(vi) 6= ϕ(vj), ∀i ∈ {1, · · · , m− 1}:

m−1

∑
i=1
|ACϕ(vi)

(vi)| ≤
m−1

∑
i=1
|ACϕ(vi+1)(vi)| −

m−2

∑
i=1
|A{vi}(vi+1)|

Proof. Similarly to Theorem A.4 we prove also this statement by induction. The case
m = 2 corresponds to Theorem A.1 and it has been already proved. We show that, if
the statement holds for a neighbour C ′ obtained by replacing in C the colour classes

A.2 Dominance relations between local searches 277

containing the vertices V ′ = {v1, v2, . . . , vm} ⊂ V by a path exchange of V ′ as from
Definition 4.5, it holds also for a neighbour C ′′ obtained from C by replacing the colour
classes containing the vertices V ′′ = V ′ ∪ {vm} ⊆ V by a path exchange of V ′′ as from
Definition 4.5 .
Indeed, it is C′ϕ(vi)

= C′′ϕ(vi)
= Cϕ(vi) \ {vi} ∪ {vi−1}, ∀i ∈ {1, . . . , m − 2}, C′ϕ(vm−1)

=
Cϕ(vm−1) ∪ {vm−2}, C′′ϕ(vm−1)

= Cϕ(vm−1) \ {vm−1} ∪ {vm−2} and C′′ϕ(vm) = Cϕ(vm) ∪ {vm−1}
and

f (C ′′) = f (C)−
m

∑
i=1
|Ec

Cϕ(vi)
|+

m

∑
i=1
|Ec

C′′
ϕ(vi)
| =

= f (C)−
m−1

∑
i=1
|Ec

Cϕ(vi)
|+

m−1

∑
i=1
|Ec

C′′
ϕ(vi)
| − |Ec

Cϕ(vm)
|+ |Ec

C′′
ϕ(vm)
| =

= f (C)−
m−1

∑
i=1
|Ec

Cϕ(vi)
|+

m−2

∑
i=1
|Ec

C′
ϕ(vi)
|+ |Ec

C′′
ϕ(vm−1)

| − |Ec
Cϕ(vm)

|+ |Ec
C′′

ϕ(vm)
| =

= f (C)−
m−1

∑
i=1
|Ec

Cϕ(vi)
|+

m−1

∑
i=1
|Ec

C′
ϕ(vi)
|+

+|Ec
C′′

ϕ(vm−1)
| − |Ec

C′
ϕ(vm−1)

| − |Ec
Cϕ(vm)

|+ |Ec
C′′

ϕ(vm)
|

The first three terms of the sum correspond to f (C ′) whose value is known for hypoth-
esis. The development of the other terms derives from Remarks A.3 and A.4:

f (C ′′) = f (C)−

A︷ ︸︸ ︷
m−2

∑
i=1
|ACϕ(vi)

(vi)|+

B︷ ︸︸ ︷
m−2

∑
i=1
|ACϕ(vi+1)(vi)| −

C︷ ︸︸ ︷
m−3

∑
i=1
|A{vi}(vi+1)|+

+|ACϕ(vm−1)(vm−2)| −
: A

|ACϕ(vm−1)(vm−1)| −
:C

|A{vm−2}(vm−1)|

−|ACϕ(vm−1)(vm−2)|+
: B

|ACϕ(vm)(vm−1)|
from which, simplifying and grouping as indicated, the statement is derived. 2

These theorems provide the exact formulas for evaluating neighbouring solutions in
each respective neighbourhood structure by computing only the local changes. Local
changes can be obtained simply by computing the values |ACi(vj)|. Maintaining these
values updated in an auxiliary matrix the evaluation of a neighbour can be done in
O(1).

Beside this observation, the theorems introduced in this Section serve in the domi-
nance analysis that follows.

A.2. Dominance relations between local searches

We analyse analytically the performance of an iterative improvement algorithm with
best improvement strategy on the k-colouring problem. Such algorithms end in so-
lutions that are local optima with respect to a certain neighbourhood structure and a

278 A Formal Study on Iterative Improvement for Graph Colouring

given evaluation function. We remark that the extension of a neighbourhood structure
obtained by the union of two or more basic neighbourhoods does not necessarily imply
an improvement in the capability of solving the problem. In the TSP, for example, it
has been shown that a polynomial-time heuristic dominates exponentially large neigh-
bourhoods (see Gutin et al. 2002 and Gutin et al. 2003). In a similar vein, we argue
here that, in the case of the k-colouring problem, the extension of a neighbourhood is
worth only if it makes possible to reach solutions of better quality. We focus therefore on
the local optima produced by different iterative improvement algorithms and compare
their quality. To help us in the discussion we conform to the notation used in dominance
analysis (Gutin et al., 2005).

Let A be a heuristic algorithm and let CA(G, k) be the set of solutions obtained by A
when solving the k-colouring problem with k colours on the graph G.

Definition A.1 The domination number, domn(A, G, k), of an algorithm A on a graph G
and k colours is the number of k-colourings which are not better than the solution C
found by A (including C itself). That is, domn(A, G, k) = |{C ∈ S(G, k) : f (CA(G, k)) ≤
f (C)}|.

Definition A.2 We say that an algorithmA dominates an algorithm B if domn(A, G, k) ≤
domn(B, G, k) for all graphs G and integer k and there exists at least one graph G and
integer k for which the inequality is strict. We denote this relation with A � B.

Clearly, if domn(A, G, k) ≤ domn(B, G, k) then it is |{C ∈ S(G, k) : f (CA(G, k)) ≤
f (C(G, k))}| ≤ |{C ∈ S(G, k) : f (CB(G, k)) ≤ f (C(G, k))}| which is certainly true in the
case CA(G, k) ⊆ CB(G, k). In order to show the dominance relation we need to show,
then, that there exists at least one graph with one k such that CA(G, k) ⊂ CB(G, k).

We consider the following iterative improvement algorithms with best improvement
strategy obtained by combinations of neighbourhoods which are all extensions of the
classical one exchange neighbourhood:

– Iterative_ImprovementN1∪N2
,

– Iterative_ImprovementN1∪N2∪N3
,

– Iterative_ImprovementN1∪N4
,

– Iterative_ImprovementN2∪N5
, and

– Iterative_ImprovementN4∪N5
;

and we are interested in the dominance relation between these algorithms.

Theorem A.6 Iterative_ImprovementN1∪N2
� Iterative_ImprovementN1

.

Proof. To prove the relation we have to show that:

(i) all local optima for the neighbourhood structure N1 ∪N2 are also local optima for
the neighbourhood structure N1, and that

(ii) there exists an infeasible candidate solution which is local optimum in the neigh-
bourhood structure N1 but not in the neighbourhood structure N1 ∪N2.

A.2 Dominance relations between local searches 279

Since for each C the neighbourhood N1(C) ∪N2(C) contains all the candidate solutions
of N1(C), (i) is verified by definition.

Showing (ii) corresponds to finding a graph G, a colouring C = {C1, . . . , Ck}, and a pair
of vertices u, v ∈ V that satisfy Theorem A.1 but not Theorem A.2, that is, finding C
such that,

{ ∀v ∈ V : |ACϕ(v)(v)| − |ACϕ()
i(v)| ≤ 0

∃u, v ∈ V : |ACϕ(v)(v)| − |ACϕ(u)(v)|+ |ACϕ(u)(u)| − |ACϕ(v)(u)|+ 2 · |A{u}(v)| > 0
(A.1)

If we assume, without loss of generality, that |ACϕ(v)(v)| = 1, i.e., v is involved in a
conflict, and f (C) = 1, then there may exist a graph G and a k-colouring of G such that
|ACi(v)| = 1 ∀i ∈ Γ and ∃u : u ∈ AV(v), ϕ(u) 6= ϕ(v) with |ACϕ(v)\{v}(u)| = 0. A graph
G and a colouring of G with such properties represent a situation of local optimum for
N1 but not for neighbourhood N2. Indeed, the Equation A.1 is satisfied by vertices u
and v. In Figure A.1 we show that such a situation is possible by constructing a graph
with 6 vertices and k = 4. There is no possible way to repair the conflict between v and
x1 in N1 but it is possible in N2 by changing simultaneously the colour of v and u.

x1

u x2

x3

x4v

x1

u x2

x3

x4v

Figure A.1.: The graph on the left has the following infeasible colouring: C1 =
{{v, x1}, {u, x2}, {x3}, {x4}}. In the swap neighbourhood it is possible to reach the feasible
colouring C2 = {{x1, u}, {v, x3, u}, {x3}, {x4}}.

2

Theorem A.7 Iterative_ImprovementN1∪N2∪N3
� Iterative_ImprovementN1∪N2

.

Proof. As for the previous theorem, the first part of the statement is verified because all
C that are local optima for the neighbourhood N1(C) ∪N2(C) ∪N3(C) are local optima
also for the the neighbourhood N1(C) ∪ N2(C). To show the second part it suffices to
find a graph and infeasible colouring C = {C1, . . . , Ck} which is local optimum in the
neighbourhood structure N1 ∪ N2 but not in the neighbourhood structure N3. From
Theorem A.3 this corresponds to finding a graph G and a colouring of it C such that,
according to Theorems A.1, A.2, and A.3 there exists a set of vertices u, v, w, x ∈ V which
satisfies the following conditions:

280 A Formal Study on Iterative Improvement for Graph Colouring

|ACϕ(u)(u)| − |ACϕ(w)(u)|+ |ACϕ(w)(w)| − |ACϕ(u)(w)|+ 2 · |A{w}(u)| ≤ 0
|ACϕ(v)(v)| − |ACϕ(x)(v)|+ |ACϕ(x)(x)| − |ACϕ(v)(x)|+ 2 · |A{x}(v)| ≤ 0
|ACϕ(v)(v)| − |ACϕ(w)(v)|+ |ACϕ(w)(w)| − |ACϕ(v)(w)|+ 2 · |A{w}(v)| ≤ 0
|ACϕ(u)(u)| − |ACϕ(x)(u)|+ |ACϕ(x)(x)| − |ACϕ(u)(x)|+ 2 · |A{x}(u)| ≤ 0
|ACϕ(x)(x)| − |ACϕ(w)(x)|+ |ACϕ(w)(w)| − |ACϕ(x)(w)|+ 2 · |A{w}(x)| ≤ 0
|ACϕ(u)(u)| − |ACϕ(v)(u)|+ |ACϕ(v)(v)| − |ACϕ(u)(v)|+ 2 · |A{v}(u)| ≤ 0

(A.2a)

|ACϕ(u)(u)| − |ACϕ(w)(u)|︸ ︷︷ ︸
≤0

+ |ACϕ(v)(v)| − |ACϕ(x)(v)|︸ ︷︷ ︸
≤0

+

|ACϕ(w)(w)| − |ACϕ(u)(w)|︸ ︷︷ ︸
≤0

+ |ACϕ(x)(x)| − |ACϕ(v)(x)|︸ ︷︷ ︸
≤0

+

+ 3 + |A{v}(w)|+ |A{u}(x)| > 0 (A.2b)

We can construct a graph and a k-colouring of it C that admit a solution to the system A.2
in the following way. We assume f (C) = 1 and vertices u, v ∈ Vc. Furthermore we call
w, x ∈ V two vertices adjacent respectively of u and v (hence |A{u}(w)| = |A{v}(x)| = 1
and also |ACϕ(w)(w)| = |ACϕ(x)(x)| = 0). With these assumptions the first two inequalities
of A.2a yield the conditions

−|ACϕ(x)(v)| − |ACϕ(v)(x)| ≤ −2

−|ACϕ(w)(v)| − |ACϕ(v)(w)| ≤ −2

which can be used in A.2b. The setting of values: |ACϕ(x)(v)| = 1, |ACϕ(v)(x)| = 2,
|ACϕ(w)(v)| = 1, |ACϕ(v)(w)| = 2, and |A{v}(w)| = 1, |A{u}(x)| = 1 satisfies the inequality
and it is not in contrast with any of the constraints A.2c-f. Such a situation is possible
In Figure A.2 we represent the graph and the colouring which results from the setting
above with a size of the graph equal to 4. The reader can verify that there exists no
improving neighbour in N1 and N2 but that the simultaneous swap of colours between
respectively vertices v1 and v4 and v2 and v3 repairs the conflict present in the graph.

u

v

w

x

u

v

w

x

Figure A.2.: The graph on the left has the following infeasible colouring: C1 = {{u, v}, {w}, {x}}.
In a pair swap exchange neighbourhood it is possible to reach the feasible colouring C2 =
{{u}, {v}, {w, x}}.

2

Theorem A.8 Iterative_ImprovementN1∪N4
� Iterative_ImprovementN1∪N2

A.2 Dominance relations between local searches 281

Proof. We recall that, given a graph G, for each k-colouring C ∈ S(G), k ≥ χ(G) it is
N2(C) ⊆ N4(C), as a swap can be represented as a degenerate cyclic exchange. There-
fore N1(C) ∪ N2(C) ⊆ N1(C) ∪ N4(C) and every local optimum of the former is local
optimum also of latter.
To prove the part (ii) of the Theorem (see Theorem A.6) it suffices to show that there
exists a graph and a colouring C which is a local optimum for N1(C) ∪ N2(C) but not
for N4(C). We restrict ourselves to consider a case with m = 3. We want to show that
there may exist a set of vertices v1, v2, v3 ∈ V each belonging to a different colour class
that satisfy the following conditions A.3a-A.3c due to Theorem A.4:

|ACϕ(v1)(v1)| − |ACϕ(v2)(v1)|︸ ︷︷ ︸
≤0

+ |ACϕ(v2)(v2)| − |ACϕ(v1)(v2)|︸ ︷︷ ︸
≤0

+2 · |A{v2}(v1)| ≤ 0 (A.3a)

|ACϕ(v3)(v3)| − |ACϕ(v1)(v3)|︸ ︷︷ ︸
≤0

+ |ACϕ(v1)(v1)| − |ACϕ(v3)(v1)|︸ ︷︷ ︸
≤0

+2 · |A{v3}(v1)| ≤ 0 (A.3b)

|ACϕ(v2)(v2)| − |ACϕ(v3)(v2)|︸ ︷︷ ︸
≤0

+ |ACϕ(v3)(v3)| − |ACϕ(v2)(v3)|︸ ︷︷ ︸
≤0

+2 · |A{v2}(v3)| ≤ 0 (A.3c)

|ACϕ(v1)(v1)| − |ACϕ(v2)(v1)|︸ ︷︷ ︸
≤0

+|A{v1}(v2)|+

+|ACϕ(v2)(v2)| − |ACϕ(v3)(v2)|︸ ︷︷ ︸
≤0

+|A{v3}(v2)|+

+|ACϕ(v3)(v3)| − |ACϕ(v1)(v3)|︸ ︷︷ ︸
≤0

+|A{v1}(v3)| > 0 (A.3d)

If we assume that f (C) = 1 and v1 ∈ Vc, then it follows that |ACϕ(v1)(v1)| = 1, |ACϕ(v2)(v2)| =
0, and |ACϕ(v3)(v3)| = 0. A possible way to satisfy A.3d is giving the following values
to its components: |A{v1}(v2)| = |A{v1}(v3)| = |ACϕ(v2)(v1)| = |ACϕ(v1)(v3)| = 1. Then
setting |ACϕ({v3})

(v2)| = |A{v3}(v2)| or |ACϕ({v3})
(v2)| = |A{v3}(v2)| + 1 the condition is

satisfied.
This configuration does not contrast with the other conditions. Indeed we note that
there is always the fourth term in each equation A.3 which can be properly set to sat-
isfy the equation. For example, a possible solution is given by setting |ACϕ({v1})

(v2)| =
|ACϕ({v3})

(v1)| = 2 and all free terms in condition A.3c equal to zero. Such a situation is
possible and it is represented in Figure A.3. The graph and the proposed k-colouring
respect all conditions of local optimality in N1 and N2 while a cyclic exchange of the
vertices v1, v2, v3 repairs the conflict present in the colouring.

2

Theorem A.9 Iterative_ImprovementN2∪N5
� Iterative_ImprovementN1∪N2

.

Proof. We recall that, given a graph G, for each k-colouring C ∈ S(G), k ≥ χ(G) it is

282 A Formal Study on Iterative Improvement for Graph Colouring

v1

w

v3

v2

u

v1

w

v3

v2

u

Figure A.3.: The graph on the left has the following infeasible colouring: C1 =
{{v1, u}, {v2}, {v3, w}}. In a cyclic exchange of V′ = {v1, v2, v3} it is possible to reach the
feasible colouring C2 = {{v3}, {v1, u}, {w, v2}.

N1(C) ⊆ N5(C), as a one-exchange can be represented as a degenerate case of path
exchange. Therefore N1(C) ∪ N2(C) ⊆ N2(C) ∪ N5(C) and every local optimum of the
former is local optimum also of latter.
To prove the part (ii) of the Theorem it suffices to find a colouring C which is a local
optimum for N1(C) and N2(C) but not for N5(C). For m = 3 and according to Theorem
A.2 and Theorem A.5, C is not a local optimum for N5 if there exists at least a set of
vertices v1, v2, v3 ∈ V, ϕ(v1) 6= ϕ(v2) 6= ϕ(v3) such that:

|ACϕ(v1)(v1)| − |ACϕ(v2)(v1)|︸ ︷︷ ︸
≤0

+ |ACϕ(v2)(v2)| − |ACϕ(v1)(v2)|︸ ︷︷ ︸
≤0

+2 · |A{v2}(v1)| ≤ 0 (A.4a)

|ACϕ(v3)(v3)| − |ACϕ(v1)(v3)|︸ ︷︷ ︸
≤0

+ |ACϕ(v1)(v1)| − |ACϕ(v3)(v1)|︸ ︷︷ ︸
≤0

+2 · |A{v3}(v1)| ≤ 0 (A.4b)

|ACϕ(v2)(v2)| − |ACϕ(v3)(v2)|︸ ︷︷ ︸
≤0

+ |ACϕ(v3)(v3)| − |ACϕ(v2)(v3)|︸ ︷︷ ︸
≤0

+2 · |A{v2}(v3)| ≤ 0 (A.4c)

|ACϕ(v1)(v1)| − |ACϕ(v2)(v1)|︸ ︷︷ ︸
≤0

+ |ACϕ(v2)(v2)| − |ACϕ(v3)(v2)|︸ ︷︷ ︸
≤0

+|A{v1}(v2)| > 0 (A.4d)

If we assume, without loss of generality, that f (C) = 1 and v1 ∈ Vc, then |ACϕ(v1)(v1)| =
1 and |ACϕ(v)(v)| = 0 for any other vertex in the graph, except another vertex u ∈
V. Using the result of Theorem A.1 in Equation A.4d, as indicated by the brackets,
it follows that the condition A.4d is satisfied if, for example we set |ACϕ(v3)(v2)| = 0
and |A{v1}(v2)| + 1 > |ACϕ(v2)(v1)|. Note that if |ACϕ(v3)(v2)| = 0 then |Av2(v3)| = 0
and |ACϕ(v2)(v3)| = 0, hence A.4c is satisfied. Moreover, by setting |ACϕ(v2)(v1)| = 1 the
inequality A.4a and A.4d are also both satisfied. Finally the condition A.4a is satisfied by
setting |Av3(v1)| = 1 and consequently also |ACϕ(v1)(v3)| = |ACϕ(v3)(v1)| = 1. Therefore a
solution for the system A.4 exists. In Figure A.4 we show that such solution correspond
to a possible situation. We observe that no one-exchange or swap exchange involving

A.2 Dominance relations between local searches 283

any of the vertices in the graph leads to an improvement in the colouring while a path
exchange involving vertices v1, v2, and v3 solves the only conflict present.

v2

u

v1

w
v3

v2

u

v1

w
v3

Figure A.4.: The graph on the left has the following infeasible colouring: C1 =
{{v2}, {v1, u}, {w}, {v3}}. In a path exchange neighbourhood it is possible to reach the fea-
sible colouring C2 = {{v2, v3}, {w}, {v1}, {u}} by applying a path exchange of the vertices
V′ = {v1, v2, v3}.

2

Theorem A.10 Iterative_ImprovementN4∪N5
� Iterative_ImprovementN2∪N5

.

Proof. Since for all colourings C it is N2(C) ∪ N5(C) ⊆ N4(C) ∪ N5(C) the first part of
the theorem is trivially true. We show now that it is possible to construct a graph and
a k-colouring C such that the configuration is a local optimum for N2 ∪N5 but not for
N4, that is, there exists no swap exchange and path exchange that yield a better C but
there exists a cyclic exchange of a subset of vertices V ′ ⊆ V, each vertex belonging to a
different colour class, which does.

For showing this we have to show that the following system, obtained by the application
of the results of Theorems A.2, A.5, and A.4, admits a set of vertices V ′ = {v1, . . . , vm}
as solution:

∀vi, vj ∈ V ′ :

|ACϕ(vi)
(vi)|+ |ACϕ(vj)

(vj)| − |ACϕ(vj)
(vi)| − |ACϕ(vi)

(vj)|+ 2 · |A{vj}(vi)| ≤ 0 (A.5a)

m−1

∑
i=1
|ACϕ(vi)

(vi)| −
m−1

∑
i=1
|ACϕ(vi+1)(vi)|+

m−2

∑
i=1
|A{vi}(vi+1)| ≤ 0 (A.5b)

m

∑
i=1
|ACϕ(vi)

(vi)| −
m

∑
i=2
|ACϕ(vi)

(vi−1)|+
m

∑
i=2
|A{vi−1}(vi)|+

− |ACϕ(v1)(vm)|+ |A{vm}(v1)| > 0 (A.5c)

The inequality A.5c can be rewritten and reordered as

284 A Formal Study on Iterative Improvement for Graph Colouring

≤0 (A.5b)︷ ︸︸ ︷
m−1

∑
i=1
|ACϕ(vi)

(vi)| −
m−1

∑
i=1
|ACϕ(vi+1)(vi)|+

m−2

∑
i=1
|A{vi}(vi+1)|

+ |ACϕ(vm)(vm)| − |ACϕ(v1)(vm)|︸ ︷︷ ︸
≤0

+|A{vm−2}(vm−1)|+ |A{vm}(v1)| > 0

Hence at least one of the two terms |Avm−2(vm−1)| and |Avm(v1)| must be equal to one.
We assume without loss of generality that f (C) = 1 and |ACϕ(vm)(vm)| = 1. The term
|Avm(v1)| does not appear in condition A.5b. If we set it equal to 1 then |ACϕ(v1)(vm)| ≥ 1
and |ACϕ(vm)(v1)| ≥ 1. For condition A.5a it must then be

|ACϕ(vm)(vm)| − |ACϕ(v1)(vm)|+ |ACϕ(v1)(v1)| − |ACϕ(vm)(v1)|+ 2 · |A{v1}(vm)| ≤ 0

and hence |ACϕ(vm)(v1)| ≥ 2. Apparently no contrast emerges among the conditions that
is easy to detect. We also verify that a solution to the system exists which is not degen-
erate (hence: m 6= 2 and the graph is not disconnected, i.e., the condition A.5b is not
satisfied just by setting all terms equal to zero). In Figure A.5 we show a possible con-
figuration in which the set {v1, v2, v3} is a solution for the system A.5. It is |Av3(v3)| = 1
and |ACϕ(v3)(v1)| = 2, which we already showed is a feasible configuration for the sys-
tem and satisfies the condition A.5c. Moreover, the following conditions, derived from
conditions A.5a and A.5b, are also satisfied. It is finally easy to see that, for the specific
configuration of Figure A.5, the same property holds for all possible combinations of 3
vertices belonging to different colour classes.{

ACϕ(v1)(v1)− Av2(v1) + ACϕ(v2)(v2)− Av1(v2) + 2Av1(v2) ≤ 0
ACϕ(v1)(v1)− ACϕ(v2)(v1) + ACϕ(v2)(v2)− ACϕ(v3)(v2) + Av1(v2) ≤ 0

z

v3 u

v2

w

xy

v1

z

v3 u

v2

w

xy

v1

Figure A.5.: The graph on the left has the following infeasible colouring: C1 =
{{v8, v1}, {v2, v3}, {v4, v5, v6, v7}}. In a cyclic exchange neighbourhood a set V′ = {v8, v4, v2}
can be found that makes the colouring feasible: C2 = {{v1, v2}, {v3, v4}, {v5, v6, v7, v8}}.

2

Theorem A.11 Iterative_ImprovementN4∪N5
� Iterative_ImprovementN1∪N4

.

Proof. For all C it is N1(C) ⊆ N5(C). Hence, as for the previous theorems to show that
the statement is correct it suffices to show that there exists a graph and a colouring k
such that no one-exchange or cyclic exchange that yield a better C but there exists a

A.3 Summary of results and discussion 285

path exchange of a subset of vertices V ′ ⊆ V, each vertex belonging to a different colour
class, which does.

∀j ∈ Γ, v ∈ V : |ACϕ(v)(v)| − |Aj(v)| ≤ 0 (A.6a)

m

∑
i=1
|ACϕ(vi)

(vi)| −
m−1

∑
i=1
|ACϕ(vi+1)(vi)|+

m−1

∑
i=1
|A{vi}(vi+1)|+

− |ACϕ(v1)(vm)|+ |A{vm}(v1)| ≤ 0 (A.6b)

m−1

∑
i=1
|ACϕ(vi)

(vi)| −
m−1

∑
i=1
|ACϕ(vi+1)(vi)|+

m−2

∑
i=1
|A{vi}(vi+1)| > 0 (A.6c)

The condition A.6b is obtained by Theorem A.4 simply by opportunely changing the
indexes.
We show that the set of vertices V ′ = {v1, v2, v3} and the configuration from Figure A.6
may be a feasible solution to the system A.6.
The case is m = 3, therefore, we can rewrite the system A.6 as

≤0︷ ︸︸ ︷
|ACϕ(v1)(v1)| − |ACϕ(v2)(v1)|+

≤0︷ ︸︸ ︷
|ACϕ(v2)(v2)| − |ACϕ(v3)(v2)|+

|ACϕ(v3)(v3)|+ |A{v1}(v2)|+ |A{v2}(v3)| − |ACϕ(v1)(v3)|+ |A{v1}(v3)| ≤ 0
≤0︷ ︸︸ ︷

|ACϕ(v1)(v1)| − |ACϕ(v2)(v1)|+
≤0︷ ︸︸ ︷

|ACϕ(v2)(v2)| − |ACϕ(v3)(v2)|+|A{v1}(v2)| > 0

It is easy to verify that the set {v1, v2, v3} satisfies the system. Given the symmetry of
the graph and its colouring, the set {u, v3, x} is also a solution. It remains to verify
that no one-exchange and cyclic exchange can repair the only conflict present in the
configuration (u, v1). In order to do this we first note that either vertex u or vertex v3

must be involved in the exchange. No improving one-exchange is possible for these
two vertices, as the condition A.6a holds for both of them (they are indeed connected
to vertices with all three usable colours). Any cyclic exchange, by definition, should
involve the three colour classes, therefore the only candidate to check is V ′ = {v1, v2, v3},
as the other three possibilities {v1, x, v3}, {u, v2, v3}, and {u, x, v3} are just symmetric
configurations. Being V ′ solution of the system we already checked that this set verifies
the condition A.6b and hence cannot be an improving cyclic exchange.

2

A.3. Summary of results and discussion

We can summarise the results as follows:

286 A Formal Study on Iterative Improvement for Graph Colouring

v2

v3

x

v1

w

u

v2

v3

x

v1

w

u

Figure A.6.: The graph on the left has the following infeasible colouring: C1 =
{{u, v1, w}, {v3}, {v2, x}}. The feasible colouring C2 = {{u, w}, {v1}, {v2, v3}} can be reached
by a path exchange of the vertices V′ = {v1, v2, v3}.

Iterative_ImprovementN1∪N2
� Iterative_ImprovementN1

Iterative_ImprovementN1∪N2∪N3
� Iterative_ImprovementN1∪N2

Iterative_ImprovementN4∪N5
� Iterative_ImprovementN1∪N4

� Iterative_ImprovementN1∪N2

Iterative_ImprovementN4∪N5
� Iterative_ImprovementN2∪N5

� Iterative_ImprovementN1∪N2

We presented a combinatorial dominance analysis which clearly indicates that the ex-
tension of the canonical neighbourhood for local search by the union of cyclic and path
exchanges allows to attain better quality solutions. Other similar works on dominance
analysis for heuristics are known in the literature on other problems (Gutin et al., 2003,
2002; Skiena and Berend, 2004). In particular, contrary to the result found on the TSP,
exponentially searchable neighbourhoods dominate polynomially searchable ones. We
conclude that the combination of cyclic and path exchanges is the most appealing com-
bination of neighbourhoods among those studied. Different to the work of (Gutin et al.,
2002) we restricted ourselves, however, to a relative rather than quantitative analysis be-
tween the algorithms proposed. Even with a very large scale neighbourhood there exist
very simple cases, as those of Figure A.7, that are infeasible colourings and local optima
in all neighbourhoods combinations discussed.

v1

v2 v3

v4

v5v6

v1

v2 v3

v4

v5v6

Figure A.7.: Two situations in which no improving neighbouring colouring exists in any of
the neighbourhood structures introduced in the paper. The colouring on the left is C1 =
{{v1, v2}, {v3, v4}, {v5, v6}} while the one on the right is C2 = {{v1, v2, v3}, {v4, v5}, {v6}}.

Appendix B.

On the Behaviour of the Statistical Tests

In this appendix, we provide details and comparisons of the statistical tests defined in
Chapter 3 and used in the analysis of experiments presented throughout this thesis. We
focus on the scenario “several runs on various instances”, which corresponds to a two way
factorial layout, and we consider tests based on the parametric ANOVA, on Friedman’s
ranks, and on permutations of data (all these tests are described in Section 3.6.6). Al-
though ANOVA and Friedman’s tests are well known, an assessment of the permutation
tests used in this thesis is needed because (i) it is opportune to validate our implemen-
tation of these tests; (ii) the USP method for factorial layouts with few replicates has
never been tested before; (iii) there are different opinions concerning the appropriate
permutation methods that may be used for particular tests when the design includes
more than one factor (ter Braak, 1992, suggested permutation of residuals, while Gonza-
lez and Manly, 1998, suggested unrestricted, i.e., not synchronised, permutations of raw
data), hence, we need to corroborate our choice; iv) we are not aware of any comparison
with parametric tests on distributions of data similar to those hypothesised for stochas-
tic optimisers. We intend to assess the procedures of permutation tests for simultaneous
confidence intervals in the all-pairwise comparisons that have been introduced in this
thesis. Simulation studies for the assessment and comparison of permutation tests with
other tests are widely used in Applied Statistics. Similar examples to the one described
in this Appendix are reported by Anderson and ter Braak (2003) for multi-factorial anal-
ysis of variance and by Finos et al. (2003) for multiple comparisons test procedures. In
their study, Anderson and ter Braak (2003) argue that exchanging observations is ap-
pealing due to the intuitive wisdom underlying this principle, but that a procedure that
is likely of attaining better results is exchanging error residuals. Nevertheless, they do
not consider synchronised permutations.

In our analysis, we will distinguish the two procedures for generating synchronised
permutations: constrained synchronised permutations (CSP) and unconstrained synchronised
permutations (USP), which were mentioned in Section 3.6.6 on page 65. We first give
further details about their implementation that were not given in the text. We then
present the results of the simulation studies for comparing the type I error rate and the
statistical power on global hypothesis testing for a two way factorial layout. Finally, we
turn to all-pairwise comparisons and present the results of simulation studies on the
same two way layout.

288 On the Behaviour of the Statistical Tests

B.1. Implementation details

Constrained Synchronised Permutation. CSP procedures allow to state easily the num-
ber of possible permutations. In a h× k scenario with r replicates, the number of per-
mutations that yield a different value of the test statistics is (2r

r)/2, the reason for the
division by 2 being that the test statistic of Equation 3.16, on page 65, is symmetric.
Hence, the minimum α-value attainable from an experiment for a two-sided tests cor-
responds to [(2r

r)/2]−1: for r = 3, the minimum α value is 0.1, which is likely to be too
big. Therefore, experiments using CSP should collect at least 4 replicates that allow for
a minimum α value of about 0.03. When CSP are not sufficient the choice should be
for USP that enlarge the number of possible configurations such that the exact approach
becomes infeasible but the minimum α value decreases.

Unconstrained Synchronised Permutations. In Algorithm 3.5, page 67, we left open
the issue of how to implement a Conditional Monte Carlo (CMC) sampling procedure
without-replacement in which all different permutations are equally likely to appear.1

The crucial point is the determination of the the number of exchanges ν∗, ν∗ ∈ {0, . . . , r},
to perform at each sample. Assigning to each value ν∗ the same probability to appear
is not correct rather the probability must be determined by the number of permutations
that are possible for each specific value of ν∗. Hence, the probability distribution of ν∗

is given by
P(ν∗ = i) = Πi/Π ∀i ∈ {0, . . . , r}

where Π is the total number of distinct permutations and Πi is the number of distinct
permutations with ν∗ = i. We have

Πi =
(

r
i

)2hc

∀i ∈ {0, . . . , r} Π =
r

∑
i=0

Πi =
r

∑
i=0

(
r
i

)2hc

where c = (k
2) is the number of different levels pairs in the tested factor.

The complete characterisation of the discrete probability distribution for ν∗ can be
avoided by noting that the test statistic and the binomial coefficient are symmetric. We
can, therefore, restrict ourselves to consider half of the possible values for ν∗ in the
following way. We distinguish two cases:

Case r is odd. Then we have P(ν∗ ≤ r−1
2) = P(ν∗ ≥ r+1

2) = 0.5. Hence, we can restrict
ourselves to consider ν∗ ∈ {0, . . . , r−1

2 } and construct the corresponding probabil-
ities from

Πi =
(

r
i

)2hc

Π =
r−1

2

∑
i=0

Πi =
r−1

2

∑
i=0

(
r
i

)2bc

Case r is even. Then we have P(ν∗ = r
2) + 2P(ν∗ < r

2) = 1. Hence, we can restrict

ourselves to consider ν∗ ∈ {0, . . . , r
2} by noting that P(ν∗ = r

2) =
Π r

2

2 ∑
r
2−1
i=1 Πi+Π r

2

and

constructing the probability distributions from

1Our proposed solution is the outcome of a joint work with D. Basso, Department of Statistics, University
of Padova.

B.2 A simulation study for general hypothesis testing 289

Πi =
(

r
i

)2hc

∀i ∈ {0, . . . ,
r
2
− 1} Π r

2
=

[(
r

r/2

)2b
/

2

]c

Π =
r
2

∑
i=0

Πi =
r
2−1

∑
i=0

(
r
i

)2bc

+

[(
r

r/2

)2b
/

2

]c

Coding details. We coded the permutation tests in the statistical environment R with
external calls to C code for the heaviest computations. The generation of different com-
binations of interest in the exact implementation of CSP is done in R by a procedure that
generates them by minimal changes (this is possible using Gray Code, Press et al., 1992).
This entails the further advantage that, by considering only the first half of (2r

r) combi-
nations, it is possible to characterise one half of the symmetric statistic distribution.

In USP, the computation of Π requires some attention, as it can easily cause numeric
overflow in computer programs: indeed, already for a 3× 5 design with r = 5 we have
Π ≈ 4.1 · 1014, which is lager than what can be represented by a 32-bits word since
232 ≈ 4.3 · 109. For the same design with 6 replicates we have Π ≈ 1039, which is larger
than what can be represented by a 64-bits word 26 ≈ 5.7 · 1019. In our implementation
we computed the probability distribution of ν∗ in R before passing it to the C code.
However for designs with more than 3 replicates CSP should be enough and USP is not
needed.

Attention should be given also to the choice of the sample size in CMC sampling.
In particular, in all-pairwise comparisons, where the comparison-wise α-value could be
adjusted, it must be checked that the new value remains larger than the minimal attain-
able α-value of the test. Sizes of 1000 and 2000 have been sufficient for the experiments
of this thesis.

The pseudo-random generator adopted in our implementation is the one originally
suggested by L’Ecuyer (1988) (and also reported in Press et al., 1992) which, besides
being machine independent, has period larger than 2 · 1018, thus providing us with
enough guarantees that no bias is introduced due to repetition of values in the pseudo-
random sequence.

B.2. A simulation study for general hypothesis testing

B.2.1. Comparison of Type I Error Rates

Statistical theory tells us that the type I error rates are close to α as long as model
assumptions are nearly correct. By means of repeated simulation of data we estimate
the error rates of four statistical tests: ANOVA, rank-based, and the two permutation
procedures CSP and USP.

We generate data under the assumption that the underlying populations from which
observations are drawn are all equal in mean, variance, and distributions, that is, the null
hypothesis is true. We consider four different underlying distributions for the generated
data giving rise to four simulation cases. The distributions we consider are the normal,

290 On the Behaviour of the Statistical Tests

the Student’s t, the exponential, and the Weibull ones. The normal distributions serve us
to validate the permutation test procedures when parametric tests are valid while the
Student’s t distributions exemplify the case of distribution of results with heavier tails.
The exponential distribution and the Weibull distribution represent the case of two asym-
metric distributions and may be likely the case with stochastic optimisers. In particular,
some authors (McRoberts, 1971; Dannenbring, 1977; Golden and Alt, 1979; Smith and
Sucur, 1996) noted that the theoretical distribution that may approximate the results of
SLS algorithms is the Weibull distribution. This is because each run of a SLS algorithm
may be seen as a sampling procedure through local optima, the final result begin the
best among the visited local optima. These assumptions are at the basis of extreme value
theory according to which the extreme values of random samples are characterised by a
Weibull distribution.

More in specific, each observation of the simulated data is represented by Xij = µ +
τi + θj + (τθ)ij + εij. Under the null hypothesis all effects are set to zero and also the
true mean µ = 0. The remaining model is therefore Xij = εij where the error terms εij
are distributed as follows.

Normal distribution (Norm): experimental errors are normally distributed with zero
mean and unit variance.

Exponential distribution (Exp): experimental errors are exponentially distributed with
unit mean.

Student’s t distribution (t3): experimental errors have Student’s t distribution with 3
degrees of freedom and are divided by

√
3.

Weibull distribution (Weib): experimental errors have Weibull distribution with shape
equal to 1.2 and scale equal to 10 and are divided by 8.

In Figure B.1, we give an example of the smoothed probability density from data
drawn from the four theoretical distributions. In Figure B.2, we show the effect of the
same data on the typical diagnostic plots to detect the normality of residuals. Note that
the diagnostic plots of residuals reflect the distributions of the observations and remain
not normal even if the number of replicates is very high, 100 in the case of the figure.
The implication of the central limit theorem concerns only the estimation of parameters
obtained by linear combination from the data and not the data itself.

For our simulation study we considered the scenario of a 3× 5 design (i.e., k = 3 and
h = 5) with r = {3, 5, 10} replicates. For each different r and each different underlying
distribution of errors we simulated 1000 independent data sets and observed the rate
of rejection of H0. Results are reported in Table B.1. In the first column on the left the
nominal α-values are reported. In the case of r = 5 these values are multiples of the
minimum α value attainable for the CSP test. With only 3 replicates the minimum α

value is still too high, therefore we do not report its results. With 5 replicates the CSP
test is exact in the sense that all 126 possible permutations yielding a different value for
the test statistic are generated. With 10 replicates a CMC sampling procedure is used
with a sample size of 1000. For USP, instead, a CMC sampling procedure of the same
size is always applied. The effects relative to the factor with three levels are indicated
by τ.

B.2 A simulation study for general hypothesis testing 291

Response

0.0
0.2
0.4
0.6

Norm.H1

0.0
0.2
0.4
0.6

Exp.H1

0.0
0.2
0.4
0.6

t3.H1

−5 0 5
0.0
0.2
0.4
0.6

Weib.H1

alg. 1 alg. 2 alg. 3

Figure B.1.: Smoothed distributions for data sampled from the four theoretical distributions
normal, exponential, Student’s t, and Weibull. A shift equal to 1 is assigned to the values of the
distributions in order to make them distinguishable. The null hypothesis is, therefore, violated
in the case depicted.

Normal quantiles

St
an

da
rd

ise
d

re
sid

ua
ls

−2 0 2

−5

0

5

Norm.H1

−2 0 2

Exp.H1

−2 0 2

t3.H1

−2 0 2

Weib.H1

Figure B.2.: Diagnostic plots for checking the normality assumption of residual errors implicit
in parametric ANOVA. The data are those of Figure B.1.

Comments The first observation is that ANOVA exhibits a surprisingly good behaviour
under all the four tested cases and even with few replicates. A similar consideration is
valid also for the Friedman’s test that seems to increase slightly his error rate only with
the Student’s t distribution. The robustness of these two test procedures with respect
to the violation of the assumption of normality distribution of data is known (Mont-
gomery, 2005). The comparison with the plots of Figure B.2 may be useful for further
applications. Moreover, we recall that if the diagnostic plots do not resemble those of
the figure, it may still be possible to reach them after some reasonable transformation
of the data. Permutation tests exhibit a worse behaviour. In particular, they control less

292 On the Behaviour of the Statistical Tests

3 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ (τθ) τ θ (τθ) τ θ (τθ) τ θ (τθ)

ANOVA
0.01 0.008 0.006 0.005 0.009 0.011 0.021 0.003 0.009 0.007 0.012 0.015 0.012
0.05 0.053 0.052 0.037 0.059 0.048 0.064 0.040 0.041 0.047 0.055 0.056 0.056
0.1 0.109 0.117 0.093 0.103 0.097 0.099 0.083 0.075 0.089 0.112 0.116 0.110

Rank
0.01 0.007 0.003 – 0.010 0.005 – 0.009 0.008 – 0.009 0.008 –
0.05 0.047 0.044 – 0.044 0.052 – 0.041 0.044 – 0.056 0.049 –
0.1 0.109 0.109 – 0.095 0.114 – 0.085 0.095 – 0.110 0.099 –

USP
0.01 0.018 0.062 0.079 0.023 0.063 0.099 0.019 0.054 0.085 0.027 0.071 0.103
0.05 0.064 0.153 0.164 0.074 0.121 0.162 0.058 0.110 0.149 0.070 0.137 0.171
0.1 0.121 0.207 0.217 0.120 0.170 0.210 0.109 0.169 0.209 0.122 0.174 0.227

5 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ (τθ) τ θ (τθ) τ θ (τθ) τ θ (τθ)

ANOVA
0.016 0.012 0.016 0.016 0.014 0.012 0.010 0.012 0.009 0.010 0.007 0.011 0.014
0.055 0.046 0.051 0.061 0.046 0.050 0.041 0.050 0.036 0.038 0.056 0.049 0.052

0.11 0.103 0.108 0.124 0.105 0.107 0.101 0.093 0.089 0.086 0.108 0.100 0.104
Rank
0.016 0.014 0.015 – 0.016 0.012 – 0.013 0.009 – 0.017 0.012 –
0.055 0.050 0.052 – 0.052 0.052 – 0.047 0.036 – 0.049 0.055 –

0.11 0.110 0.109 – 0.109 0.098 – 0.097 0.088 – 0.103 0.101 –
CSP

0.016 0.022 0.034 0.021 0.023 0.030 0.015 0.025 0.039 0.027 0.026 0.029 0.025
0.055 0.063 0.086 0.075 0.053 0.083 0.048 0.067 0.082 0.059 0.060 0.076 0.066

0.11 0.132 0.153 0.139 0.104 0.147 0.102 0.123 0.130 0.117 0.116 0.124 0.121
USP

0.016 0.028 0.080 0.108 0.031 0.072 0.087 0.030 0.068 0.087 0.032 0.073 0.099
0.055 0.069 0.131 0.169 0.070 0.133 0.139 0.067 0.127 0.153 0.074 0.122 0.149

0.11 0.135 0.184 0.223 0.130 0.200 0.195 0.136 0.173 0.200 0.140 0.159 0.191

10 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ (τθ) τ θ (τθ) τ θ (τθ) τ θ (τθ)

ANOVA
0.01 0.010 0.007 0.011 0.011 0.008 0.012 0.009 0.011 0.008 0.008 0.008 0.008
0.05 0.052 0.055 0.044 0.049 0.045 0.060 0.048 0.052 0.040 0.048 0.041 0.043
0.1 0.101 0.106 0.099 0.100 0.085 0.109 0.102 0.105 0.083 0.098 0.092 0.094

Rank
0.01 0.009 0.004 – 0.018 0.007 – 0.012 0.012 – 0.015 0.008 –
0.05 0.053 0.047 – 0.058 0.043 – 0.067 0.049 – 0.050 0.048 –
0.1 0.110 0.107 – 0.110 0.085 – 0.128 0.098 – 0.094 0.096 –

CSP
0.01 0.019 0.031 0.014 0.017 0.024 0.018 0.012 0.025 0.015 0.014 0.016 0.010
0.05 0.060 0.079 0.057 0.073 0.064 0.068 0.079 0.083 0.057 0.061 0.070 0.056
0.1 0.109 0.129 0.124 0.122 0.125 0.122 0.133 0.129 0.106 0.111 0.118 0.112

USP
0.01 0.031 0.071 0.066 0.032 0.059 0.076 0.036 0.076 0.064 0.023 0.059 0.068
0.05 0.082 0.138 0.152 0.083 0.116 0.154 0.090 0.140 0.136 0.081 0.123 0.138
0.1 0.127 0.190 0.221 0.132 0.157 0.214 0.154 0.183 0.181 0.123 0.168 0.194

Table B.1.: Tests under H0 for the comparison of statistical power in a 3× 5 design.

the error rate for the factor with 5 levels and for the interactions. USP maintain coherent
his behaviour over the three different r values. Already with 5 replicates, however, CSP
are enough as they behave not differently than with 5 replicates and actually are better
than USP.

B.2.2. Comparison of powers

Among tests having equal type I error rates, the most powerful one is preferable. To as-
sess the power of each test we generated data under the condition that the null hypoth-
esis is violated. To this end we consider again the model Xij = µ + τi + θj + (τθ)ij + εij
and set µ = 0. As praxis in statistical simulations we conform to the restriction for fixed
effects which entails that the sum of the individual treatment effects across all levels of a
fixed factor equals zero. Accordingly, the terms τi,θj,(τθ)ij are obtained as indicated by
the experimental matrix of Table B.2. The error terms εij are then distributed according
to the four distribution cases defined in the previous paragraph.

B.3 A simulation study for all-pairwise comparisons 293

ij 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 Effect
τ −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0.5
θ −1 −1 −1 −1 −1 0 0 0 0 0 1 1 1 1 1 0.5

(τθ) 1 0.5 0 −0.5 −1 0 0 0 0 0 −1 −0.5 0 0.5 1 0.3

Table B.2.: The coefficients of the main effects and interactions of the levels of the two factors
τ and θ are listed as rows in the table. Each interaction coefficient (τθ) can be obtained by
multiplying the corresponding τ and θ main-effect coefficients. The last column gives the entity
of the effect which multiplies the coefficient. For example, τ1 + θ1 + (τθ)11 = −1 · 0.5− 1 · 0.5 +
1 · 0.3.

We consider again the same layout with r = 3, 5, 10 replicates. For each scenario and
each different underlying distribution of errors, we simulated again 1000 independent
data sets. With r = 5, the CSP test is exact while in all other cases a CMC procedure
with sample size 1000 is used. The Table B.3 presents the results for the power β at
different nominal levels of α.

Comments. As expected, the statistical power increases significantly with the increase
of replicates in all the methods. The power of USP is higher than the one of ANOVA,
while CSP are slightly inferior. For all tests with equal number of replicates the power
is higher if the distributions are non-normal, while it decreases with increasing number
of treatments (compare results of factor τ with results of θ). As far as interaction is
concerned, USP are the most powerful but we saw in Table B.1 that their type I error
rate is not maintained at the nominal level; CSP, instead, behave substantially similarly
to ANOVA. The main observation is, however, that rank-based tests are inferior to para-
metric tests only when the assumption of normality is met, while they are superior with
other distributions, where the type I error rate is still maintained.

B.3. A simulation study for all-pairwise comparisons

With respect to the same simulated data of the previous section we analyse the be-
haviour of the procedures for simultaneous confidence intervals in all-pairwise compar-
isons. We consider the following procedures for simultaneous confidence intervals.

Tukey’s HSD given by Formula 3.15.

Protected Friedman’s rank-based for comparison of average ranks given by formula
3.19 with the requirement to test first the global null hypothesis through the Fried-
man general test.

CSP joint comparisons with Bonferroni’s adjustment computed through the function
Compute_all-pairwise_MSD of Algorithm 3.6 and yielding confidence intervals of
equal width valid at the Bonferroni’s αPC level on all comparisons.

CSP joint comparisons without adjustment computed through the function Compute_-
all-pairwise_MSD of Algorithm 3.6 and yielding confidence intervals of equal width
valid at the αFW on all comparisons.

294 On the Behaviour of the Statistical Tests

3 Replicates Norm.H1 Exp.H1 t3.H1 Weib.H1
τ θ (τθ) τ θ (τθ) τ θ (τθ) τ θ (τθ)

ANOVA
0.01 0.364 0.160 0.019 0.415 0.206 0.015 0.487 0.229 0.024 0.430 0.185 0.028
0.05 0.634 0.377 0.084 0.656 0.405 0.076 0.703 0.467 0.098 0.668 0.404 0.090
0.1 0.749 0.529 0.166 0.762 0.539 0.144 0.791 0.608 0.167 0.777 0.550 0.154

Rank
0.01 0.260 0.109 – 0.523 0.250 – 0.519 0.238 – 0.447 0.193 –
0.05 0.522 0.306 – 0.777 0.523 – 0.789 0.503 – 0.722 0.450 –
0.1 0.653 0.452 – 0.877 0.662 – 0.868 0.669 – 0.837 0.613 –

Perm.main.same.usp
0.01 0.454 0.425 0.148 0.518 0.464 0.133 0.585 0.533 0.175 0.525 0.471 0.145
0.05 0.672 0.591 0.257 0.696 0.599 0.235 0.732 0.674 0.272 0.710 0.617 0.250
0.1 0.765 0.663 0.322 0.779 0.676 0.300 0.811 0.740 0.328 0.796 0.686 0.313

5 Replicates Norm.H1 Exp.H1 t3.H1 Weib.H1
τ θ (τθ) τ θ (τθ) τ θ (τθ) τ θ (τθ)

ANOVA
0.016 0.730 0.476 0.065 0.769 0.490 0.052 0.819 0.554 0.047 0.785 0.506 0.056
0.055 0.872 0.655 0.148 0.897 0.686 0.130 0.907 0.725 0.151 0.904 0.689 0.149
0.11 0.935 0.763 0.236 0.948 0.788 0.235 0.938 0.821 0.266 0.954 0.807 0.239

Rank
0.016 0.655 0.370 0 0.920 0.689 0 0.911 0.670 0 0.853 0.588 0
0.055 0.818 0.582 0 0.972 0.852 0 0.975 0.822 0 0.946 0.790 0
0.11 0.892 0.723 0 0.988 0.924 0 0.986 0.895 0 0.972 0.875 0

Perm.main.same.csp
0.016 0.590 0.396 0.068 0.594 0.441 0.075 0.668 0.491 0.079 0.610 0.421 0.075
0.055 0.804 0.616 0.156 0.819 0.666 0.144 0.853 0.696 0.174 0.835 0.668 0.151
0.11 0.902 0.754 0.245 0.917 0.790 0.258 0.920 0.811 0.292 0.921 0.785 0.264

Perm.main.same.usp
0.016 0.817 0.713 0.211 0.842 0.758 0.219 0.888 0.789 0.256 0.866 0.764 0.221
0.055 0.901 0.799 0.290 0.927 0.826 0.312 0.931 0.852 0.358 0.938 0.841 0.305
0.11 0.948 0.852 0.360 0.959 0.880 0.398 0.948 0.886 0.428 0.961 0.875 0.377

10 Replicates Norm.H1 Exp.H1 t3.H1 Weib.H1
τ θ (τθ) τ θ (τθ) τ θ (τθ) τ θ (τθ)

ANOVA
0.01 0.978 0.822 0.094 0.971 0.824 0.099 0.966 0.843 0.122 0.973 0.849 0.100
0.05 0.994 0.942 0.244 0.989 0.935 0.260 0.987 0.934 0.299 0.995 0.944 0.261
0.1 0.999 0.976 0.380 0.994 0.960 0.376 0.991 0.967 0.431 0.998 0.971 0.380

Rank
0.01 0.956 0.738 0 0.998 0.977 0 1 0.965 0 0.997 0.918 0
0.05 0.990 0.915 0 1.000 0.995 0 1 0.994 0 1.000 0.985 0
0.1 0.997 0.953 0 1.000 1.000 0 1 0.998 0 1.000 0.994 0

Perm.main.same.csp
0.01 0.952 0.815 0.108 0.948 0.829 0.143 0.955 0.839 0.168 0.953 0.822 0.121
0.05 0.990 0.947 0.273 0.985 0.938 0.297 0.983 0.935 0.354 0.996 0.946 0.307
0.1 0.997 0.971 0.403 0.994 0.967 0.409 0.990 0.963 0.463 0.998 0.973 0.410

Perm.main.same.usp
0.01 0.990 0.956 0.311 0.983 0.946 0.322 0.985 0.957 0.378 0.992 0.959 0.310
0.05 0.998 0.983 0.447 0.993 0.973 0.468 0.990 0.975 0.515 0.997 0.980 0.474
0.1 1.000 0.987 0.537 0.997 0.979 0.561 0.995 0.983 0.595 1.000 0.989 0.542

Table B.3.: Tests under H1 for the comparison of statistical power in a 3× 5 design.

CSP separated comparisons with Bonferroni’s adjustment computed separately through
the function Compute-pairwise_MSD of algorithm 3.6 at the Bonferroni’s αPC yield-
ing different confidence intervals for each pairwise comparison.

In addition to these procedures, permutation procedures are also run with USP in-
stead of CSP.

The results of the test procedures for all pairwise comparisons that return simulta-
neous confidence intervals of equal width can be represented by horizontal error bars,
while procedures with confidence intervals of different width for each pairwise com-
parison require the diagonal graphical representation. In Figure B.3 we report the visu-
alisation of all the procedures considered. All tests refer to the same simulated design
in a 3× 5 layout generated under H1 using the previously defined design matrix.

In order to understand which is the procedure that behaves best we analyse the
family-wise error rate and the power of the test.

B.3 A simulation study for all-pairwise comparisons 295

Response

−5 0 5
0.0
0.1
0.2
0.3
0.4

alg. 1 alg. 2 alg. 3

average response

alg. 1

alg. 2

alg. 3
Tukey’s HSD

alg. 1

alg. 2

alg. 3
CSP joint comparisons with Bonferroni’s adjustment

alg. 1

alg. 2

alg. 3
CSP joint comparisons without adjustment

alg. 1

alg. 2

alg. 3
USP joint comparisons with Bonferroni’s adjustment

−0.5 0.0 0.5

alg. 1

alg. 2

alg. 3
USP joint comparisons without adjustment

average rank

alg. 1

alg. 2

alg. 3
Friedman’s Rank−based

12 14 16 18 20

alg. 1

alg. 2

alg. 3
Rank−based CSP joint comparisons without adjustment

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

alg
. 2

alg. 1

alg. 3

CSP separated comparisons
 with Bonferroni’s adjustment

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

alg
. 2

alg. 1

alg. 3

USP separated comparisons
 with Bonferroni’s adjustment

Figure B.3.: Visual comparison of different methods for simultaneous confidence intervals. The
observed distributions are reported in the upper plot. For details on the graphical representation
of confidence intervals see Section 3.6.2. In the diagonal representation bars in grey indicate the
presence of statistical significance. The case considered uses 10 replicates.

296 On the Behaviour of the Statistical Tests

3 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.052 0.061 0.047 0.048 0.057 0.055 0.045 0.039
Protected Friedman’s rank-based 0.042 0.048 0.041 0.047 0.058 0.047 0.050 0.042

USP joint comparisons with Bonferroni’s adjustment 0.004 0.003 0.005 0.002 0.004 0.004 0.001 0.002
USP joint comparisons without adjustment 0.017 0.024 0.016 0.007 0.019 0.020 0.017 0.014

USP separated comparisons with Bonferroni’s adjustment 0.010 0.063 0.020 0.064 0.011 0.044 0.019 0.055

5 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.049 0.048 0.046 0.025 0.038 0.052 0.054 0.044
Protected Friedman’s rank-based 0.055 0.050 0.046 0.029 0.047 0.053 0.051 0.055

CSP joint comparisons with Bonferroni’s adjustment 0.018 – 0.014 – 0.003 – 0.013 –
CSP joint comparisons without adjustment 0.050 0.031 0.044 0.014 0.036 0.032 0.046 0.023

CSP separated comparisons with Bonferroni’s adjustment 0.076 – 0.078 – 0.068 – 0.077 –
USP joint comparisons with Bonferroni’s adjustment 0.012 0.006 0.007 0.001 0.004 0.003 0.004 0.004

USP joint comparisons without adjustment 0.040 0.065 0.033 0.016 0.031 0.039 0.035 0.035
USP separated comparisons with Bonferroni’s adjustment 0.020 0.035 0.021 0.032 0.017 0.041 0.026 0.036

10 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.045 0.053 0.043 0.049 0.040 0.055 0.049 0.044
Protected Friedman’s rank-based 0.042 0.053 0.039 0.056 0.035 0.056 0.039 0.065

CSP joint comparisons with Bonferroni’s adjustment 0.028 0.007 0.018 0.002 0.018 0.005 0.023 0.004
CSP joint comparisons without adjustment 0.084 0.116 0.075 0.100 0.056 0.119 0.088 0.127

CSP separated comparisons with Bonferroni’s adjustment 0.061 0.065 0.046 0.079 0.046 0.062 0.057 0.079
USP joint comparisons with Bonferroni’s adjustment 0.033 0.025 0.022 0.011 0.028 0.021 0.036 0.016

USP joint comparisons without adjustment 0.104 0.193 0.084 0.152 0.085 0.174 0.095 0.172
USP separated comparisons with Bonferroni’s adjustment 0.056 0.089 0.061 0.096 0.051 0.098 0.058 0.098

Table B.4.: Family-wise error rate at the α level of 0.05 in a 3× 5 design under H0.

B.3.1. Family-wise type I error rate

We report in Table B.4 the results of the family-wise type I error rate, that is, the prob-
ability of finding that at least one single null hypothesis H0ij : µi = µj is rejected when
data are simulated under the global null hypothesis H0 : µ1 = · · · = µk.

Results refer to a nominal αFW of 0.05 and are obtained by 1000 simulated data from
the 3× 5 design with r = {3, 5, 10}.

Comments. The first observation concerns the parametric Tukey’s HSD method that
remains sufficiently robust under all different underlying distributions. Friedman’s
rank-based method is also sufficiently robust, although in this case we must add that the
result observed is mainly due to the protection on the global hypothesis. Experiments
without protection showed that the family-wise error rate of this method is quite high.
As far as permutation methods are concerned, we should distinguish between CSP and
USP in relation to the number of replicates.

In the case of CSP with only 5 replicates the level of significance per comparison
adjusted by Bonferroni’s rule becomes smaller than the minimal observable α value,
therefore in those cases we do not report results. The error rate remains however slightly
higher for CSP with respect to USP even for the factor τ and therefore USP should still
be preferred even with 5 replicates in pairwise-comparisons.

The use of Bonferroni’s adjustment in the joint comparisons procedures makes the
tests more conservative. However, for r = 10 the type I error for the procedure without
adjustment becomes too high, above all, for the factor θ that has 5 levels. An adjustment
seems therefore needed, although Bonferroni’s one is conservative. The separated com-
parisons procedure behaves the best among permutation tests although it also worsens
considerably on the factor θ and r = 10.

B.3 A simulation study for all-pairwise comparisons 297

3 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.650 0.353 0.657 0.358 0.767 0.438 0.688 0.399
Protected Friedman’s rank-based 0.559 0.289 0.773 0.502 0.813 0.531 0.718 0.446

USP joint comparisons with Bonferroni’s adjustment 0.285 0.051 0.303 0.055 0.443 0.102 0.312 0.071
USP joint comparisons without adjustment 0.492 0.221 0.466 0.177 0.627 0.280 0.484 0.242

USP separated comparisons with Bonferroni’s adjustment 0.427 0.305 0.484 0.431 0.628 0.508 0.483 0.401

5 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.894 0.616 0.866 0.631 0.882 0.693 0.891 0.626
Protected Friedman’s rank-based 0.843 0.569 0.963 0.841 0.968 0.814 0.949 0.748

CSP joint comparisons with Bonferroni’s adjustment 0.412 – 0.450 – 0.536 – 0.470 –
CSP joint comparisons without adjustment 0.725 0.361 0.705 0.388 0.752 0.437 0.721 0.380

CSP separated comparisons with Bonferroni’s adjustment 0.648 – 0.685 – 0.757 – 0.700 –
USP joint comparisons with Bonferroni’s adjustment 0.717 0.241 0.715 0.242 0.770 0.332 0.731 0.258

USP joint comparisons without adjustment 0.879 0.651 0.830 0.600 0.860 0.654 0.864 0.621
USP separated comparisons with Bonferroni’s adjustment 0.801 0.539 0.805 0.652 0.856 0.763 0.815 0.605

10 Replicates Norm.H0 Exp.H0 t3.H0 Weib.H0
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.999 0.941 0.991 0.922 0.986 0.925 0.999 0.929
Protected Friedman’s rank-based 0.993 0.924 1.000 0.997 1.000 0.995 1.000 0.975

CSP joint comparisons with Bonferroni’s adjustment 0.985 0.608 0.970 0.634 0.972 0.662 0.990 0.612
CSP joint comparisons without adjustment 0.999 0.964 0.990 0.943 0.989 0.940 0.999 0.949

CSP separated comparisons with Bonferroni’s adjustment 0.998 0.912 0.989 0.938 0.989 0.946 0.996 0.915
USP joint comparisons with Bonferroni’s adjustment 0.999 0.867 0.987 0.848 0.987 0.869 0.996 0.849

USP joint comparisons without adjustment 1.000 0.986 0.995 0.967 0.997 0.972 1.000 0.974
USP separated comparisons with Bonferroni’s adjustment 1.000 0.961 0.996 0.975 0.994 0.978 0.999 0.960

Table B.5.: The rate with which at least one algorithm is recognised significantly different at an α
level of 0.05 in a 3× 5 design under H0.

B.3.2. Comparison of power

We provide two tables for understanding the statistical power of the all-pairwise com-
parison procedures. Both tables are based on the simulation setting of the previous
paragraph but with active effects determined as indicated by the design matrix of Table
B.2. For each procedure we report in Table B.5 the rate of success of in determining that
at least one comparison is significant while in Table B.6 we report the rate of success in
determining that each individual comparison involving two algorithms is significant. In
both cases the nominal αFW value is 0.05.

Comments. We point out the following observations.

– In general the two tables lead to a consistent assessment of the procedures’ be-
haviour.

– For all procedures, the power increases with increasing number of replicates, de-
creases with increasing number of treatments (see differences between τ and θ),
and is maintained on an equal level with different distributions.

– The rank-based procedure is more powerful than Tukey’s method if the distribu-
tions are not normal and it is in absolute the most powerful procedure, especially
with increasing number of algorithms.

– USP are always more powerful than CSP. CSP are to be preferred at r = 10, given
the smaller type I error rate while in the other cases USP behave better.

– The separated comparisons with Bonferroni’s adjustment and the joint comparisons with-
out adjustment have similar power, hence, given the result on the type I error the
first has to be preferred.

298 On the Behaviour of the Statistical Tests

3 Replicates Norm.H1 Exp.H1 t3.H1 Weib.H1
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.152 0.031 0.161 0.034 0.195 0.043 0.170 0.040
Protected Friedman’s rank-based 0.163 0.058 0.248 0.109 0.260 0.111 0.216 0.092

USP joint comparisons with Bonferroni’s adjustment 0.054 0.003 0.060 0.004 0.088 0.007 0.063 0.005
USP joint comparisons without adjustment 0.102 0.017 0.100 0.014 0.143 0.024 0.106 0.020

USP separated comparisons with Bonferroni’s adjustment 0.085 0.024 0.103 0.040 0.138 0.049 0.105 0.037

5 Replicates Norm.H1 Exp.H1 t3.H1 Weib.H1
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.237 0.063 0.243 0.066 0.258 0.080 0.240 0.069
Protected Friedman’s rank-based 0.262 0.113 0.350 0.193 0.352 0.186 0.326 0.165

CSP joint comparisons with Bonferroni’s adjustment 0.090 – 0.099 – 0.126 – 0.102 –
CSP joint comparisons without adjustment 0.182 0.034 0.180 0.038 0.202 0.048 0.183 0.040

CSP separated comparisons with Bonferroni’s adjustment 0.160 – 0.171 – 0.203 – 0.171 –
USP joint comparisons with Bonferroni’s adjustment 0.157 0.017 0.164 0.017 0.184 0.027 0.159 0.017

USP joint comparisons without adjustment 0.222 0.070 0.226 0.062 0.240 0.077 0.225 0.069
USP separated comparisons with Bonferroni’s adjustment 0.188 0.050 0.205 0.068 0.228 0.085 0.197 0.064

10 Replicates Norm.H1 Exp.H1 t3.H1 Weib.H1
τ θ τ θ τ θ τ θ

Tukey’s HSD 0.352 0.139 0.350 0.142 0.369 0.155 0.359 0.145
Protected Friedman’s rank-based 0.379 0.214 0.458 0.299 0.459 0.288 0.440 0.269

CSP joint comparisons with Bonferroni’s adjustment 0.300 0.055 0.300 0.059 0.319 0.071 0.310 0.060
CSP joint comparisons without adjustment 0.368 0.176 0.370 0.175 0.385 0.181 0.378 0.178

CSP separated comparisons with Bonferroni’s adjustment 0.337 0.131 0.341 0.143 0.368 0.163 0.348 0.142
USP joint comparisons with Bonferroni’s adjustment 0.338 0.108 0.337 0.106 0.358 0.121 0.348 0.109

USP joint comparisons without adjustment 0.391 0.209 0.393 0.201 0.407 0.208 0.400 0.205
USP separated comparisons with Bonferroni’s adjustment 0.362 0.161 0.367 0.177 0.390 0.192 0.373 0.174

Table B.6.: The probability of recognising any individual comparison as significant at an α level
of 0.05 in a 3× 5 design under H1.

– The joint comparisons with Bonferroni’s adjustment exhibit almost the half of the
power of all other methods, and only with USP and r = 10 it becomes competitive.

We may conclude that the best behaviour is exhibited by rank-based tests but USP
and CSP tests with separated comparisons and Bonferroni’s adjustment are also very
competitive.

B.4. Discussion

We presented a comparative study of permutation, parametric, and rank-based tests.
The advantage of permutation tests is that they do not require the underlying data to
be normally distributed. However, we observed that their type I error is often higher
than the one of parametric tests that, in constrast, remain particularly robust on data
from different theoretical distributions. The robustness of parametric tests is known in
Statistics. Here we extended it to two asymmetric distributions, namely the exponential
distribution and the Weibull distributions, which are particularly likely to appear for
data from stochastic optimisers. Although the results presented may depend on the
particular parametrisation adopted for the generation of these distributions, we believe
that they may be highly indicative.

As far as permutation tests are concerned, we observed that for general hypothesis
testing, CSP behave well already with r = 5 and the use of USP in this case could be con-
fined to cases with r < 5, although their type I error rate results higher than the nominal
one. For r ≥ 5, CSP behave better and the type I error rate is only slightly higher than
the nominal while the power is in general comparable with the one of parametric tests.
Turning our attention to procedures for all-pairwise comparisons we have the following
conclusions: (i) in general the behaviour of permutation tests indicates that they require

B.4 Discussion 299

some further efforts for calibration, as they errors do not yet match well those declared
(ii) the adoption of USP is necessary also with 5 replicates while CSP is applicable at
10, (iii) the procedure separated comparisons with Bonferroni’s adjustment is the one that
exhibits the best behaviour, (iv) the procedure joint comparisons without Bonferroni’s ad-
justment exhibits a type I error rate which is too high and the procedure joint comparisons
with Bonferroni’s adjustment has to be preferred although very conservative.

We deem that the general outcome of this analysis is that rank-based tests are cur-
rently the best choice for comparing algorithms, as they are the most powerful and
maintain the nominal type I error. In addition, we saw clearly that the increase of the
number of algorithms tested requires as counteraction an increase of the number of
replicates to maintain the statistical power at a constant level.

The analysis is however far away from being exhaustive. It would be interesting to
study the behaviour of the tests in relation with the increase of the size of the design.
A simulation study in which data are collected from real results of algorithms rather
than randomly generated from theoretical distributions would be closer to the scope of
combinatorial optimisation. For example, a comparison under the null hypothesis could
easily be obtained by generating data with a unique algorithm or by shuffling data
obtained from different algorithms. The simulation under the alternative hypothesis
appears, instead, more problematic given that we would need to know a priori if the
algorithms are actually different. In addition, a similar analysis should be developed
for the scenario “one single run on various instances”. However, the most relevant (and
urgent) extension of the analysis, would be the study of the robustness of these or other
tests to distributions that may actually have characteristics like non-homoschedasticity
and multi-modality.

Appendix C.

Numerical Results on the Benchmark
Instances for Graph Colouring Problems

In the main body of this thesis we gave preference to the graphical representation of
results. In this appendix, we present the numerical results on which the graphics are
based.

C.1. Graph colouring

C.1.1. Instance statistics

We present some descriptive statistics for all the 125 instances from the DIMACS repos-
itory included in our analysis.1 Instances are divided in two Tables, Table C.1 for the
easy instances and Table C.2 for the hard instances. For details on this classification, we
refer to Section 4.5. An asterisc indicates that the graph is actually disconnected.

For each instance we report the number of vertices |V|; the edge density ρ(G); the av-
erage vertex degree d(G); its standard deviation sd; the percentage % of the vertices that
is removed by the preprocessing stage described in Section 4.5; the chromatic number
χ(G) of G, when known; and the maximum clique size ω̂(G) found by heuristic algo-
rithms. This latter value is obtained by a modification of the "semi-exhaustive greedy"
scheme for finding large independent sets used in XRLFJohnson et al. (1991)2 applied on
the complement graph. In the few cases where the output of this algorithm was worse
than that the output of the reactive tabu search algorithm of Battiti and Protasi (2001),
we report the latter value between parenthesis. The computation time is relative to the
algorithm of Johnson et al. (1991).

Finally, the median number of colours produced in 10 runs by each of the three con-
struction heuristics is also given. Furthermore, only for RLF, we also report the median
computation time (see Section 4.4 for details on the machine used).

1The number of graph colouring instances at the COLOR02/03/04 web-page
(http://mat.gsia.cmu.edu/COLOR04/) is 119. We added the Flat graphs from the DIMACS web site
http://mat.gsia.cmu.edu/COLOR/instances.html.

2The following set of parameters is assumed: TRIALNUM = 4, ITERATIONS = 1000, CANDNUM = |V|/4.5 and
SETLIM = 100 for ρ(G) ≤ 0.5, 50 for 0.5 < ρ(G) ≤ 0.5 and 30 otherwise.

http://mat.gsia.cmu.edu/COLOR04/
http://mat.gsia.cmu.edu/COLOR/instances.html

302 Numerical Results on the Benchmark Instances for Graph Colouring Problems

Instance Statistics Reduc. χ(G) Clique ROS DSATUR RLF

|V| ρ(G) d(G) sd δ(G) ∆(G) % ω̂(G) sec. # col. # col. # col. sec.

2-Insertions_3 37 0.1081 3.9 1 3 9 0 4 2 0.15 4 4 4 0
3-Insertions_3 56 0.0714 3.9 1 3 11 0 4 2 0.33 4 4 4 0
DSJR500.1 500 0.0285 14.2 4.4 4 25 100 – 12 1.79 15 13 13 0
anna 138 0.0522 7.1 10.4 1 71 100 – 11 0.17 11 11 11 0
david 87 0.1085 9.3 10.5 1 82 100 – 11 0.8 12 11 11 0
fpsol2.i.1* 496 0.0949 47 63.1 0 252 100 65 65 5.26 65 65 65 0
fpsol2.i.2* 451 0.0856 38.5 63.1 0 346 81 30 30 2.22 31 30 30 0
fpsol2.i.3* 425 0.0964 40.9 64.3 0 346 80 30 30 2.17 30 30 30 0
games120 120 0.0894 10.6 1.2 7 13 100 9 9 0.12 9 9 9 0
homer* 561 0.0104 5.8 10.2 0 99 100 13 13 2.18 14 13 13 0
huck* 74 0.1114 8.1 7.3 1 53 100 11 11 0.58 11 11 11 0
inithx.i.1* 864 0.0502 43.3 72.7 0 502 89 54 54 9.57 54 54 54 0.1
inithx.i.2* 645 0.0673 43.3 73.7 0 541 81 31 31 4.61 31 31 31 0
inithx.i.3* 621 0.0726 45 74.8 0 542 80 31 31 4.45 31 31 31 0
jean* 80 0.0804 6.3 6 0 36 100 10 10 0.66 10 10 10 0
le450_25a 450 0.0818 36.7 23 2 128 41 25 25 1.74 28 25 25 0
le450_25b 450 0.0818 36.7 21.1 2 111 35 25 25 1.73 28 25 25 0
le450_5c 450 0.097 43.6 6.4 27 66 0 5 5 1.77 17 7 5 0
miles1000 128 0.3957 50.2 20 13 86 100 42 42 0.55 45 42 42 0
miles1500 128 0.6395 81.2 23.3 28 106 100 73 73 2.64 74 73 73 0
miles250* 128 0.0476 6 3.6 0 16 100 8 8 0.13 9 8 8 0
miles500 128 0.1439 18.3 9.7 3 38 100 20 20 0.2 22 20 20 0
miles750 128 0.26 33 15.2 6 64 100 31 31 0.29 34 31 31 0
mug100_1 100 0.0335 3.3 0.5 3 4 0 4 3 0.97 4 4 4 0
mug100_25 100 0.0335 3.3 0.5 3 4 0 4 3 0.98 4 4 4 0
mug88_1 88 0.0381 3.3 0.5 3 4 0 4 3 0.76 4 4 4 0
mug88_25 88 0.0381 3.3 0.5 3 4 0 4 3 0.76 4 4 4 0
mulsol.i.1* 197 0.2033 39.8 31 0 121 100 49 49 0.57 49 49 49 0
mulsol.i.2* 188 0.221 41.3 31.1 0 156 62 31 31 0.55 31 31 31 0
mulsol.i.3* 184 0.2326 42.6 31 0 157 61 31 31 0.57 31 31 31 0
mulsol.i.4* 185 0.2318 42.7 31.2 0 158 61 31 31 0.57 31 31 31 0
mulsol.i.5* 186 0.2309 42.7 31.4 0 159 61 31 31 0.6 31 31 31 0
myciel3 11 0.3636 3.6 0.6 3 5 0 4 2 0.02 4 4 4 0
myciel4 23 0.2806 6.2 1.9 4 11 0 5 2 0.07 5 5 5 0
myciel5 47 0.2183 10 4.4 5 23 0 6 2 0.28 6 6 6 0
myciel6 95 0.1691 15.9 8.8 6 47 0 7 2 1.09 7 7 7 0
myciel7 191 0.1301 24.7 16.6 7 95 0 8 2 0.36 8.5 8 8 0
qg.order30 900 0.0645 58 0 58 58 0 30 30 6.13 34 31 30 0.1
qg.order40 1600 0.0488 78 0 78 78 0 40 40 19.59 44 42 40 0.3
qg.order60 3600 0.0328 118 0 118 118 0 60 60 110.07 65 62 61 1.5
queen5_5 25 0.5333 12.8 1.1 12 16 0 5 5 0.1 7.5 5 5 0
wap05a 905 0.1053 95.2 47.1 9 228 27 – 50 8.46 55 50 50 0.2
zeroin.i.1* 211 0.1851 38.9 38.7 0 111 100 49 49 0.75 49 49 49 0
zeroin.i.2* 211 0.1598 33.6 36.3 0 140 100 30 30 0.7 31 30 30 0
zeroin.i.3* 206 0.1677 34.4 36.4 0 140 100 30 30 0.69 31 30 30 0

Table C.1.: Characteristics of the instances classified as “easy” and results of the construction
heuristics.

C.1 Graph colouring 303

Name instance Statistics Reduc. χ(G) Clique ROS DSATUR RLF

|V| ρ(G) d(G) sd δ(G) ∆(G) % ω̂(G) sec. # col. # col. # col. sec.

1-FullIns_3 30 0.2299 6.7 2.1 4 11 50 – 3 0.11 5 4 4 0
1-FullIns_4 93 0.1386 12.8 5.5 6 32 62 – 3 0.99 6 5 5 0
1-FullIns_5 282 0.082 23 13.2 8 95 73 – 3 0.65 7 6 6 0
2-FullIns_3 52 0.1516 7.7 3 4 15 83 – 4 0.31 5.5 5 5 0
2-FullIns_4 212 0.0725 15.3 8.2 6 55 81 – 4 0.36 8 6 6 0
2-FullIns_5 852 0.0337 28.6 20.4 8 215 90 – 4 5.17 9.5 7 7 0
3-FullIns_3 80 0.1095 8.6 4 4 19 86 – 5 0.68 6.5 6 6 0
3-FullIns_4 405 0.0431 17.4 10.8 6 84 89 – 5 1.22 9 7 7 0
3-FullIns_5 2030 0.0164 33.3 28.1 8 409 95 – 5 30.3 11 8 8 0
4-FullIns_3 114 0.084 9.5 5 4 23 89 – 6 0.11 7.5 7 7 0
4-FullIns_4 690 0.028 19.3 13.5 6 119 95 – 6 3.36 9.5 8 8 0
4-FullIns_5 4146 0.009 37.3 36.2 8 695 97 – 6 144.31 12.5 9 9 0.1
5-FullIns_3 154 0.0672 10.3 5.9 4 27 90 – 7 0.2 9 8 8 0
5-FullIns_4 1085 0.0194 21 16.1 6 160 96 – 7 8.14 11 9 9 0
1-Insertions_4 67 0.1049 6.9 2.7 4 22 0 4 2 0.49 5 5 5 0
1-Insertions_5 202 0.0604 12.1 6.7 5 67 0 – 2 0.31 6.5 6 6 0
1-Insertions_6 607 0.0345 20.9 14.6 6 202 0 – 2 2.62 8 7 7 0
2-Insertions_4 149 0.0491 7.3 3.2 4 37 0 4 2 0.17 5 5 5 0
2-Insertions_5 597 0.0221 13.2 8.5 5 149 0 – 2 2.49 7 6 6 0
3-Insertions_4 281 0.0266 7.4 3.7 4 56 0 – 2 0.57 6 5 5 0
3-Insertions_5 1406 0.0098 13.8 10.1 5 281 0 – 2 13.65 8 6 6 0
4-Insertions_3 79 0.0506 3.9 1.1 3 13 0 3 2 0.63 4 4 4 0
4-Insertions_4 475 0.0159 7.6 4 4 79 0 – 2 1.57 6 5 5 0
DSJC125.1 125 0.095 11.8 3.3 5 23 0 – 4 0.14 8 6 6 0
DSJC125.5 125 0.5021 62.3 5.3 51 75 0 – 10 0.52 25 21.5 21 0
DSJC125.9 125 0.8982 111.4 3.2 103 120 0 – 34 1.78 56 52 49 0
DSJC250.1 250 0.1034 25.7 5.1 13 38 0 – 4 0.55 13 10 10 0
DSJC250.5 250 0.5034 125.3 7.8 101 147 0 – 12 1.64 42 37 35 0
DSJC250.9 250 0.8963 223.2 4.6 207 234 0 – 43 6.75 96 89.5 85 0.1
DSJC500.1 500 0.0999 49.8 6.7 34 68 0 – 5 2.17 20 16 15 0
DSJC500.5 500 0.502 250.5 11 220 286 0 – 13 6.06 73 65 61 0.3
DSJC500.9 500 0.9013 449.7 6.4 430 471 0 – 54 (56) 29.4 178.5 165.5 157 1.2
DSJC1000.1 1000 0.0994 99.3 9.5 68 127 0 – 6 8.52 31 27 24 0.1
DSJC1000.5 1000 0.5002 499.7 15.8 447 551 0 – 15 24.34 128 116 108 1.6
DSJC1000.9 1000 0.8998 898.9 9.6 870 924 0 – 63 (67) 116.14 320.5 302.5 284.5 11.9
DSJR500.1c 500 0.9721 485.1 4.2 473 497 42 – 81 (83) 77.85 107.5 89 93 0.8
DSJR500.5 500 0.4718 235.4 64.6 103 388 3 – 122 56.75 146 130 131 0.5
abb313GPIA* 1557 0.0384 59.8 26.2 0 151 51 – 8 18.99 16 11 11 0.1
ash331GPIA 662 0.0191 12.6 2.8 1 23 0 – 3 3.05 6 5 4.5 0
ash608GPIA 1216 0.0106 12.9 2.7 1 20 0 – 3 10.25 7 5 5 0
ash958GPIA 1916 0.0068 13.1 2.8 1 24 0 – 3 27.05 7 5.5 5 0
will199GPIA 701 0.0276 19.3 7.2 2 38 6 – 6 3.47 11 7 7 0
flat300_20_0 300 0.4766 142.5 6.3 127 160 0 – 11 3.34 46 41 38 0
flat300_26_0 300 0.4823 144.2 6.2 123 158 0 – 11 3.52 46.5 42 39 0.1
flat300_28_0 300 0.4837 144.6 6.4 130 162 0 – 12 3.6 47 42 39 0
flat1000_50_0 1000 0.4905 490 9.7 459 520 0 – 14 24.48 124 115 106 1.6
flat1000_60_0 1000 0.4922 491.7 11.4 457 524 0 – 15 24.8 124 115 106.5 1.6
flat1000_76_0 1000 0.4939 493.4 12.3 455 532 0 – 14 (15) 25.13 125 115.5 108 1.7
latin_square_10 900 0.7597 683 0 683 683 0 – 90 92.99 152.5 132.5 133.5 2.5
qg.order100 10000 0.0198 198 0 198 198 0 100 100 965.22 107 103 101 18.5
le450_5a 450 0.0566 25.4 5.4 13 42 0 5 5 1.55 13 10 7 0
le450_5b 450 0.0568 25.5 5.1 12 42 0 5 5 1.55 13 10 7 0
le450_5d 450 0.0966 43.4 6.6 29 68 0 5 5 1.77 17 11 5.5 0
le450_15a 450 0.0809 36.3 16.8 2 99 10 15 15 1.7 22 16 16.5 0
le450_15b 450 0.0809 36.3 16.4 1 94 9 15 15 1.69 22 16 16 0
le450_15c 450 0.1651 74.1 21.2 18 139 0 15 15 2.33 31 24 23 0
le450_15d 450 0.1658 74.4 21.2 18 138 0 15 15 2.34 30 24 23 0
le450_25c 450 0.1717 77.1 29.2 7 179 3 25 25 2.41 36 29 28 0
le450_25d 450 0.1725 77.4 28.5 11 157 4 25 25 2.42 36 29 28.5 0
queen6_6 36 0.4603 16.1 1.4 15 19 0 7 6 0.2 9 9 8 0
queen7_7 49 0.4048 19.4 1.6 18 24 0 7 7 0.35 11 10 9 0
queen8_12 96 0.3 28.5 2.3 25 32 0 12 12 1.14 15 13.5 13 0
queen8_8 64 0.3611 22.8 1.9 21 27 0 9 8 0.58 13 11 10 0
queen9_9 81 0.3259 26.1 2.1 24 32 0 10 9 0.91 14 13 11 0
queen10_10 100 0.297 29.4 2.3 27 35 0 11 10 1.35 15.5 14 13 0
queen11_11 121 0.2727 32.7 2.6 30 40 0 11 11 0.26 17 15 14 0
queen12_12 144 0.2521 36.1 2.8 33 43 0 12 12 0.34 18 16.5 15 0
queen13_13 169 0.2344 39.4 3 36 48 0 13 13 0.43 19 18 16 0
queen14_14 196 0.219 42.7 3.3 39 51 0 14 14 0.53 21 19.5 17 0
queen15_15 225 0.2056 46 3.5 42 56 0 15 15 0.66 22.5 21 18 0
queen16_16 256 0.1936 49.4 3.8 45 59 0 16 16 0.81 23 21 19 0
school1* 385 0.2583 99.2 49.9 1 282 8 – 14 1474.34 41 15 25 0
school1_nsh* 352 0.2365 83 35.1 1 232 7 – 14 385.77 38 27 25 0
wap01a 2368 0.0396 93.6 48.2 14 288 26 – 41 47.4 57 49 47 0.5
wap02a 2464 0.0368 90.7 49.7 14 294 31 40 40 51.31 55 46 44 0.5
wap03a 4730 0.0256 121.2 59.1 26 344 14 – 40 200.52 62 55 50 1.6
wap04a 5231 0.0216 112.8 63.8 26 351 23 40 40 242.19 61 48 46 1.7
wap06a 947 0.0973 92 48.8 9 230 26 40 40 8.92 54 49 44 0.2
wap07a 1809 0.0632 114.3 54.3 13 298 11 – 40 29.2 59 46 46 0.4
wap08a 1870 0.0596 111.4 56 13 308 15 40 40 30.8 58 45 45 0.5

Table C.2.: Characteristics of the instances classified as “hard” and results of the construction
heuristics.

304 Numerical Results on the Benchmark Instances for Graph Colouring Problems

Instance SETLIM CANDNUM EXACTLIM TRIALNUM

DSJC125.5.col 126 1 75 1
DSJC250.5.col 63 50 65 160
DSJC500.5.col 63 50 70 1280
DSJC1000.5.col 63 50 70 1280
DSJC125.1.col 20 50 125 1
DSJC250.1.col 20 50 125 1000
DSJC500.1.col 20 50 100 320
DSJC1000.1.col 20 50 100 280
DSJC125.9.col 126 1 80 1
DSJC250.9.col 251 1 80 1
DSJC500.9.col 501 1 80 1280
DSJC1000.9.col 250 50 70 20
DSJR500.1c.col 501 1 300 1
DSJR500.5.col 250 5 0 10
Queens – 50 40 5-10
School – 35 25 5
Jac – 50 25 5
Wap – 50 40 10
Flat – 50 60 100
Leighton – 50 60 100
FullIns – 50 30 2
Insertion – 50 30 2
|V|=500 ρ =0.1 – 50 55 30
|V|=500 ρ =0.5 – 50 75 60
|V|=500 ρ =0.9 – 50 75 60
|V|=1000 ρ =0.1 – 50 55 30
|V|=1000 ρ =0.5 – 50 75 60
|V|=1000 ρ =0.9 – 50 75 60

Table C.3.: The parameter settings used for XRLF.

C.1.2. The parameter set used for XRLFXRLFXRLF

The algorithm XRLF of Johnson et al. (1991) required a special tuning of its parameters
to work in the context of our experimental design. We report in Table C.3 the settings
we selected. We refer the reader to the original paper for details on the meaning of the
parameters.

C.1.3. Machine benchmark

From the web site of the challenge “Computational Series: Graph Coloring and its
Generalizations” a benchmark code is available for the comparison of machines. We
report here the results on our machine, a 2 GHz AMD Athlon MP 2400+ Processor with
256 KB cache and 1 GB RAM, running Linux Debian when the code is compiled with
the GNU C compiler version 3.3.5. The compilation is done using the optimisation flag
-O3, as used for all algorithms discussed in this thesis.

DFMAX(r100.5.b)

0.00 (user) 0.00 (sys) 0.00 (real)

Best: 4 57 35 5 61 34 3 62 90

DFMAX(r200.5.b)

0.04 (user) 0.00 (sys) 0.00 (real)

Best: 113 86 147 66 14 134 32 127 161 186 70

C.1 Graph colouring 305

DFMAX(r300.5.b)

0.37 (user) 0.00 (sys) 1.00 (real)

Best: 279 222 116 17 39 127 190 158 196 288 263 54

DFMAX(r400.5.b)

2.26 (user) 0.00 (sys) 2.00 (real)

Best: 370 108 27 50 87 275 145 222 355 88 306 335 379

DFMAX(r500.5.b)

8.64 (user) 0.00 (sys) 9.00 (real)

Best: 345 204 148 480 16 336 76 223 260 403 141 382 289

C.1.4. Detailed results

Table C.4 reports the numerical details for the experimental evaluation of the algorithms
described in Section 4.11. For each instance, we report χ(G) or if not known the best
lower bound found in the literature (in this case reported between parenthesis), the
best upper bound found in the literature χ̂best(G), and the time limit we used for our
experiments (we recall that this is given by the median time needed by TSN1 to perform
10000× |V| iterations on the instance). Then, for each algorithm we report the minimum
and the median number of colours found; in addition, we give the time after which
the probability of attaining a solution better than the median solution quality becomes
inferior to 50%. These time values are obtained from the median attainment curves
illustrated in Section 4.12.1 at which a last improvement occur. Algorithms are ordered
from left to right according to the rank in the aggregate results. A grey background
is used to emphasise that the algorithms performed significantly better than the others
on the specific instance. If more than one algorithm is with grey background, then the
differences among them are not statistically signifcant. Differently to what presented in
the text, the analysis follows a “one single run on various instances” design and is carried
out by means of the Kruskall-Wallis test for the global hypothesis and the Mann-Whitney
test with level of significance adjusted by the method of Holm’s procedure for the all-
pairwise comparisons (see Section 3.6.2).

306 Numerical Results on the Benchmark Instances for Graph Colouring Problems
In

st
an

ce
Be

nc
h.

ti
m

e
T

S
N 1

H
E
A

IL
S

M
C

-T
S
N 1

G
L
S

N
o
v
+

S
A
N 6

T
S

V
L
S
N

X
R
L
F

(χ
,χ̂

be
st

)
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
m

in
m

ed
se

c.
1-

Fu
llI

ns
_3

4,
4

1
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

1-
Fu

llI
ns

_4
5,

5
3

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
1-

Fu
llI

ns
_5

6,
6

11
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
10

.5
2-

Fu
llI

ns
_3

5,
5

1
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

2-
Fu

llI
ns

_4
6,

6
7

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

6.
4

2-
Fu

llI
ns

_5
7,

7
33

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

6.
3

3-
Fu

llI
ns

_3
5,

6
2

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
3-

Fu
llI

ns
_4

7,
7

13
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0.

6
3-

Fu
llI

ns
_5

8,
8

87
8

8
0

8
8

0
8

8
0

8
8

0
8

8
0.

1
8

8
0

8
8

0
8

8
0

8
8

11
.8

4-
Fu

llI
ns

_3
7,

7
3

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0.
6

4-
Fu

llI
ns

_4
8,

8
23

8
8

0
8

8
0

8
8

0
8

8
0

8
8

0
8

8
0

8
8

0
8

8
0

8
8

2.
1

4-
Fu

llI
ns

_5
–,

9
18

8
9

9
0.

2
9

9
0.

2
9

9
0.

2
9

9
0.

2
9

9
0.

2
9

9
0.

2
9

9
0.

1
9

9
0.

2
9

9
63

.2
5-

Fu
llI

ns
_3

8,
8

5
8

8
0

8
8

0
8

8
0

8
8

0
8

8
0

8
8

0
8

8
0

8
8

0
8

8
2.

3
5-

Fu
llI

ns
_4

9,
9

40
9

9
0

9
9

0
9

9
0

9
9

0
9

9
0

9
9

0
9

9
0

9
9

0
9

9
7

1-
In

se
rt

io
ns

_4
5,

5
1

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
1-

In
se

rt
io

ns
_5

6,
6

5
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
1.

2
1-

In
se

rt
io

ns
_6

7,
7

19
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0.

2
2-

In
se

rt
io

ns
_4

4,
4

3
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
1

2-
In

se
rt

io
ns

_5
6,

6
15

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0.
2

3-
In

se
rt

io
ns

_4
5,

5
6

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

1.
2

3-
In

se
rt

io
ns

_5
6,

6
37

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

0
6

6
0

6
6

6.
1

4-
In

se
rt

io
ns

_3
3,

3
2

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0.
1

4-
In

se
rt

io
ns

_4
5,

7
11

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0.
3

D
SJ

C
12

5.
1

–,
5

10
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
6

0
6

6
0

5
6

0
5

6
0

D
SJ

C
12

5.
5

–,
17

14
17

17
0.

5
17

17
1.

3
17

17
1.

6
17

17
6.

6
18

18
0

18
18

1
18

18
0.

4
18

19
2.

1
18

18
2.

5
D

SJ
C

12
5.

9
–,

30
12

44
44

0.
1

44
44

0.
1

44
44

0.
1

44
44

0.
2

44
44

0.
3

44
44

0.
3

44
44

2
44

44
9.

9
44

45
3.

4
D

SJ
C

25
0.

1
–,

8
30

8
8

0.
1

8
8

0
8

8
0.

2
8

8
0.

3
8

9
0

9
9

0
9

9
0.

2
9

9
0

9
9

24
.4

D
SJ

C
25

0.
5

–,
22

47
28

28
22

.3
28

28
30

.8
28

28
33

.6
29

29
2.

8
29

30
0.

9
31

31
1.

9
29

30
2.

7
32

32
6.

2
29

30
5.

4
D

SJ
C

25
0.

9
–,

72
60

72
72

3.
8

72
72

28
.2

72
72

5.
6

72
72

26
.7

72
73

6.
3

73
74

1.
6

72
72

26
.6

74
74

39
75

77
12

D
SJ

C
50

0.
1

–,
12

37
13

13
0.

1
13

13
0.

1
13

13
0.

1
13

13
0.

2
13

13
0.

2
14

14
0.

1
14

14
1.

6
14

14
4.

5
14

14
29

.9
D

SJ
C

50
0.

5
–,

48
16

8
49

50
35

50
50

10
0.

3
50

50
10

5.
8

50
51

20
.4

52
52

81
.4

55
55

11
3

51
51

47
.3

55
55

13
8.

5
50

50
12

3
D

SJ
C

50
0.

9
–,

12
6

39
8

12
7

12
7

23
4.

4
12

8
12

9
18

0.
8

12
7

12
8

82
.3

12
8

12
9

12
7

12
9

13
0

15
4

13
3

13
3

29
.1

12
7

12
8

37
7.

2
13

4
13

5
34

0.
3

13
2

13
2

20
4.

4
D

SJ
C

10
00

.1
–,

20
17

4
21

21
2.

8
21

21
16

4.
3

21
21

5.
9

21
21

10
.4

21
22

0.
8

23
23

5.
4

23
23

46
.7

23
23

90
.5

22
22

16
9.

9
D

SJ
C

10
00

.5
–,

83
11

02
89

90
30

9.
7

89
90

96
2.

5
90

91
30

3.
5

90
91

49
6.

9
93

93
54

6.
3

99
99

51
5

90
91

40
9.

7
97

98
98

1.
1

86
86

51
4.

8
D

SJ
C

10
00

.9
–,

22
4

26
93

22
6

22
7

19
83

.5
23

0
23

2
18

69
.2

22
7

22
8

22
45

23
0

23
0

23
82

.1
23

3
23

4
16

21
.1

23
8

23
8

14
47

.8
22

6
22

9
24

01
.4

24
5

24
7

21
43

.7
23

2
23

3
12

5.
9

D
SJ

R
50

0.
1c

–,
63

17
1

86
87

14
9.

6
86

86
20

.1
85

85
94

.3
89

92
1.

1
85

85
22

.6
88

92
1.

2
89

89
13

3.
6

87
90

72
.6

91
92

0.
2

D
SJ

R
50

0.
5

–,
26

12
4

12
6

12
7

18
12

6
12

6
86

.1
12

6
12

7
54

.2
12

8
12

8
42

.1
12

2
12

3
69

.4
12

8
12

9
5.

6
12

7
12

8
65

.9
12

9
13

0
10

.8
12

9
13

1
55

ab
b3

13
G

PI
A

–,
–

32
8

9
9

4.
1

9
9

26
.4

9
9

0.
9

9
9

30
.7

9
9

1.
1

10
11

0.
1

11
11

0
11

11
0.

1
12

13
36

.4
as

h3
31

G
PI

A
–,

4
20

0
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0
4

4
0

4
4

0
5

5
25

.8
as

h6
08

G
PI

A
–,

–
63

3
4

4
0.

1
4

4
0.

2
4

4
0.

1
4

4
0.

2
4

4
0.

1
4

4
0.

3
4

5
0

4
4

40
9.

3
5

5
27

.4
as

h9
58

G
PI

A
–,

–
16

27
4

4
0.

5
4

4
0.

5
4

4
0.

6
4

4
0.

9
4

4
0.

4
4

4
1.

3
5

5
0

4
5

0
5

5
12

1.
5

w
ill

19
9G

PI
A

–,
7

31
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

8
43

.9
fla

t3
00

_2
0_

0
20

,2
0

11
2

20
20

0.
3

20
20

0.
3

20
20

0.
4

20
20

0.
6

20
20

0.
6

22
23

0.
4

20
20

1.
1

33
34

76
.9

20
20

2.
9

fla
t3

00
_2

6_
0

26
,2

6
89

26
26

5.
5

26
26

16
.1

26
26

16
.6

26
26

19
.8

33
33

4.
3

29
31

56
.5

32
33

4.
3

35
35

53
.5

33
34

2.
9

fla
t3

00
_2

8_
0

28
,3

1
61

31
32

3.
4

31
31

54
.6

31
32

3.
3

31
32

7.
8

33
33

7.
2

35
35

1.
6

33
33

5.
1

35
36

17
.3

33
34

2.
9

fla
t1

00
0_

50
_0

50
,5

0
10

76
85

86
95

7.
4

50
78

10
04

.9
88

88
72

9.
5

87
88

71
3.

3
50

50
63

6.
3

54
54

28
0.

3
86

88
47

0.
3

95
96

93
9.

4
84

86
35

9.
3

fla
t1

00
0_

60
_0

60
,6

0
11

19
88

89
24

5.
2

87
88

91
8.

5
89

90
12

8.
2

89
90

37
2.

3
90

91
71

9.
2

64
65

56
5.

1
88

89
10

14
.6

96
97

62
4.

5
87

87
23

5.
4

fla
t1

00
0_

76
_0

76
,8

3
11

47
88

89
61

8.
1

88
89

95
7.

6
89

90
18

8.
7

90
90

71
2

92
92

60
5

98
98

55
3.

3
89

90
39

9
96

97
86

9
87

87
30

6
la

ti
n_

sq
ua

re
_1

0
–,

99
12

42
10

3
10

4
61

7.
8

10
6

10
7

88
9.

4
10

3
10

4
51

0.
4

10
4

10
5

45
8.

4
10

2
10

3
21

4.
9

10
5

10
6

40
4.

5
10

1
10

2
36

9.
9

11
1

11
4

79
8.

4
11

7
11

8
97

0.
7

qg
.o

rd
er

10
0

10
0,

–
12

10
2

10
0

10
0

17
.9

10
0

10
0

18
.5

10
0

10
0

18
.3

10
0

10
0

19
.9

10
0

10
0

36
.6

10
0

10
0

30
0.

6
10

0
10

1
14

.8
10

0
10

0
87

5.
1

10
0

10
1

39
71

.9
le

45
0_

5a
5,

5
23

0
5

5
0.

1
5

5
0.

1
5

5
0.

1
5

5
0.

9
5

5
0.

2
6

7
0

5
7

0
6

7
0

6
7

47
.4

le
45

0_
5b

5,
5

23
2

5
5

0.
3

5
5

0.
5

5
5

0.
6

5
5

0.
6

5
5

0.
3

6
7

0
6

7
0

6
6

59
.6

7
7

37
.1

le
45

0_
5d

5,
5

19
1

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
5

0
5

5
0

5
6

16
.4

le
45

0_
15

a
15

,–
68

15
15

0.
2

15
15

3.
4

15
15

0.
1

15
15

15
15

15
2.

2
16

16
0

16
16

0
16

16
0

16
17

9.
3

le
45

0_
15

b
15

,1
5

76
15

15
0.

1
15

15
0.

2
15

15
0.

1
15

15
5.

8
15

15
0.

3
16

16
0

16
16

0
16

16
0

16
16

18
.9

le
45

0_
15

c
15

,1
5

45
16

16
13

.5
15

15
19

.5
15

15
19

.1
15

16
8

15
15

5.
9

18
18

2.
3

23
23

0
23

23
0

19
21

21
6.

4
le

45
0_

15
d

15
,1

5
42

16
16

21
.7

15
16

13
15

15
20

.3
15

16
7.

1
15

15
7.

8
18

19
2.

1
22

23
0

22
23

0
20

21
18

9.
6

le
45

0_
25

c
25

,2
6

56
26

26
0.

7
26

27
0

26
26

2
26

27
0.

1
26

26
18

27
28

0
27

28
0

27
28

0
27

28
32

.3
le

45
0_

25
d

25
,2

6
59

26
26

0.
5

26
27

0
26

26
0.

8
26

27
0.

2
26

26
4.

7
28

28
0

28
28

0
27

28
0

27
27

38
.1

qu
ee

n6
_6

7,
7

2
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
7

7
0

7
7

1.
5

7
7

0
qu

ee
n7

_7
7,

7
4

7
7

0
7

7
0

7
7

0
7

7
0

7
7

0
8

8
0

7
7

0
7

7
2.

1
7

7
0

qu
ee

n8
_1

2
12

,–
7

12
12

0
12

12
0

12
12

0
12

12
0

12
12

0
12

12
0

12
12

0.
1

12
12

0.
4

12
12

0.
9

qu
ee

n8
_8

9,
9

5
9

9
0

9
9

0
9

9
0

9
9

0
9

9
0

9
9

0.
1

9
9

0.
1

9
10

0
9

9
0.

2
qu

ee
n9

_9
10

,1
0

6
10

10
0

10
10

0
10

10
0

10
10

0
10

10
0

10
10

0.
4

10
10

0.
1

10
11

0
10

10
0.

4
qu

ee
n1

0_
10

11
,1

1
10

11
11

0.
1

11
11

0.
1

11
11

0
11

11
0.

1
11

11
0.

8
12

12
0

11
12

0.
1

12
12

0.
1

11
11

0.
9

qu
ee

n1
1_

11
11

,1
2

14
12

12
0.

1
12

12
0.

1
12

12
0.

2
12

12
0.

2
12

13
0

13
13

0
12

13
0.

1
13

13
0.

4
12

12
2

qu
ee

n1
2_

12
12

,1
2

18
13

13
1

13
13

1.
4

13
13

0.
9

13
13

3.
8

13
14

0
14

14
0

14
14

0.
2

14
14

1.
1

13
13

13
.3

qu
ee

n1
3_

13
13

,1
4

22
14

14
2.

9
14

14
2.

3
14

14
1.

3
14

14
13

.2
15

15
0

15
15

0.
2

15
15

0.
3

15
15

2.
7

14
14

21
.4

qu
ee

n1
4_

14
14

,–
21

15
16

0
15

16
0

15
15

20
15

16
0

16
16

0
16

16
3.

1
16

16
0.

5
16

16
5

15
15

32
.2

qu
ee

n1
5_

15
15

,1
7

24
16

17
0

16
17

0
16

16
23

.9
16

17
0

17
17

0
18

18
0

17
17

0.
8

17
17

5.
7

16
17

23
.9

qu
ee

n1
6_

16
16

,1
8

24
18

18
0

18
18

0
18

18
0

18
18

0
18

18
0

19
19

0
17

18
1.

2
18

18
19

.5
17

17
33

.4
sc

ho
ol

1
–,

–
14

2
14

14
0.

1
14

14
0.

1
14

14
0.

1
14

14
0.

2
14

14
0.

2
16

17
0.

2
14

14
1.

6
14

14
65

.3
14

17
20

.3
sc

ho
ol

1_
ns

h
–,

14
10

5
14

14
0.

1
14

14
0.

1
14

14
0.

1
14

14
0.

1
14

14
0.

2
16

17
0.

1
14

14
0.

4
18

23
12

19
22

2
w

ap
01

a
–,

–
41

2
43

44
1.

2
43

44
1.

6
43

44
1.

5
42

42
21

7.
1

42
42

55
44

45
0.

9
44

45
10

7.
8

44
46

30
.8

47
48

13
1.

6
w

ap
02

a
40

,–
31

8
42

43
0.

7
42

43
0.

8
42

42
25

1.
6

41
42

4.
9

41
41

15
9.

9
43

43
0.

8
43

43
97

.8
43

44
0.

5
46

47
15

0.
8

w
ap

03
a

–,
–

13
95

46
47

3.
8

46
47

4.
5

46
46

36
5.

2
45

47
5.

8
44

44
78

2
48

48
4.

2
46

47
19

8.
9

47
48

33
9.

1
50

51
88

4.
3

w
ap

04
a

40
,–

21
25

44
44

17
0

45
45

2.
8

44
44

48
4.

3
43

44
31

.2
43

43
83

3.
6

45
46

1.
7

45
46

1.
6

45
46

1.
8

47
49

10
73

.5
w

ap
06

a
40

,–
13

8
41

42
0.

5
42

42
0.

7
42

42
0.

5
42

43
0.

2
40

41
8.

1
42

43
0.

2
42

44
0.

2
42

43
4.

7
44

44
24

.3
w

ap
07

a
–,

–
34

1
43

44
0.

7
43

43
1.

9
43

44
0.

7
42

43
30

.9
42

42
21

5.
2

45
45

0.
6

44
45

9.
1

44
45

39
47

47
80

.7
w

ap
08

a
40

,–
37

3
42

43
10

.3
42

43
1.

4
43

43
56

.1
42

44
0.

7
42

42
41

.4
44

45
0.

5
45

45
0.

4
44

45
0.

4
46

47
89

.4

Ta
bl

e
C

.4
.:

N
um

er
ic

al
re

su
lt

s
on

th
e

D
IM

A
C

S
gr

ap
h

co
lo

ur
in

g
in

st
an

ce
s.

C.2 Set T-colouring 307

|V| ρ r̄ t̄uv t̄uu Time (sec.) st. dev. (sec.) Predicted (sec.)
60 0.1 3 3 3 14.51 3.07 1

5 5 68.28 19.64 2
5 3 3 137.78 28.27 67

5 5 – – 454
0.5 3 3 3 78.34 9.21 30

5 5 357.77 48.91 321
5 3 3 704.17 164.04 638

5 5 – – 2544
0.9 3 3 3 146.31 18.98 117

5 5 795.61 111.75 637
5 3 3 1750.68 333.17 1204

5 5 – – 4615
120 0.1 3 3 3 72.91 15.12 35

5 5 – – 339
5 3 3 – – 669

5 5 – – 2658
0.5 3 3 3 408.90 37.50 483

5 5 – – 1976
5 3 3 – – 3601

5 5 – – 13389
0.9 3 3 3 816.97 73.84 926

5 5 – – 3599
5 3 3 – – 6505

5 5 – – 24021
240 0.1 3 3 3 449.70 59.28 507

5 5 – – 2066
5 3 3 – – 3760

5 5 – – 13973
0.5 3 3 3 2717.32 199.17 2804

5 5 – – 10473
5 3 3 – – 18811

5 5 – – 69061
0.9 3 3 3 5358.58 513.57 5080

5 5 – – 18803
5 3 3 – – 33724

5 5 – – 123643

Table C.5.: Uniform random graphs. Each row comprises 10 graphs and the values reported are
average values over these graphs. On the smallest instances (the first two lines) we adjusted the
value returned by the prediction model as this was less or equal 2 seconds.

C.2. Set T-colouring

C.2.1. Instance statistics and computation times

In the Tables C.5 and C.6 for the Uniform and Geometric random graphs, respectively,
we report the edge density, the average requirement, vertex distance, and edge distance.
Moreover we give the average and standard deviation for the computation time of GOF-
TS obtained by 10 observations per graph/class. These data are used for deriving the
linear regression model reported in Table 5.3. The value of the predicted time computed
through the selected model are also reported in the table. The predicted times, less a
factor of 10, are used for the time limits in the main experiments of Section 5.6.7.

C.2.2. Validation of our re-implementation of tabu search

In the following tables about the set T-colouring problem we report k as the number of
colours used in the solution. The span which is the objective to minimise can then be
derived as sp(G) = k− 1.

In Table C.7, we compare our implementation of GOF-TS with the implementation of
Dorne and Hao (1998b) on the instances they used for presenting results of their algo-
rithm. Some of these instances are computationally demanding and they were not used
in the main experiment for the comparison of SLS algorithms (see Section 5.6.7). The re-

308 Numerical Results on the Benchmark Instances for Graph Colouring Problems

Instance |V| ρ r̄ t̄uv t̄uu Time (sec.) st. dev. (sec.) Predicted (sec.)
GEOM60 60 0.14 5.25 3.97 10 59.20 0.58 71
GEOM70 70 0.14 5.49 4.22 10 138.91 2.24 106
GEOM80 80 0.14 5.81 4.32 10 162.71 6.51 149
GEOM90 90 0.13 5.89 4.32 10 158.86 13.97 181
GEOM100 100 0.13 5.81 4.48 10 174.60 1.41 217
GEOM110 110 0.12 5.85 4.52 10 376.36 15.18 251
GEOM120 120 0.13 5.67 4.56 10 214.54 52.73 273
GEOM30a 30 0.26 5.70 3.96 10 37.93 0.60 38
GEOM40a 40 0.24 5.08 4.27 10 44.23 1.26 50
GEOM50a 50 0.24 6.04 4.57 10 126.96 11.18 108
GEOM60a 60 0.23 6.03 4.64 10 139.64 26.19 142
GEOM70a 70 0.22 5.41 4.73 10 143.03 9.61 147
GEOM80a 80 0.22 4.86 4.80 10 214.72 38.09 151
GEOM90a 90 0.22 5.04 4.80 10 154.99 3.57 191
GEOM100a 100 0.22 5.28 4.87 10 221.09 25.65 250
GEOM110a 110 0.22 5.47 4.91 10 294.62 34.68 312
GEOM120a 120 0.22 5.53 4.97 10 380.98 47.29 369
GEOM20b 20 0.27 2.00 2.56 10 2.70 0.03 3
GEOM30b 30 0.26 2.30 3.49 10 5.68 0.09 8
GEOM40b 40 0.25 2.10 3.98 10 14.37 1.19 14
GEOM50b 50 0.24 2.08 4.17 10 24.47 0.61 20
GEOM60b 60 0.24 2.12 4.39 10 28.62 1.75 30
GEOM70b 70 0.23 2.11 4.50 10 36.06 0.92 38
GEOM80b 80 0.24 2.11 4.60 10 33.19 0.50 49
GEOM90b 90 0.24 2.04 4.72 10 66.01 4.40 59
GEOM100b 100 0.23 2.00 4.77 10 90.48 1.78 69
GEOM110b 110 0.23 2.00 4.79 10 79.92 9.13 79
GEOM120b 120 0.23 1.96 4.87 10 94.81 3.24 91

Table C.6.: The Geometric graphs. Each row represents one single instance and the values of
computation time are obtained by averaging over 10 runs.

Dorne and Hao GOF-TS

iter. iter. Time Exit Time Predicted
inst r̄ t̄uv t̄vv k (×107) k (×107) (min.) (min.) (min.)

essai.30.86.10 2.87 2.50 1.90 27 1 27 0.09 0.0 0.1 10
essai.100.275.10 2.75 2.95 2.54 46 1 47 0.28 0.1 0.5 10
essai.300.937.10 3.12 3.09 2.82 81 2 80 0.94 4.9 13.7 19
essai.500.1507.10 3.01 3.04 2.89 113 2 107 1.51 36.0 48.6 55
essai.1000.3049.10 3.05 2.98 2.94 179 3(?) 174 3.05 275.1 469.7 294
essai.30.95.50 3.17 2.90 2.61 62 1 63 0.10 0.1 0.2 10
essai.100.304.50 3.04 2.93 2.89 115 1 116 0.30 2.9 4.2 5
essai.300.905.50 3.02 2.91 2.96 268 2 276 0.91 75.0 81.8 78
essai.500.1484.50 2.97 2.93 2.98 403 2 410 1.48 119.2 338.8 253
essai.1000.3024.50 3.02 3.04 2.99 847 3(?) 788 3.02 1669.4 1979.0 1459
essai.30.90.90 3.00 3.37 2.83 103 1 105 0.09 0.3 0.6 10
essai.100.299.90 2.99 3.00 2.91 225 1 233 0.30 1.3 8.6 10
essai.300.940.90 3.13 2.98 2.97 573 2 602 0.94 153.0 165.8 168
essai.500.1536.90 3.07 2.97 2.99 932 2 934 1.54 57.9 676.9 523
essai.1000.2975.90 2.98 2.98 3.00 1724 3(?) 1736 – 935.9 – 2395

Table C.7.: Statistics for the essai graphs and comparison of our implementation of GOF-TS
with the implementation of Dorne and Hao (1998b) on the random graphs. Results for our
implementation are taken from one single run with Imax as stopping criterion while the results
of Dorne and Hao (1998b) are the best from 1, 2, or 3 runs. Note that computation times
are expressed in minutes. In the last column, we report for reference also the computation
time needed GOF-TS to perform Imax iterations as predicted by the model given in Table 5.3.
The symbols r̄, t̄uv, and t̄vv indicate the average vertex colour requirement, edge-distance, and
vertex-distance, respectively.

sults in the Table were obtained by only one run of our implementation of GOF-TS with
Imax = 10000× ∑v∈V r(v) iterations as stopping criterion. Dorne and Hao (1998b) run
instead their algorithm for 107 iterations, or, for the largest instances, 2 or 3× 107. Times
are hardly comparable because the results of a benchmark code were not reported in that
publication. However, given the difference in the number of maximum iterations we are
confident that our implementation is not worse than the original one (the Wilcoxon test
run on these results does not reject the hypothesis that the two algorithms perform the
same).

C.2 Set T-colouring 309

C.2.3. Detailed results

In Table C.8 we report the numerical results of the experiment presented in Figure 5.18.
For each set of parameters, indicated by the label of the class, 10 graphs with different
random seed were used. For each of these classes we give the lower bound, the maxi-
mum time allowed in our experiments, and the minimum, median, and maximum value
for k found by the respective algorithms. The variance of these values is determined by
two factors: the stochastic algorithm and the graph. Within each class, we run the Fried-
man test to check whether algorithms perform differently. In the affirmative case, an
all-pairwise Wilcoxon test with Holm’s adjustment of the p-value is performed to check
whether there is statistical significance in the differences. The grey background in the
Figure indicates all algorithms that are not significantly different from the best one. We
observe that the Wilcoxon test is not very powerful in distinguishing differences due
to the low sample sizes (only 10 for each test). In contrast, the Friedman procedure
presented in Figure 5.18 was able to indicate many more significant differences.

Table C.9 presents the results relative to the random graphs discussed in Figure 5.15.
In this case, each row corresponds to the indicated instance. For each instance, 3 runs
per algorithm were done (except for G-DSATUR for which we did 10 runs). We report
the minimum, median, and maximum value for k. No alternative statistical test to the
one discussed in Section 5.6.7 is reported in this case because 3 runs per instance are too
few to detect any difference by means of the Wilcoxon test and the appropriate rank-
based procedure in this case must necessarily aggregate results over the instances as
done with the Friedman test.

310 Numerical Results on the Benchmark Instances for Graph Colouring Problems

In
st

an
ce

Lw
b(

se
c)

G
-D

S
A
T

U
R

m
ax

ti
m

e
G

O
F

-A
G

G
O

F
-T

S
-r
ea

ss
G

O
F

-T
S

G
S
F

-M
C

G
S
F

-T
S

G
S
F

-H
E
A

G
S
V

-T
S

G
S
F

-G
L
S

F
C
N

S

T-
G

.5
.5

-6
0.

0.
1

35
(2

)
41

48
62

10
36

39
46

36
39

46
36

39
46

36
39

.5
46

36
38

.5
46

36
39

46
36

39
46

43
50

55
37

41
46

T-
G

.5
.1

0-
60

.0
.1

55
(2

)
78

89
10

7
20

63
73

83
66

76
.5

95
65

76
.5

83
73

80
.5

94
63

77
.5

96
63

74
83

66
73

94
81

95
11

1
65

76
85

T-
G

.1
0.

5-
60

.0
.1

72
(7

)
79

89
11

6
67

0
70

76
93

71
88

98
71

78
.5

94
72

84
98

74
86

98
72

77
.5

92
72

88
.5

10
2

84
93

10
6

73
78

.5
92

T-
G

.5
.5

-6
0.

0.
5

43
(7

)
89

10
0.

5
11

6
30

0
75

85
89

74
84

.5
89

75
85

89
75

85
.5

90
78

89
.5

94
80

91
.5

96
80

89
.5

94
89

10
3.

5
11

6
89

10
1.

5
11

0
T-

G
.5

.1
0-

60
.0

.5
79

(7
)

16
8

20
4

23
1

32
10

13
9

15
4.

5
17

2
13

7
15

4
16

9
13

9
15

4
17

0
15

3
16

7
19

9
14

3
15

7
17

5
15

0
16

5.
5

18
5

14
5

15
9

17
8

16
8

19
7

22
0

16
8

18
7

21
3

T-
G

.1
0.

5-
60

.0
.5

81
(2

1)
14

8
19

0
22

2
63

80
12

3
14

8
16

2
12

3
14

9
16

3
12

3
14

8.
5

16
2

13
2

15
7

17
2

13
4

16
2

21
0

13
3

16
5.

5
18

6
14

2
16

8.
5

22
1

14
9

18
4

22
2

14
9

18
3.

5
21

0
T-

G
.5

.5
-6

0.
0.

9
82

(3
8)

16
0

18
0

19
4

11
70

13
9

15
5

16
3

13
7

15
5

16
4

13
8

15
6.

5
16

5
14

3
15

8.
5

16
6

14
7

16
4

17
3

14
8

16
5.

5
17

6
14

7
16

5
17

4
16

0
17

6
19

4
16

0
18

0.
5

19
4

T-
G

.5
.1

0-
60

.0
.9

11
1(

45
)

30
4

32
5

37
0

63
70

26
4

27
4.

5
29

5
26

1
27

5.
5

29
1

26
4

27
8

29
4

27
2

28
6

30
6

27
7

28
9.

5
30

4
28

4
29

5
31

9
28

3
29

5.
5

30
9

30
4

32
0.

5
37

0
31

1
32

2.
5

33
5

T-
G

.1
0.

5-
60

.0
.9

15
6(

11
0)

28
8

32
3

35
3

12
04

0
25

2
27

6.
5

29
9

25
3

27
6.

5
29

8
25

4
27

8.
5

30
1

25
7

28
0.

5
30

3
25

7
28

3.
5

30
2

27
1

30
2.

5
32

9
26

0
29

7
31

0
29

5
32

0
35

3
29

5
31

9.
5

35
3

T-
G

.5
.5

-1
20

.0
.1

35
(2

)
58

66
79

35
0

45
47

57
45

47
57

45
47

.5
57

46
49

58
46

49
57

48
50

.5
57

46
49

57
62

67
76

53
55

.5
61

T-
G

.5
.5

-1
20

.0
.5

60
(9

)
15

4
16

7
18

9
48

30
12

7
13

2.
5

14
2

12
5

13
0.

5
14

1
12

7
13

3
14

3
12

7
13

4
14

2
13

4
14

0
15

0
13

9
14

5
15

7
13

4
14

1
15

1
15

9
16

6
17

6
16

1
16

4
18

3
T-

G
.5

.5
-1

20
.0

.9
11

4(
34

)
27

6
30

3
32

1
92

60
24

8
26

5.
5

27
6

24
7

26
4

27
6

25
0

26
7

27
9

24
9

27
0

28
1

26
5

28
2.

5
29

2
27

0
28

6.
5

29
9

26
5

28
5

29
6

28
0

30
4.

5
31

4
28

3
30

2.
5

31
2

Ta
bl

e
C

.8
.:

Su
m

m
ar

y
of

re
su

lt
s

on
ra

nd
om

gr
ap

hs
.

Fo
r

ea
ch

ro
w

of
th

e
ta

bl
e

10
in

st
an

ce
s

w
it

h
th

e
fe

at
ur

es
sy

nt
et

ic
al

ly
re

po
rt

ed
in

th
e

na
m

es
of

th
e

in
st

an
ce

s
(s

ee
Se

ct
io

n
5.

4)
w

er
e

co
ns

id
er

ed
.

W
e

re
po

rt
th

e
m

in
im

um
,m

ed
ia

n,
an

d
m

ax
im

um
re

su
lt

.
G

re
y

ba
ck

gr
ou

nd
in

th
e

ce
ll

is
us

ed
to

em
ph

as
is

e
th

e
be

st
al

go
ri

th
m

s
on

ea
ch

in
st

an
ce

.

In
st

an
ce

Lw
b(

se
c)

Be
st

G
-D

S
A
T

U
R

m
ax

ti
m

e
G

O
F

-A
G

G
O

F
-T

S
-r
ea

ss
G

O
F

-T
S

G
S
F

-M
C

G
S
F

-T
S

G
S
F

-H
E
A

G
S
V

-T
S

G
S
F

-G
L
S

F
C
N

S

G
EO

M
60

23
0

25
8

25
8

25
8

26
5

71
2

25
8

25
8

25
8

25
8

25
8

25
8

25
8

25
8

25
8

25
8

25
8

25
9

25
8

25
8

25
9

25
8

25
8

25
8

25
8

25
8

25
9

25
8

25
8

25
9

25
8

25
9

26
2

G
EO

M
70

26
0

27
2

28
3

28
7.

5
29

9
10

62
26

7
26

7
26

9
27

0
27

1
27

1
26

9
27

0
27

0
27

1
27

3
27

5
27

0
27

8
28

0
27

6
27

9
28

0
27

4
28

5
28

6
28

5
28

6
28

8
27

9
28

0
28

1
G

EO
M

80
36

5
38

3
39

2
39

5
39

5
15

04
38

2
38

2
38

3
38

6
38

6
38

8
38

4
38

5
38

6
39

0
39

1
39

2
38

9
38

9
39

2
39

0
39

1
39

3
39

3
39

4
39

4
39

4
39

5
39

5
39

3
39

4
39

7
G

EO
M

90
31

3
33

2
33

5
33

8.
5

34
7

18
21

33
4

33
4

33
4

33
2

33
2

33
4

33
2

33
3

33
3

33
5

33
7

33
7

33
3

33
4

33
5

33
3

33
4

33
5

33
5

34
0

34
1

33
5

34
1

34
6

33
5

33
5

33
8

G
EO

M
10

0
37

8
40

4
41

2
41

6
42

0
21

82
40

4
40

5
40

5
41

2
41

4
41

4
41

1
41

4
41

4
41

1
41

6
41

6
41

1
41

4
41

5
40

9
41

0
41

1
41

4
41

5
41

5
41

5
41

6
41

6
41

6
41

6
41

6
G

EO
M

11
0

34
8

38
1

40
0

41
0

41
5

25
27

37
8

37
8

37
9

38
1

38
2

38
3

38
3

38
3

38
4

38
5

38
8

38
9

38
1

38
9

39
6

40
2

40
2

40
3

40
3

40
4

40
7

40
5

40
7

41
4

38
8

38
9

39
1

G
EO

M
12

0
34

3
39

6
41

2
41

9
42

0
27

46
39

7
40

0
40

3
40

4
40

5
40

9
40

2
40

4
40

9
40

4
40

7
40

9
40

9
41

7
42

0
40

8
40

9
41

6
41

6
41

9
42

6
41

6
41

9
42

6
41

4
41

4
41

5
G

EO
M

30
a

18
2

20
9

23
8

23
8

24
3

38
1

20
9

21
1

21
2

21
2

21
2

21
4

21
2

21
3

21
5

21
4

21
5

21
6

22
2

22
8

22
8

22
2

22
4

22
5

23
4

23
5

23
8

23
8

23
8

24
0

21
5

21
6

21
7

G
EO

M
40

a
16

0
21

3
22

9
22

9
23

2
50

2
21

4
21

5
21

5
21

5
21

6
21

6
21

4
21

5
21

5
21

8
21

8
21

8
22

0
22

0
22

2
22

0
22

1
22

1
22

5
22

6
22

7
22

7
22

9
22

9
21

6
21

7
21

8
G

EO
M

50
a

19
9

31
6

33
5

34
5

34
5

10
84

31
5

31
6

31
8

31
9

32
1

32
2

31
8

31
8

32
2

32
2

32
4

33
2

32
9

33
7

33
7

33
1

33
3

33
3

33
7

34
0

34
0

34
5

34
5

34
5

32
0

32
5

32
5

G
EO

M
60

a
29

0
35

7
36

9
37

3
37

9
14

25
35

6
35

6
36

1
36

1
36

2
36

3
36

1
36

1
36

2
36

5
36

6
36

6
36

3
36

3
36

8
36

6
36

8
37

2
37

3
37

3
37

3
37

3
37

3
37

4
36

9
36

9
36

9
G

EO
M

70
a

42
5

46
9

48
7

48
7

48
7

14
82

47
8

47
8

47
8

48
4

48
4

48
5

48
4

48
4

48
5

48
4

48
6

48
6

48
3

48
6

48
6

48
3

48
4

48
7

48
7

48
7

48
7

48
7

48
7

48
7

48
1

48
2

48
2

G
EO

M
80

a
24

1
36

3
38

8
39

6
39

6
15

18
36

0
36

4
36

4
37

1
37

1
37

4
37

1
37

2
38

1
37

8
38

0
38

7
37

8
38

3
38

7
37

9
38

2
38

5
39

1
39

4
39

5
39

2
39

6
39

6
38

1
38

1
38

2
G

EO
M

90
a

28
5

37
7

39
8

40
5

40
5

19
23

37
7

37
8

38
0

39
8

40
1

40
3

39
8

40
1

40
2

39
8

40
1

40
2

39
8

40
2

40
3

38
8

39
0

39
2

39
8

40
5

40
5

39
8

40
5

40
5

38
0

38
0

38
2

G
EO

M
10

0a
30

2
44

8
46

2
47

1
47

5
25

22
43

7
44

0
44

3
44

5
44

6
45

2
44

4
44

8
45

4
44

7
44

8
44

9
45

4
45

9
45

9
45

2
45

5
45

8
46

2
46

5
46

5
46

6
46

6
46

7
45

8
46

0
46

0
G

EO
M

11
0a

38
5

48
8

52
3

52
3

52
3

31
34

49
0

49
2

49
4

50
4

50
5

50
7

50
6

50
6

50
7

49
4

49
6

50
0

50
7

50
9

51
7

50
5

50
6

50
8

51
6

51
8

52
3

52
3

52
3

52
3

50
1

50
2

50
2

G
EO

M
12

0a
51

4
55

6
57

1
57

8
58

3
37

04
54

9
55

0
55

5
55

3
55

6
55

7
55

0
55

6
55

6
55

8
55

9
56

3
55

6
55

8
56

0
57

0
57

1
57

7
57

8
57

8
57

9
57

8
57

8
58

0
56

2
56

3
56

6
G

EO
M

20
b

39
44

45
45

45
30

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
45

45
45

45
45

45
G

EO
M

30
b

38
77

78
78

78
80

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
77

77
78

78
78

77
77

77
G

EO
M

40
b

74
74

79
86

87
14

0
74

74
74

74
74

74
74

74
74

76
76

76
75

75
75

75
77

77
76

76
76

79
81

87
78

79
80

G
EO

M
50

b
67

83
92

94
97

20
0

84
84

85
85

85
85

84
85

85
88

88
88

86
87

87
88

88
88

87
88

88
94

96
97

88
88

90
G

EO
M

60
b

79
11

5
12

3
13

2
13

8
30

0
11

7
11

9
12

0
11

8
11

9
12

2
12

0
12

0
12

0
12

2
12

3
12

3
12

0
12

0
12

1
12

2
12

3
12

3
12

1
12

2
12

3
13

5
13

5
13

5
12

1
12

1
12

1
G

EO
M

70
b

94
11

7
13

3
13

5
13

7
38

1
12

0
12

1
12

1
12

0
12

2
12

2
12

1
12

1
12

2
12

6
12

6
12

7
12

2
12

3
12

3
12

7
12

7
12

8
12

5
12

5
12

6
13

4
13

6
13

6
12

1
12

1
12

1
G

EO
M

80
b

11
0

14
1

14
8

14
9

15
2

49
0

13
9

13
9

14
0

13
9

14
0

14
0

14
0

14
0

14
0

14
1

14
3

14
3

14
0

14
1

14
1

14
4

14
4

14
4

14
0

14
2

14
2

14
9

15
1

15
1

14
3

14
6

14
7

G
EO

M
90

b
11

2
14

4
16

0
16

1
16

5
59

0
14

7
14

7
14

7
14

9
14

9
14

9
15

0
15

0
15

0
15

4
15

6
15

6
15

2
15

3
15

5
15

6
15

8
15

8
15

3
15

5
15

7
16

0
16

3
16

4
15

1
15

3
15

4
G

EO
M

10
0b

13
3

15
7

17
3

17
9

18
3

69
0

15
9

16
0

16
1

16
4

16
4

16
4

16
2

16
3

16
5

17
1

17
2

17
3

16
9

17
0

17
1

17
1

17
2

17
3

17
2

17
2

17
2

17
6

18
1

18
3

16
4

16
5

16
6

G
EO

M
11

0b
18

2
20

6
22

1
22

5.
5

23
8

79
1

20
8

20
9

21
2

20
6

20
9

21
1

20
8

20
9

20
9

21
5

21
5

21
6

21
2

21
3

21
3

21
9

22
0

22
1

21
4

21
5

21
5

22
1

22
8

22
8

20
8

21
0

21
4

G
EO

M
12

0b
17

2
19

1
20

6
21

9.
5

22
5

91
3

19
1

19
6

19
8

19
7

19
8

19
9

19
5

19
8

19
8

20
2

20
5

20
5

20
0

20
1

20
2

20
3

20
6

20
8

20
2

20
3

20
4

21
9

22
3

22
5

19
7

20
0

20
1

Ta
bl

e
C

.9
.:

Su
m

m
ar

y
of

re
su

lt
s.

G
iv

en
ar

e
th

e
ch

ro
m

at
ic

nu
m

be
r,

th
e

be
st

kn
ow

n
re

su
lt

sp
an

,a
nd

th
e

m
ax

im
um

ti
m

e
al

lo
w

ed
fo

r
ea

ch
ru

n.
Th

en
,f

or
ea

ch
al

go
ri

th
m

th
e

m
in

im
um

,m
ed

ia
n,

an
d

m
ax

im
um

sp
an

fo
un

d
in

th
e

tr
ia

ls
pe

rf
or

m
ed

(e
xc

ep
tf

or
G

-D
S
A
T

U
R

,o
nl

y
3

tr
ia

ls
w

er
e

pe
rf

or
m

ed
an

d
he

nc
e

th
e

th
re

e
va

lu
es

ar
e

ac
tu

al
ly

th
e

th
re

e
re

su
lt

s)
.N

o
st

at
is

ti
ca

lt
es

t
is

pe
rf

or
m

ed
w

it
hi

n
th

e
in

st
an

ce
s,

as
th

e
nu

m
be

r
of

re
pl

ic
at

es
av

ai
la

bl
e

is
to

o
lo

w
.

References

Aardal K.I., van Hoesel C.P.M., Koster A.M.C.A., Mannino C., and Sassano A. (2003).
“Models and solution techniques for the frequency assignment problem”. 4OR: A
Quarterly Journal of Operations Research, 1(4), pp. 261–317. An updated version to ap-
pear in Annals of Operations Research is available at http://fap.zib.de/download/
fap2007.ps.gz. (Cited on pages 171, 174, 175 and 182.)

Aarts E. and Lenstra J. (eds.) (1997). Local Search in Combinatorial Optimization. John
Wiley & Sons, New York, NY, USA. (Cited on pages 4, 23 and 325.)

Achlioptas D., Gomes C.P., Kautz H.A., and Selman B. (2000). “Generating satisfiable
problem instances.” In Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence,
pp. 256–261. AAAI Press/The MIT Press. (Cited on page 86.)

Achlioptas D. and Naor A. (2005). “The two possible values of the chromatic number of
a random graph”. To appear in Annals of Mathematics. (Cited on page 96.)

Ahuja R., Ergun O., Orlin J., and Punnen A. (2002). “A survey of very large scale
neighborhood search techniques”. Discrete Applied Mathematics, 123(1-3), pp. 75–102.
(Cited on pages 36 and 38.)

Ahuja R., Orlin J., Pallottino S., Scaparra M., and Scutellá M. (2004). “A multi-exchange
heuristic for the single-source capacitated facility location problem”. Management Sci-
ence, 50(6), pp. 749–761. (Cited on page 164.)

Ahuja R., Orlin J., and Sharma D. (2001a). “Multi-exchange neighborhood search algo-
rithms for the capacitated minimum spanning tree problem”. Mathematical Program-
ming, 91(1), pp. 71–97. Series A. (Cited on page 164.)

Ahuja R.K., Boland N.L., and Dumitrescu I. (2001b). “Exact and heuristic algorithms
for the subset disjoint minimum cost cycle problem”. Working Paper. (Cited on
pages 114 and 118.)

Ahuja R.K., Magnanti T.L., and Orlin J.B. (1993). Network Flows: Theory, Algorithms, and
Applications. Prentice Hall. (Cited on page 18.)

Al-Fawzan M.A. (2000). “Algorithms for estimating the parameters of the Weibull dis-
tribution”. InterStat, Statistics on the Internet. http://interstat.statjournals.net/.
(June 2005). (Cited on page 81.)

Alimonti P. (1996). “New local search approximation techniques for maximum general-
ized satisfiability problems”. Information Processing Letters, 57(3), pp. 151–158. (Cited
on page 37.)

http://fap.zib.de/download/fap2007.ps.gz
http://fap.zib.de/download/fap2007.ps.gz
http://interstat.statjournals.net/

312 References

Allen M., Kumaran G., and Liu T. (2002). “A combined algorithm for graph-coloring in
register allocation”. In Johnson et al. (2002b), pp. 100–111. (Cited on page 91.)

Allen S.M., Smith D.H., and Hurley S. (1999). “Lower bounding techniques for frequency
assignment”. Discrete Mathematics, 197-198, pp. 41–52. (Cited on page 175.)

Anderson M. and ter Braak C. (2003). “Permutation tests for multi-factorial analysis of
variance”. Journal of Statistical Computation and Simulation, 73(2), pp. 85–113. (Cited
on pages 53, 64 and 287.)

Appel K., Haken W., and Koch J. (1977). “Every planar map is four colorable”. Illinois
Journal of Mathematics, 21, pp. 429–567. (Cited on page 91.)

Applegate D., Bixby R., Chvátal V., and Cook W. (1998). “On the solution of traveling
salesman problems”. Documenta Mathematica. Extra Volume. Proceedings of the Interna-
tional Congress of Mathematicians, III, pp. 645–656. (Cited on page 183.)

Arnold S.F. (1981). Theory of Linear Models and Multivariate Analysis. John Wiley & Sons,
New York, NY, USA. (Cited on page 79.)

Arntzen H. and Løkketangen A. (2003). “A tabu search heuristic for a university timeta-
bling problem”. In Proceedings of the Fifth Metaheuristics International Conference. Kyoto,
Japan. (Cited on page 247.)

Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., and Protasi
M. (1999). Complexity and approximation: Combinatorial optimization problems and their
approximability properties. Springer-Verlag. (Cited on pages 16 and 225.)

Avanthay C., Hertz A., and Zufferey N. (2003). “A variable neighborhood search for
graph coloring”. European Journal of Operational Research. (Cited on page 112.)

Balakrishnan N., Lucena A., and Wong R.T. (1992). “Scheduling examinations to reduce
second-order conflicts”. Computers & Operations Research, 19(5), pp. 353–361. (Cited
on page 218.)

Barbosa V.C. and Ferreira R.G. (2004). “On the phase transitions of graph coloring and
independent sets”. Physica A: Statistical Mechanics and its Applications, 343(1–2). (Cited
on page 158.)

Barnes W., Dimova B., and Dokov S.P. (2003). “The theory of elementary landscapes”.
Applied Mathematics Letters. (Cited on page 84.)

Barnier N. and Brisset P. (2002). “Graph coloring for air traffic flow management”.
In CPAIOR’02: Fourth International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems, pp. 133–147. Le Croisic,
France. (Cited on page 91.)

Barr R., Golden B., Kelly J., Resende M., and Stewart W. (1995). “Designing and report-
ing on computational experiments with heuristic methods.” Journal of Heuristics, 1(1),
pp. 9–32. (Cited on pages 5 and 43.)

Battiti R. and Protasi M. (2001). “Reactive local search for the maximum clique problem”.
Algorithmica, 29(4), pp. 610–637. (Cited on pages 108 and 301.)

References 313

Battiti R. and Tecchiolli G. (1994). “The reactive tabu search”. ORSA Journal on Comput-
ing, 6, pp. 126–140. (Cited on page 29.)

Bellare M., Goldreich O., and Sudan M. (1998). “Free bits, PCPs, and
nonapproximability—towards tight results”. SIAM Journal on Computing, 27(3), pp.
804–915. (Cited on page 95.)

Berger B. and Rompel J. (1990). “A better performance guarantee for approximate graph
colouring”. Algorithmica, 5(4), pp. 459–466. (Cited on page 95.)

Bertsekas D.P., Tsitsiklis J.N., and Wu C. (1997). “Rollout algorithms for combinatorial
optimization”. Journal of Heuristics, 3(3), pp. 245–262. (Cited on page 23.)

Bianchi L., Birattari M., Chiarandini M., Manfrin M., Mastrolilli M., Paquete L., Rossi-
Doria O., and Schiavinotto T. (2004). “Metaheuristics for the vehicle routing problem
with stochastic demand”. In Parallel Problem Solving from Nature - PPSN VIII, edited
by Yao X. et al., vol. 3242 of Lecture Notes in Computer Science. Springer Verlag, Berlin,
Germany. (Cited on page 39.)

Bibel W., Andler D., da Costa O., Küppers G., and Pearson I. (2004). “Converging
technologies and the natural, social and cultural world”. Tech. rep., European Com-
mission of the EU. http://europa.eu.int/comm/research/conferences/2004/ntw/
pdf/sig4_en.pdf. (Cited on page 263.)

Birattari M. (2003). “The race package for R. racing methods for the selection of the
best.” Tech. Rep. TR/IRIDIA/2003-37, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium. (Cited on page 73.)

Birattari M. (2004a). “On the estimation of the expected performance of a metaheuris-
tic on a class of instances. how many instances, how many runs?” Tech. Rep.
TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. (Cited
on pages 51, 73, 74 and 150.)

Birattari M. (2004b). The Problem of Tuning Metaheuristics, as seen from a machine learning
perspective. Ph.D. thesis, Université Libre de Bruxelles, Brussels, Belgium. (Cited on
pages 50, 73 and 268.)

Birattari M., Stützle T., Paquete L., and Varrentrapp K. (2002). “A racing algorithm
for configuring metaheuristics”. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2002), edited by W.B. Langdon, E. Cantú-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska, pp. 11–18. Morgan Kaufmann
Publishers, New York. (Cited on pages 5, 8, 72, 217, 227, 231 and 261.)

Blöchliger I. and Zufferey N. (2003). “A reactive tabu search using partial solutions for
the graph coloring problem”. In Coloring graphs from lists with bounded size of their union:
result from Dagstuhl Seminar 03391, edited by D. Kral and J. Sgall, vol. 156 of ITI-Series.
Department of Applied Mathematics and Institute for Theoretical Computer Science,
Prague. (Cited on page 113.)

Bollobás B. (2004). Random graphs. Cambridge studies in advanced mathematics. Cam-
bridge University Press, Cambridge, UK, second ed. (Cited on page 95.)

http://europa.eu.int/comm/research/conferences/2004/ntw/pdf/sig4_en.pdf
http://europa.eu.int/comm/research/conferences/2004/ntw/pdf/sig4_en.pdf

314 References

Bollobás B. and Thomason A. (1985). “Random graphs of small order”. Annals of Discrete
Mathematics, 28, pp. 251–256. (Cited on pages 95 and 96.)

Borgne L. (1994). Automatic Frequency Assignment for Cellular Networks using local search
heuristics. Master’s thesis, Uppsala University. (Cited on page 195.)

Borndörfer R., Eisenblätter A., Grötschel M., and Martin A. (1998). “Frequency assign-
ment in cellular phone networks”. Annals of Operations Research, 76(0), pp. 73–93.
(Cited on page 186.)

Brandstädt A., Le V.B., and Spinrad J.P. (1999). Graph Classes: A Survey, vol. 3 of Mono-
graphs on Discrete Mathematics and Applications. SIAM Society for Industrial and Ap-
plied Mathematics, Philadelphia. (Cited on page 94.)

Brélaz D. (1979). “New methods to color the vertices of a graph”. Communications of the
ACM, 22(4), pp. 251–256. (Cited on pages 101 and 104.)

Burke E., Beyrouthy C., Silva J.D.L., McCollum B., and McMullan P. (2004a). “SpaceMAP
- applying meta-heuristics to real world space allocation problems in academic insti-
tutions”. In Burke and Trick (2004), pp. 441–444. (Cited on page 218.)

Burke E., Bykov Y., and Petrovic S. (2001). “A multicriteria approach to examination
timetabling”. In Burke and Erben (2001), pp. 118–131. (Cited on page 219.)

Burke E. and Carter M.W. (eds.) (1998). Practice and Theory of Automated Timetabling, vol.
1408 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany. (Cited on
pages 220, 315 and 335.)

Burke E. and Causmaecker P. (eds.) (2002). Proceedings of the 4th International Conference
on the Practice and Theory of Automated Timetabling, PATAT 2002. Gent, Belgium. (Cited
on pages 330 and 331.)

Burke E. and De Causmaecker P. (eds.) (2003). Practice and Theory of Automated Timeta-
bling, vol. 2740 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany.
(Cited on pages 220, 318 and 328.)

Burke E., Eckersley A.J., McCollum B., Petrovic S., and Qu R. (2004b). “Analysing
similarity in examination timetabling”. In Burke and Trick (2004), pp. 557–559. (Cited
on pages 218 and 262.)

Burke E., Elliman D.G., and Weare R.F. (1995). “Specialised recombinative operators
for timetabling problems”. In AISB Workshop on Evolutionary Computing., vol. 993 of
Lecture Notes in Computer Science, pp. 75–85. Springer Verlag, Berlin, Germany. (Cited
on page 230.)

Burke E. and Erben W. (eds.) (2001). Practice and Theory of Automated Timetabling, vol.
2079 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany. (Cited on
pages 220, 314, 315 and 335.)

Burke E., Kendall G., and Soubeiga E. (2003). “A tabu-search hyperheuristic for time-
tabling and rostering”. Journal of Heuristics, 9(6), pp. 451–470. (Cited on pages 218
and 262.)

References 315

Burke E. and Ross P. (eds.) (1996). Practice and Theory of Automated Timetabling, vol. 1153
of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany. (Cited on
page 220.)

Burke E. and Trick M. (eds.) (2004). Proceedings of the 5th International Conference on the
Practice and Theory of Automated Timetabling, PATAT 2004. Pittsburgh, PA. (Cited on
pages 220, 314, 315, 326 and 330.)

Burke E. and Trick M. (eds.) (2005). Practice and Theory of Automated Timetabling, vol.
3616 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany. (Cited on
pages 317 and 326.)

Cahit I. (2004). “Spiral chains: A new proof of the four color theorem”. Unpublished.
(Cited on page 94.)

Capone A. and Trubian M. (1999). “Channel assignment problem in cellular systems: a
new model and a tabu search algorithm”. IEEE Transactions on Vehicular Technology,
48(4), pp. 1252–1260. (Cited on page 176.)

Caramia M. and Dell’Olmo P. (2002a). “k-fullins graphs: a proposal of a new class of
benchmarks”. Manuscript. (Cited on page 98.)

Caramia M. and Dell’Olmo P. (2002b). “k-insertions graphs: a proposal of a new class of
benchmarks”. Manuscript. (Cited on page 98.)

Caramia M. and Dell’Olmo P. (2004). “Bounding vertex coloring by truncated multistage
branch and bound”. Networks, 44(4), pp. 231–242. (Cited on pages 102, 137 and 139.)

Carrasco M.P. and Pato M.V. (2001). “A multiobjective genetic algorithm for the
class/teacher timetabling problem”. In Burke and Erben (2001), pp. 3–7. (Cited
on page 219.)

Carter M.W. and Laporte G. (1998). “Recent developments in practical course timeta-
bling”. In Burke and Carter (1998), pp. 3–19. (Cited on page 215.)

Carter M.W., Laporte G., and Lee. S.Y. (1996). “Examination timetabling: Algorithmic
strategies and applications.” Journal of the Operational Research Society, 47, pp. 373–383.
(Cited on page 230.)

Carter M.W. and Price C.C. (2000). Operations Research: a Practical Introduction. CRC
Press LLC, New Yourk, USA. (Cited on page 17.)

Castelino D., Hurley S., and Stephens N. (1996). “A tabu search algorithm for frequency
assignment”. Annals of Operations Research, 63(2), pp. 301–320. (Cited on pages 176
and 197.)

Chand A. (2004). “A constraint based generic model for representing complete univer-
sity timetabling data”. In Burke and Trick (2004), pp. 125–150. (Cited on page 218.)

Cheeseman P., Kanefsky B., and Taylor W.M. (1991). “Where the really hard problems
are”. In Proceedings of the 12th International Joint Conference on Artificial Intelligence,
edited by J. Mylopoulos and R. Reiter, pp. 331–337. Morgan Kaufmann Publishers,
San Francisco, CA, USA. (Cited on pages 99 and 158.)

316 References

Chiarandini M., Dumitrescu I., and Stützle T. (2003). “Local search for the graph colour-
ing problem. A computational study”. Tech. Rep. AIDA–03–01, Intellectics Group,
Computer Science Department, Darmstadt University of Technology, Darmstadt, Ger-
many. (Cited on page 127.)

Chiarandini M. and Stützle T. (2002). “An application of iterated local search to graph
coloring”. In Proceedings of the Computational Symposium on Graph Coloring and its Gen-
eralizations, edited by D.S. Johnson, A. Mehrotra, and M. Trick, pp. 112–125. Ithaca,
New York, USA. (Cited on pages 126 and 130.)

Chiarandini M. and Stützle T. (2002). “Experimental evaluation of course timetabling
algorithms”. Tech. Rep. AIDA-02-05, Intellectics Group, Computer Science Depart-
ment, Darmstadt University of Technology, Darmstadt, Germany. (Cited on pages 81
and 230.)

Coello C.A.C., Aguirre A.H., and Zitzler E. (eds.) (2005). Evolutionary Multi-Criterion
Optimization: Third International Conference, EMO 2005, vol. 3410 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, Germany. (Cited on page 75.)

Cohen P.R. (1995). Empirical Methods for Artificial Intelligence. MIT Press, Boston. (Cited
on pages 5, 43, 53, 255 and 256.)

Conover W. (1999). Practical Nonparametric Statistics. John Wiley & Sons, New York, NY,
USA, third ed. (Cited on pages 56, 60, 62, 66, 67, 80 and 246.)

Cornuéjols G., Liu X., and Vušković K. (2003). “A polynomial algorithm for recognizing
perfect graphs”. In Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 20–27. Computer Society Press. (Cited on page 96.)

Costa D. (1993). “On the use of some known methods for T-colorings of graphs”. Annals
of Operations Research, 41(4), pp. 343–358. (Cited on pages 175, 181, 186 and 197.)

Coudert O. (1997). “Exact coloring of real-life graphs is easy”. In DAC ’97: Proceedings
of the 34th annual conference on Design automation, pp. 121–126. ACM Press, New York,
NY, USA, New York, NY, USA. (Cited on pages 101 and 139.)

Cozzens M.B. and Roberts F.S. (1982). “T-colorings of graphs and the channel assign-
ment problem”. Congressus Numerantium, 35, pp. 191–208. (Cited on pages 174
and 185.)

Crainic T.G., Toulouse M., and Gendreau M. (1997). “Toward a taxonomy of parallel
tabu search heuristics”. INFORMS Journal on Computing, 9(1), pp. 61–72. (Cited on
page 39.)

Crescenzi P. and Viggo K. (2004). “A compendium of NP optimization problems”. Avail-
able online (last visited February 2005). (Cited on pages 16 and 95.)

Culberson J. (1992). “Iterated greedy graph coloring and the difficulty landscape”. Tech.
Rep. 92-07, Department of Computing Science, The University of Alberta, Edmonton,
Alberta, Canada. (Cited on pages 32, 158, 199 and 231.)

References 317

Culberson J. (2001). “Hidden solutions, tell-tales, heuristics and anti-heuristics”. In The
IJCAI-01 Workshop on Empirical Methods in Artificial Intelligence, edited by H. Hoos and
T. Stuëtzle, pp. 9–14. (Cited on page 104.)

Culberson J., Beacham A., and Papp D. (1995). “Hiding our colors”. In Proceedings of the
CP’95 Workshop on Studying and Solving Really Hard Problems, pp. 31–42. Cassis, France.
(Cited on pages 97, 98, 102, 107, 151, 152 and 177.)

Culberson J. and Gent I.P. (1999). “Well out of reach: Why hard problems are hard.”
Tech. Rep. APES–13–1999, APES (Algorithms, Problems, and Empirical Studies)
Group. (Cited on page 158.)

Culberson J. and Gent I.P. (2001). “Frozen development in graph coloring”. Theoretical
Computer Science, 265(1-2). (Cited on page 158.)

Culberson J. and Luo F. (1996). “Exploring the k-colorable landscape with iterated
greedy”. In Johnson and Trick (1996), pp. 245–284. (Cited on page 146.)

Custers N., Causmaecker P.D., Demeester P., and Berghe G.V. (2005). “Semantic compo-
nents for timetabling”. In Burke and Trick (2005), pp. 17–33. (Cited on page 218.)

da Fonseca V.G., Fonseca C.M., and Hall A.O. (2001). “Inferential performance assess-
ment of stochastic optimisers and the attainment function”. In Proceedings of Evolu-
tionary Multi-Criterion Optimization First International Conference, EMO 2001, edited by
C. Coello, D. Corne, K. Deb, L. Thiele, and E. Zitzler, vol. 1993 of Lecture Notes in
Computer Science, pp. 213–224. Springer Verlag, Berlin, Germany. (Cited on pages 70,
74 and 75.)

Daniel W.W. (1978). Applied Nonparametric Statistic. Houghton Mifflin Company, Boston.
(Cited on page 62.)

Dannenbring D.G. (1977). “Procedures for estimating optimal solution values for large
combinatorial problems”. Management Science, 23(12), pp. 1273–1283. (Cited on
pages 45 and 290.)

Daskalaki S., Birbas T., and Housos E. (2004). “An integer programming formulation
for a case study in university timetabling”. European Journal of Operational Research,
153(1), pp. 117–135. (Cited on page 218.)

Davis L. (ed.) (1991). The Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, NY. (Cited on page 34.)

de Werra D. (1985). “An introduction to timetabling”. European Journal of Operational
Research, 19(2), pp. 151–162. (Cited on pages 91, 218 and 223.)

de Werra D. (1990). “Heuristics for graph coloring”. Computing Supplement, 7, pp. 191–
208. (Cited on pages 104 and 173.)

Dean A. and Voss D. (1999). Design and Analysis of experiments. Springer Texts in Statis-
tics. Springer-Verlag, New York, USA. (Cited on pages 48, 50, 55, 56, 57, 60, 61, 63, 68
and 74.)

318 References

Demetrescu C., Finocchi I., and Italiano G.F. (2003). “Algorithm engineering, algorith-
mics column.” Bulletin of the EATCS, 79, pp. 48–63. (Cited on page 227.)

den Besten M.L. (2004). Simple Metaheuristics for Scheduling: An empirical investigation
into the application of iterated local search to deterministic scheduling problems with tardiness
penalties. Ph.D. thesis, Darmstadt University of Technology, Darmstadt, Germany.
(Cited on page 232.)

Di Gaspero L. (2002). Local Search Techniques for Scheduling Problems: Algorithms and
Software Tools. Ph.D. thesis, Computer Science, Università degli Studi di Udine. (Cited
on pages 218 and 229.)

Di Gaspero L. and Schaerf A. (2003a). “EasyLocal++: an object-oriented framework for
the flexible design of local-search algorithms”. Software – Practice & Experience, 33(8),
pp. 733–765. (Cited on pages 3 and 136.)

Di Gaspero L. and Schaerf A. (2003b). “Multi-neighborhood local search with applica-
tion to course timetabling”. In Burke and De Causmaecker (2003). (Cited on page 26.)

Diaz I.M. and Zabala P. (2002). “A branch-and-cut algorithm for graph coloring”. In
Johnson et al. (2002b), pp. 55–62. (Cited on page 102.)

Diestel R. (2000). Graph Theory. Springer-Verlag, New York, Berlin, second ed., electronic
ed. (Cited on pages 94 and 123.)

Dimitriou T. and Impagliazzo R. (1996). “Towards an analysis of local optimization
algorithms”. In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pp. 304–313. ACM Press, New York, NY, USA. (Cited on page 83.)

Dorigo M. and Stützle T. (2004). Ant Colony Optimization. MIT Press, Cambridge, MA,
USA. (Cited on page 33.)

Dorne R. and Hao J. (1998a). “A new genetic local search algorithm for graph coloring”.
In Parallel Problem Solving from Nature - PPSN V, 5th International Conference, edited by
A.E. Eiben, T. Bäck, M. Schoenauer, and H.P. Schwefel, vol. 1498 of Lecture Notes in
Computer Science, pp. 745–754. Springer Verlag, Berlin, Germany. (Cited on pages 126,
134 and 266.)

Dorne R. and Hao J. (1998b). “Tabu search for graph coloring, T-colorings and set
T-colorings”. In Meta-heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization. Kluwer Academic Publishers. (Cited on pages 171, 175, 176, 177, 183, 198,
200, 201, 208, 267, 307 and 308.)

Duin C. and VoßS. (1999). “The pilot method: A strategy for heuristic repetition with
application to the steiner problem in graphs”. Networks, 34(3), pp. 181 – 191. (Cited
on page 23.)

Dumitrescu I. (2002). Constrained path and cycle problems. Ph.D. thesis, The University of
Melbourne. (Cited on pages 118, 164 and 265.)

Dumitrescu I. and Stützle T. (2003). “Combinations of local search and exact algorithms”.
In Applications of Evolutionary Computing, edited by G.R. Raidl et al., vol. 2611 of Lecture

References 319

Notes in Computer Science, pp. 211–223. Springer Verlag, Berlin, Germany. (Cited on
page 36.)

Eisenblätter A., Grötschel M., and Koster A.M.C.A. (2002). “Frequency assignment
and ramifications of coloring”. Discussiones Mathematicae Graph Theory, 22, pp. 51–
88. (Cited on pages 171, 175 and 183.)

Ekenstierna M. (2004). “Multiple comparison procedures based on marginal p-values”.
Tech. Rep. 2004:12, Matematiska Institutionen, Uppsala Universitet. (Cited on
page 55.)

Erdős P. (1961). “Graph theory and probability II”. Canadian Journal of Mathematics, 13,
pp. 346–352. (Cited on pages 96 and 123.)

Ernst A.T., Jiang H., Krishnamoorthy M., and Sier D. (2004). “Staff scheduling and ros-
tering: A review of applicationss, methods and models”. European Journal of operational
Research, 153(1), pp. 3–27. (Cited on page 217.)

Faigle U. and Kern W. (1991). “Note on the convergence of simulated annealing al-
gorithms”. SIAM Journal on Control and Optimization, 29(1), pp. 153–159. (Cited on
page 37.)

Faigle U. and Kern W. (1992). “Some convergence results for probabilistic tabu search”.
ORSA Journal on Computing, 4(1), pp. 32–37. (Cited on page 37.)

Feige U. and Kilian J. (1998). “Zero knowledge and the chromatic number”. Journal of
Computer and System Sciences, 57(2), pp. 187–199. (Cited on page 95.)

Fielding M. (2000). “Simulated annealing with an optimal fixed temperature”. SIAM
Journal on Optimisation, 11(2), pp. 289–307. (Cited on page 29.)

Fink A. and Voß S. (2002). “A heuristic optimization framework”. In Optimization Soft-
ware Class Libraries, edited by S.V. and D.L. Woodruff, pp. 81–154. Kluwer Academic
Publishers, Boston, MA, USA. (Cited on page 228.)

Finos L., Pesarin F., and Salmaso L. (2003). “Confronti multipli tramite metodi di per-
mutazione”. Statistica Applicata (Italian Journal of Applied Statistics), 15(2), pp. 275–300.
(Cited on page 287.)

Fischetti M. and Lodi A. (2003). “Local branching”. Mathematical Programming, 98, pp.
23–47. (Cited on page 36.)

Fleischer R., Moret B., and Schmidt E.M. (eds.) (2002). Experimental Algorithmics: From
Algorithm Design to Robust and Efficient Software, vol. 2547 of Lecture Notes in Computer
Science. Springer Verlag, Berlin, Germany. (Cited on pages 5, 43 and 328.)

Fleurent C. and Ferland J. (1996). “Genetic and hybrid algorithms for graph coloring”.
Annals of Operations Research, 63, pp. 437–464. (Cited on pages 113, 126 and 134.)

Fonseca C.M. and Fleming P.J. (1996). “On the performance assessment and comparison
of stochastic multiobjective optimizers”. In Proceedings of the 4th International Conference
on Parallel Problem Solving from Nature, Lecture Notes In Computer Science, pp. 584–
593. Springer Verlag, Berlin, Germany. (Cited on pages 5, 76 and 77.)

320 References

Frank J., Cheeseman P., and Stutz J. (1997). “When gravity fails: Local search topology”.
Journal of Artificial Intelligence Research, 7, pp. 249–281. (Cited on page 82.)

Freimer R. (2000). “Generalized map coloring for use in geographical information sys-
tems”. In ACM-GIS 2000, Proceedings of the Eighth ACM Symposium on Advances in Ge-
ographic Information Systems, edited by K.J. Li, K. Makki, N. Pissinou, and S. Ravada,
pp. 167–173. ACM press, New York, NY, USA. (Cited on page 94.)

Freuder E.C. (ed.) (1996). A View of Local Search in Constraint Programming, vol. 1118
of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany. (Cited on
page 36.)

Frick A., Ludwig A., and Mehldau H. (1994). “A fast adaptive layout algorithm for
undirected graphs”. In Proceedings of Graph Drawing, DIMACS International Workshop,
GD ’94, edited by R. Tamassia and I.G. Tollis, vol. 894 of Lecture Notes in Computer
Science, pp. 388–403. Springer Verlag, Berlin, Germany, Berlin, Germany. (Cited on
page 135.)

Friedman M. (1937). “The use of ranks to avoid the assumption of normality implicit in
the analysis of variance”. Journal of the American Statistical Association, 32, pp. 675–701.
(Cited on page 62.)

Galinier P. and Hao J. (1999). “Hybrid evolutionary algorithms for graph coloring”.
Journal of Combinatorial Optimization, 3(4), pp. 379–397. (Cited on pages 126, 130, 146
and 266.)

Galinier P., Hertz A., and Zufferey N. (2002). “Adaptive memory algorithms for graph
colouring”. In Johnson et al. (2002b), pp. 75–82. Also available as Technical Report
G–2003–35, Les Cachiers du GERAD. (Cited on page 131.)

Garey M.R. and Johnson D.S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, USA. (Cited on pages 16, 95, 223
and 225.)

Garey M.R., Johnson D.S., and So H.C. (1976). “An application of graph coloring to
printed circuit testing”. IEEE Transactions on Circuits and Systems, 23, pp. 591–599.
(Cited on page 91.)

Giaro K., Janczewski R., and Malafiejski M. (2003a). “The complexity of the T-coloring
problem for graphs with small degree”. Discrete Applied Mathematics, 129(2-3), pp.
361–369. (Cited on page 175.)

Giaro K., Janczewski R., and Malafiejski M. (2003b). “A polynomial algorithm for find-
ing T-span of generalized cacti”. Discrete Applied Mathematics, 129(2-3), pp. 371–382.
(Cited on page 175.)

Glass C.A. and Prügel-Bennett A. (2005). “A polynomially searchable exponential neigh-
bourhood for graph colouring”. Journal of the Operational Research Society, 56(3), pp.
324–330. (Cited on pages 131, 165 and 271.)

Glover F. (1986). “Future paths for integer programming and links to artificial intelli-
gence”. Computers and Operations Research, 13(5), pp. 533–549. (Cited on page 26.)

References 321

Glover F. (1989). “Tabu search – part I”. ORSA Journal on Computing, 1(3), pp. 190–206.
(Cited on page 29.)

Glover F. (1990). “Tabu search – part II”. ORSA Journal on Computing, 2(1), pp. 4–32.
(Cited on page 29.)

Glover F. (1996). “Ejection chains, reference structures and alternating path methods
for traveling salesman problems”. Discrete Applied Mathematics, 65(1-3), pp. 223–253.
(Cited on page 26.)

Glover F. and Hanafi S. (2002). “Tabu search and finite convergence”. Discrete Applied
Mathematics, 119(1–2), pp. 3–36. (Cited on page 37.)

Glover F. and Kochenberger G. (eds.) (2002). Handbook of Metaheuristics, vol. 57 of Interna-
tional Series in Operations Research & Management Science. Kluwer Academic Publishers,
Norwell, MA, USA. (Cited on pages 4, 23, 322 and 327.)

Glover F. and Laguna M. (1997). Tabu Search. Kluwer Academic Publishers. (Cited on
page 29.)

Glover F. and Punnen A. (1997). “The travelling salesman problem: New solvable cases
and linkages with the development of approximation algorithms”. Journal of the Oper-
ational Research Society, 48, pp. 502–510. (Cited on page 273.)

Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA, USA. (Cited on pages 34 and 82.)

Golden B.L. and Alt F.B. (1979). “Interval estimation of a global optimum for large
combinatorial problems”. Naval Research Logistics Quarterly, 26, pp. 69–77. (Cited on
pages 45 and 290.)

Goldwasser M.H., Johnson D.S., and McGeoch C.C. (eds.) (2002). Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
vol. 59 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, Providence, RI, USA. (Cited on pages 325 and 329.)

Gomes C. and Shmoys D. (2002). “Completing quasigroups or latin squares: A struc-
tured graph coloring problem”. In Johnson et al. (2002b), pp. 22–39. (Cited on
pages 91, 102, 177, 178, 179 and 180.)

Gomes C. and Shmoys D. (2004). “Approximations and randomization to boost CSP
techniques”. Annals of Operations Research, 130(1-4), pp. 117–141. (Cited on page 36.)

Gonzalez L. and Manly B.F.J. (1998). “Analysis of variance by randomization with small
data sets”. Environmetrics, 9(1), pp. 53–65. (Cited on page 287.)

González-Velarde J. and Laguna M. (2002). “Tabu search with simple ejection chains
for coloring graphs”. Annals of Operations Research, 117(1-4), pp. 165–174. (Cited on
page 112.)

Good P. (2000). Permutations tests: a practical guide to resempling methods for testing hy-
potheses. Springer Verlag, New York, NY, USA, second ed. (Cited on pages 52, 53, 54,
64 and 79.)

322 References

Graham R.L., Knuth D.E., and Patashnik O. (1994). Concrete Mathematics. Addison-
Wesley, Reading, MA, USA, second ed. (Cited on page 116.)

Grötschel M., Lovász L., and Schrijver A. (1981). “The ellipsoid method and its conse-
quences in combinatorial optimization”. Combinatorica, 1(2), pp. 169–197. (Cited on
page 96.)

Grover L.K. (1992). “Local search and the local structure of NP-complete problems”.
Operations Research Letters, 12(4), pp. 235–243. (Cited on pages 83 and 84.)

Gusfield D. (2002). “Partition-distance: A problem and class of perfect graphs arising
in clustering”. Information Processing Letters, 82(3), pp. 159–164. (Cited on pages 131
and 252.)

Gutin G., Koller A., and Yeo A. (2005). “Introduction to domination analysis”.
Manuscript. (Cited on pages 273 and 278.)

Gutin G. and Punnen A. (eds.) (2002). The Traveling Salesman Problem and Its Variations.
Kluwer Academic Publishers, Boston, MA, USA. (Cited on pages 322 and 325.)

Gutin G., Vainshtein A., and Yeo A. (2003). “Domination analysis of combinatorial
optimization problems”. Discrete Applied Mathematics, 129(2-3), pp. 513–520. (Cited
on pages 37, 273, 278 and 286.)

Gutin G., Yeo A., and Zverovitch A. (2002). “Exponential neighborhoods and domination
analysis for the TSP”. In Gutin and Punnen (2002), chap. 6. (Cited on pages 37, 278
and 286.)

Gutjahr W.J. (2002). “ACO algorithms with guaranteed convergence to the optimal
solution”. Information Processing Letters, 82(3), pp. 145–153. (Cited on page 37.)

Hajek B. (1988). “Cooling schedules for optimal annealing”. Mathematics of Operations
Research, 13(2), pp. 311–329. (Cited on page 37.)

Hale W.K. (1980). “Frequency assignment: Theory and applications”. Proceedings of the
IEEE, 68(12), pp. 1497–1514. (Cited on pages 170 and 173.)

Halldórsson M.M. (1993). “A still better performance guarantee for approximate graph
coloring”. Information Processing Letters, 45(1), pp. 19–23. (Cited on page 95.)

Hansen P., Hertz A., and Kuplinsky J. (1993). “Bounded vertex colorings of graphs”.
Discrete Mathmatics, 111(1-3), pp. 305–312. (Cited on page 224.)

Hansen P. and Jaumard B. (1990). “Algorithms for the maximum satisfiability problem”.
Computing, 44, pp. 279–303. (Cited on page 29.)

Hansen P. and Mladenovic N. (2002). “Variable neighborhood search”. In Glover and
Kochenberger (2002), pp. 145–184. (Cited on page 25.)

Hao J.K., Dorne R., and Galinier P. (1998). “Tabu search for frequency assignment in
mobile radio networks”. Journal of Heuristics, 4(1), pp. 47–62. (Cited on pages 176,
199 and 267.)

References 323

Hao J.K. and Perrier L. (1999). “Tabu search for the frequency assignment problem in
cellular radio networks”. Tech. Rep. LGI2P, EMA-EERIE, Parc Scientifique Georges
Besse, Nimes, France. (Cited on page 199.)

Heitjan D.F., Manni A., and Santen R.J. (1993). “Statistical analysis of in Vivo tumor
growth experiments”. Cancer Research, 53(24), pp. 6042–6050. (Cited on page 78.)

Herrmann F. and Hertz A. (2002). “Finding the chromatic number by means of critical
graphs”. Journal of Experimental Algorithmics, 7, p. 10. (Cited on page 102.)

Hertz A. and de Werra D. (1987). “Using tabu search techniques for graph coloring”.
Computing, 39(4), pp. 345–351. (Cited on pages 126, 134 and 266.)

Hertz A., Jaumard B., and de Aragão M.P. (1994). “Local optima topology for the k-
coloring problem”. Discrete Applied Mathematics, 49(1-3), pp. 257–280. (Cited on
page 149.)

Hochbaum D. (ed.) (1996). Approximation Algorithms for NP-hard problems. PWS Pub-
lishing, Boston, MA, USA. (Cited on page 16.)

Hochberg Y. and Tamhane A.C. (1987). Multiple comparison procedures. Wiley, New York,
USA. (Cited on pages 54 and 55.)

Hogg T. (1996). “Refining the phase transition in combinatorial search”. Artificial Intelli-
gence, 81(1–2), pp. 127–154. (Cited on page 158.)

Holland J.H. (1975). Adaption in natural and artificial systems. The University of Michigan
Press, Ann Arbor, MI, USA. (Cited on page 34.)

Hollander M. and Wolfe D.A. (1999). Nonparametric Statistical Methods. John Wiley &
Sons, New York, NY, USA, second ed. (Cited on pages 53, 56, 60 and 62.)

Holm S. (1979). “A simple sequentially rejectvie multiple test procedure”. Scandinavian
Journal of Statistics, 6, pp. 65–70. (Cited on page 55.)

Hooker J.N. (1996). “Needed: An empirical science of algorithms”. Operations Research,
42(2), pp. 201–212. (Cited on pages 5 and 42.)

Hoos H. and Stützle T. (1999). “Characterising the behaviour of stochastic local search”.
Artificial Intelligence, 112(1–2), pp. 213–232. (Cited on page 250.)

Hoos H. and Stützle T. (2004). Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann Publishers, San Francisco, CA, USA. (Cited on pages 3, 4, 21, 23, 74,
76, 80 and 227.)

Hoos H.H. (1999a). “On the run-time behaviour of stochastic local search algorithms
for SAT”. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pp.
661–666. AAAI Press / The MIT Press, Menlo Park, CA, USA. (Cited on page 129.)

Hoos H.H. (1999b). “SAT-encodings, search space structure, and local search perfor-
mance”. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence, edited by T. Dean, pp. 296–302. Morgan Kaufmann Publishers, San Francisco,
CA, USA. (Cited on page 102.)

324 References

Hoos H.H. and Stützle T. (1998). “Evaluating Las Vegas algorithms — pitfalls and reme-
dies”. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
(UAI-98), edited by G.F. Cooper and S. Moral, pp. 238–245. Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA. (Cited on page 81.)

Hoos H.H. and Stützle T. (2000). “Local search algorithms for SAT: An empirical eval-
uation”. Journal of Automated Reasoning, 24(4), pp. 421–481. (Cited on pages 80, 128
and 129.)

Hordijk W. and Manderick B. (1995). “The usefulness of recombination.” In Proceedings of
Advances in Artificial Life, Third European Conference on Artificial Life, edited by F. Morán,
A. Moreno, J.J.M. Guervós, and P. Chacón, vol. 929 of Lecture Notes in Computer Science,
pp. 908–919. Springer Verlag, Berlin, Germany. (Cited on page 84.)

Hossain S. and Steihaug T. (2002). “Graph coloring in the estimation of mathematical
derivatives”. In Johnson et al. (2002b), pp. 9–16. (Cited on pages 91 and 99.)

Hougardy S. (1998). “Inclusions between classes of perfect graphs”. Tech. rep.,
Humboldt-Universität zu Berlin. Manuscript. (Cited on page 96.)

Hsu J.C. (1996). Multiple Comparisons. Theory and Methods. Chapman & Hall. (Cited on
pages 55, 57, 58, 60, 62, 70, 71, 74 and 141.)

Hurley S., Smith D.H., and Thiel S.U. (1997). “FASoft: A system for discrete channel
frequency assignment”. Radio Science, 32(5), pp. 1921–1939. (Cited on pages 176, 181,
186, 192 and 197.)

Hutter F., Tompkins D.A.D., and Hoos H.H. (2002). “Scaling and probabilistic smooth-
ing: Efficient dynamic local search for SAT”. In Principles and Practice of Constraint
Programming – CP 2002, edited by P.V. Hentenryck, vol. 2470 of Lecture Notes in Com-
puter Science, pp. 233–248. Springer Verlag, Berlin, Germany. (Cited on pages 30
and 129.)

Ibaraki T., Imahori S., Kubo M., Masuda T., Uno T., and Yagiura M. (2004). “Effective lo-
cal search algorithms for routing and scheduling problems with general time-window
constraints”. Transportation Science. To appear. (Cited on page 164.)

Igel C. and Toussaint M. (2003). “On classes of functions for which no free lunch results
hold”. Information Processing Letters. (Cited on page 37.)

Janssen J. and Kilakos K. (1999). “An optimal solution to the "philadelphia" channel
assignment problem”. IEEE Transactions on Vehicular Technology, 48(3), pp. 1012–1014.
(Cited on page 183.)

Janssen J. and Narayanan L. (2001). “Approximation algorithms for the channel assign-
ment problem”. Theoretical Computer Science A, 262, pp. 649–667. Extended abstract
published in the proceedings of ISAAC’99. (Cited on page 175.)

Janssen J., Wentzell T., and Fitzpatrick S. (2005). “Lower bounds from tile covers for
the channel assignment problem”. SIAM Journal of Discrete Mathematics, 18(4), pp.
679–696. (Cited on page 175.)

References 325

Jensen T.R. and Toft B. (1995). Graph coloring problems. Wiley Interscience, New York,
USA. (Cited on page 175.)

Johnson D., Gutin G., McGeoch C., Yeo A., Zhang X., and Zverovitch A. (2002a). “Exper-
imental analysis of heuristics for the ATSP”. In Gutin and Punnen (2002), pp. 445–487.
(Cited on page 6.)

Johnson D.S. (1974). “Worst-case behavior of graph-coloring algorithms”. In South-
Eastern Conference on Combinatorics, Graph Theory and Computing, edited by F. Hoffman,
R. Kingsley, R. Levow, R. Mullin, and R. Thomas, vol. X of Congressus Numerantium,
pp. 513–528. Utilitas Mathematica Publishing, Winnipeg, Canada. (Cited on page 95.)

Johnson D.S. (2002). “A theoretician’s guide to the experimental analysis of algorithms”.
In Goldwasser et al. (2002), pp. 215–250. (Cited on page 43.)

Johnson D.S., Aragon C.R., McGeoch L.A., and Schevon C. (1991). “Optimization by
simulated annealing: An experimental evaluation; part II, graph coloring and number
partitioning”. Operations Research, 39(3), pp. 378–406. (Cited on pages 97, 101, 108,
109, 115, 131, 132, 152, 183, 243, 266, 301 and 304.)

Johnson D.S. and McGeoch L.A. (1997). “The Travelling Salesman Problem: A Case
Study in Local Optimization”. In Aarts and Lenstra (1997), pp. 215–310. (Cited on
page 22.)

Johnson D.S. and McGeoch L.A. (2002). “Experimental analysis of heuristics for the
STSP”. In Gutin and Punnen (2002), pp. 369–443. (Cited on pages 5 and 6.)

Johnson D.S., Mehrotra A., and Trick M. (eds.) (2002b). Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations. Ithaca, New York, USA. (Cited
on pages 312, 318, 320, 321, 324, 328 and 330.)

Johnson D.S., Papadimitriou C.H., and Yannakakis M. (1988). “How easy is local
search?” Journal of Computer and System Science, 37(1), pp. 79–100. (Cited on page 37.)

Johnson D.S. and Trick M. (eds.) (1996). Cliques, Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, 1993, vol. 26 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, Providence, RI, USA.
(Cited on pages 317, 327 and 329.)

Johri A. and Matula D. (1982). “Probabilistic bounds and heuristic algorihms for coloring
large random graphs”. Tech. Rep. 82-CSE-6, Southern Methodist University, Dallas,
Texas, USA. (Cited on pages 95, 96, 97, 104 and 132.)

Jones T. and Forrest S. (1995). “Fitness distance correlation as a measure of problem
difficulty for genetic algorithms”. In Proceedings of the Sixth International Conference on
Genetic Algorithms, edited by L.J. Eshelman, pp. 184–192. Morgan Kaufmann Publish-
ers, San Mateo, CA, USA. (Cited on page 84.)

Jonker R. and Volgenant A. (1987). “A shortest augmenting path algorithm for dense
and sparse linear assignment problems”. Computing, 38(4), pp. 325–340. (Cited on
pages 131 and 252.)

326 References

Joslin D.E. and Clements D.P. (1999). “Squeaky wheel optimization”. Journal of Artificial
Intelligence Research, 10, pp. 353–373. (Cited on page 32.)

Karp R.M. (1972). “Reducibility among combinatorial problems”. In Complexity of Com-
puter Computations, edited by R.E. Miller and J.W. Thatcher, pp. 85–103. Plenum Press,
New York, USA. (Cited on page 95.)

Kendall G. and Mohamad M. (2004). “Solving the fixed channel assignment problem in
cellular communications using an adaptive local search”. In Burke and Trick (2004),
pp. 219–231. (Cited on page 176.)

Kernighan B. and Lin S. (1970). “An efficient heuristic procedure for partitioning
graphs”. Bell System Technical Journal, 49, pp. 291–307. (Cited on page 26.)

Khanna S., Motwani R., Sudan M., and Vazirani U. (1998). “On syntactic versus com-
putational views of approximability”. SIAM Journal on Computing, 28(1), pp. 164–191.
(Cited on page 37.)

Kirkpatrick S., Jr. D.G., and Vecchi M.P. (1983). “Optimization by simulated annealing”.
Science, 220(4598), pp. 671–680. (Cited on page 27.)

Klotz W. (2002). “Graph coloring algorithms”. Tech. Rep. Mathematik-Bericht 5,
Clausthal University of Technology, Clausthal, Germany. (Cited on page 106.)

Knuth D. (1993). The Stanford GraphBase: a platform for combinatorial computing. ACM
press, New York, NY, USA. (Cited on page 99.)

Kostuch P. (2003). “University course timetabling”. Transfer Thesis, Oxford University,
England. (Cited on page 245.)

Kostuch P. (2005). “The university course timetabling problem with a three-phase ap-
proach”. In Burke and Trick (2005), pp. 109–125. (Cited on pages 224, 245 and 257.)

Kostuch P. and Socha K. (2004). “Hardness prediction for the university course time-
tabling problem”. In Evolutionary Computation in Combinatorial Optimization, 4th Euro-
pean Conference, EvoCOP 2004, edited by J. Gottlieb and G.R. Raidl, vol. 3004 of Lecture
Notes in Computer Science, pp. 132–141. Springer Verlag, Berlin, Germany. (Cited on
page 256.)

Lan K. and DeMets D. (1983). “Discrete sequential boundaries for clinical trials”.
Biometrika, 70(3), pp. 659–663. (Cited on page 73.)

Lanfear T.A. (1989). “Graph theory and radio frequency assignment”. Tech. Rep. NATO
Unclassified, Allied Radio Frequency Agency (ARFA), Brussels, Belgium. (Cited on
page 181.)

Larrañaga P. and Lozano J.A. (2001). Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Kluwer Academic Publishers. (Cited on page 34.)

L’Ecuyer P. (1988). “Efficient and portable combined random number generators”. Com-
munications of the ACM, 31, pp. 742–749 and 774. (Cited on page 289.)

References 327

Lehmann E.L. (1986). Testing statistical hypothesis. John Wiley & Sons, New York, NY,
USA, second ed. (Cited on page 67.)

Leighton F.T. (1979). “A graph coloring algorithm for large scheduling problems”. Jour-
nal of Research of the National Bureau of Standards, 84(6), pp. 489–506. (Cited on pages 91
and 104.)

Lewandowski G. and Condon A. (1996). “Experiments with parallel graph coloring
heuristics and applications of graph coloring”. In Johnson and Trick (1996), pp. 309–
334. (Cited on pages 91 and 99.)

Lim A., Zhang X., and Zhu Y. (2003). “A hybrid method for the graph coloring and
related problems”. In Proceedings of MIC’2003 – The Fifth Metaheuristics International
Conference. Kyoto-Japan. (Cited on pages 175, 176, 199, 200, 201, 212 and 267.)

Lin S. and Kernighan B.W. (1973). “An effective heuristic algorithm for the traveling
salesman problem”. Operations Research, 21(2), pp. 498–516. (Cited on pages 25, 119
and 120.)

Loughlin T.M. and Noble W. (1997). “A permutation test for effects in an unreplicated
factorial design”. Technometrics, 39(2), pp. 180–190. (Cited on page 64.)

Lourenço H.R., Martin O., and Stützle T. (2002). “Iterated local search”. In Glover and
Kochenberger (2002), pp. 321–353. (Cited on page 31.)

Lourenço H.R. (1995). “Job-shop scheduling: computational study of local search and
large-step optimization methods”. European Journal of Operational Research, 83(2).
(Cited on page 36.)

Luczak T. (1991). “The chromatic number of random graphs”. Combinatorica, 11(1), pp.
45–54. (Cited on page 96.)

Mahadev N. and Roberts F. (2003). “Consensus list colorings of graphs and physical
mapping of DNA”. In Bioconsensus, edited by M. Janowitz, F.J. Lapointe, F. McMorris,
B. Mirkin, and F. Roberts, vol. 61 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pp. 83–95. American Mathematical Society, Providence, RI,
USA, Providence, RI. (Cited on page 173.)

Maron O. and Moore A. (1994). “Hoeffding races: Accelerating model selection search
for classification and function approximation”. In Advances in Neural Information Pro-
cessing Systems, edited by J.D. Cowan, G. Tesauro, and J. Alspector, vol. 6, pp. 59–66.
Morgan Kaufmann Publishers, San Francisco, CA, USA. (Cited on page 72.)

Maron O. and Moore A.W. (1997). “The racing algorithm: Model selection for lazy
learners.” Artificial Intelligence Review, 11(1-5), pp. 193–225. (Cited on page 72.)

Marriott K. and Stuckey P.J. (1998). Programming with Constraints: An Introduction. MIT
Press, Cambridge, Massachusetts. (Cited on page 20.)

Marx D. (2004). Graph Coloring with Local and Global Constraints. Ph.D. thesis, Budapest
University of Technology and Economics, Hungary. (Cited on page 175.)

328 References

Mastrolilli M. and Gambardella L. (2004). “Maximum satisfiability: How good are tabu
search and plateau moves in the worst-case?” European Journal of Operational Research,
166(1), pp. 63–76. (Cited on page 37.)

McAllester D., Selman B., and Kautz H. (1997). “Evidence for invariants in local search”.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp. 321–326.
AAAI Press / The MIT Press, Menlo Park, CA, USA. (Cited on page 128.)

McGeoch C., Sanders P., Fleischer R., Cohen P.R., and Precup D. (2002). “Using finite
experiments to study asymptotic performance”. In Fleischer et al. (2002), pp. 93–126.
(Cited on pages 202 and 204.)

McGeoch C.C. (1992). “Analyzing algorithms by simulation: Variance reduction tech-
niques and simulation speedups”. ACM Computing Surveys, 24(2), pp. 195–212. (Cited
on page 50.)

McRoberts K.L. (1971). “A search model for evaluating combinatorially explosive prob-
lems”. Operations Research, 19(6), pp. 1331–1349. (Cited on pages 45 and 290.)

Mehrotra A. and Trick M. (1996). “A column generation approach for graph coloring”.
INFORMS Journal On Computing, 8(4), pp. 344–354. (Cited on pages 100, 101, 181
and 266.)

Merlot L.T.G., Boland N., Hughes B.D., and Stuckey P.J. (2003). “A hybrid algorithm
for the examination timetabling problem”. In Burke and De Causmaecker (2003), pp.
207–231. (Cited on page 219.)

Merz P. (2000). Memetic algorithms for combinatorial optimization problems: fitness landscapes
and effective search strategies. Ph.D. thesis, Department of Electrical Engineering and
Computer Science, University of Siegen, Germany. (Cited on page 82.)

Merz P. and Freisleben B. (2000). “Fitness landscape analysis and memetic algorithms
for the quadratic assignment problem”. IEEE Transactions on Evolutionary Computation,
4(4), pp. 337–352. (Cited on page 82.)

Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., and Teller E. (1953). “Equation
of state calculation by fast computing machines”. Journal of Chemical Physics, 21, pp.
1087–1092. (Cited on page 28.)

Michalewicz Z. and Fogel D.B. (2000). How to solve it: Modern Heuristics. Springer Verlag,
Berlin, Germany. (Cited on page 216.)

Mills P. and Tsang E. (2000). “Guided local search for solving SAT and weighted MAX-
SAT problems”. Journal of Automated Reasoning, 24(1-2), pp. 205–223. Special Issue on
Satisfiability Problems. (Cited on pages 30 and 129.)

Minton S., Johnston M., Philips A., and Laird P. (1992). “Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems”. Artificial Intel-
ligence, 58(1-3), pp. 161–205. (Cited on page 127.)

Mizuno K. and Nishihara S. (2002). “Toward ordered generation of exceptionally hard
instances for graph 3-colorability”. In Johnson et al. (2002b), pp. 1–8. (Cited on
page 99.)

References 329

Monasson R., Zecchina R., Kirkpatrick S., Selman B., and Troyansky L. (1999). “Compu-
tational complexity from "characteristic" phase transitions”. Nature, 400, pp. 133–137.
(Cited on page 86.)

Montemanni R. (2001). Upper and lower bounds for the fixed spectrum frequency assignment
problem. Ph.D. thesis, Division of Mathematics and Statistics, School of Technology,
University of Glamorgan, UK. (Cited on page 175.)

Montgomery D.C. (2005). Design and Analysis of Experiments. John Wiley & Sons, sixth
ed. (Cited on pages 51, 56, 57 and 291.)

Moret B. (2002). “Towards a discipline of experimental algorithmics”. In Goldwasser
et al. (2002), pp. 197–213. (Cited on pages 42 and 43.)

Morgenstern C. (1996). “Distributed coloration neighborhood search”. In Johnson and
Trick (1996), pp. 335–357. (Cited on page 113.)

Morgenstern C. and Shapiro H. (1990). “Coloration neighborhood structures for general
graph coloring”. In Proceedings of the first annual ACM-SIAM Symposium on Discrete
algorithms, pp. 226–235. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA. (Cited on pages 110 and 112.)

Motwani R. and Raghavan P. (1995). Randomized Algorithms. Cambridge University
Press, Cambridge, UK. (Cited on page 21.)

Murphey R.A., Pardalos P.M., and Resende M.G.C. (1999). “Frequency assignment prob-
lems”. In Handbook of combinatorial optimization, edited by D.Z. Du and P.M. Pardalos,
vol. A, Supplement. kap. (Cited on pages 174 and 185.)

Naudts B. and Kallel L. (2000). “A comparison of predictive measures of problem diffi-
culty in evolutionary algorithms”. IEEE Transactions on Evolutionary Computation, 4(1),
pp. 1–16. (Cited on page 85.)

Newall J.P. (1999). Hybrid methods for automated timetabling. Ph.D. thesis, Department of
Computer Science, University of Nottingham, UK. (Cited on page 230.)

Ovacik I.M., Rajagopalan S., and Uzsoy R. (2000). “Integrating interval estimates of
global optima and local search methods for combinatorial optimization problems”.
Journal of Heuristics, 6(4), pp. 481–500. (Cited on page 45.)

Papadimitriou C.H. (1994). Computational Complexity. Addison-Wesley, Reading, MA,
USA. (Cited on page 16.)

Papadimitriou C.H. and Steiglitz K. (1982). Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Inc., Englewood Cliffs, NJ. (Cited on pages 4, 16 and 236.)

Paquete L. (2005). Stochastic Local Search Algorithms for Multiobjective Combinatorial Opti-
mization: Methods and Analysis. Ph.D. thesis, Technische Universität Darmstadt, Darm-
stadt, Germany. Forthcoming. (Cited on page 76.)

Paquete L., Chiarandini M., and Stützle T. (2004). “Pareto local optimum sets in the
biobjective traveling salesman problem: An experimental study”. In Metaheuristics

330 References

for Multiobjective Optimisation, edited by X. Gandibleux, M. Sevaux, K. Sörensen, and
V. T’kindt, vol. 535 of Lecture Notes in Economics and Mathematical Systems, pp. 177–200.
Springer Verlag, Berlin, Germany. (Cited on page 85.)

Paquete L. and Fonseca C. (2001). “A study of examination timetabling with multiobjec-
tive evolutionary algorithms”. In Proceedings of MIC’2001 – Meta–heuristics International
Conference, pp. 149–154. Porto, Portugal. (Cited on page 219.)

Paquete L. and Stützle T. (2002a). “Empirical analysis of tabu search for the lexicographic
optimization of the examination timetabling problem”. In Burke and Causmaecker
(2002), pp. 413–420. Also available as Technical Report AIDA-02-02, FG Intellektik, FB
Informatik, Technische Universität Darmstadt, 2002. (Cited on page 219.)

Paquete L. and Stützle T. (2002b). “An experimental investigation of iterated local search
for coloring graphs”. In Applications of Evolutionary Computing, edited by S. Cagnoni,
J. Gottlieb, E. Hart, M. Middendorf, and G. Raidl, vol. 2279 of Lecture Notes in Computer
Science, pp. 122–131. Springer Verlag, Berlin, Germany. (Cited on page 130.)

Pardalos P. and Romeijn E. (eds.) (2002). Handbook of Global Optimization, Volume 2:
Heuristic Approaches. Kluwer Academic Publishers. (Cited on page 43.)

Paschos V.T. (2003). “Polynomial approximation and graph-coloring”. Computing, 70(1),
pp. 41–86. (Cited on page 95.)

Peemöller J. (1983). “A correction to Brelaz’s modification of Brown’s coloring algo-
rithm”. Communications of the ACM archive, 26(8), pp. 595–597. (Cited on page 101.)

Pelikan M., Goldberg D.E., and Cantú-Paz E. (1999). “BOA: The Bayesian optimiza-
tion algorithm”. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-1999), edited by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, and R.E. Smith, vol. I, pp. 525–532. Morgan Kaufmann Publishers, San
Francisco, CA, USA. (Cited on page 34.)

Pesarin F. (2001). Multivariate Permutation Tests. With applications in Biostatistics. John
Wiley & Sons, New York, NY, USA. (Cited on pages 52, 53, 59, 64, 65, 69 and 79.)

Phan V. and Skiena S. (2002). “Coloring graphs with a general heuristic search engine”.
In Johnson et al. (2002b), pp. 92–99. (Cited on page 175.)

Popper K. (1963). Conjectures and Refutations. Routledge. (Cited on page 4.)

Post G. and Veltman B. (2004). “Harmonious personnel scheduling”. In Burke and Trick
(2004), pp. 557–559. (Cited on page 218.)

Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. (1992). Numerical Recipes in
C: the art of scientific computing. Cambridge University Press, Cambridge, UK, second
ed. (Cited on pages 62 and 289.)

Prestwich S. (2002a). “Coloration neighbourhood search with forward checking”. Annals
of Mathematics and Artificial Intelligence, 34(4), pp. 327–340. (Cited on page 145.)

Prestwich S. (2002b). “Constrained bandwidth multicoloration neighbourhoods”. In
Johnson et al. (2002b), pp. 126–133. (Cited on pages 36, 198, 200 and 267.)

References 331

Prestwich S. (2003). “Hybrid local search on two multicolouring models”. In International
Symposium on Mathematical Programming. Copenhagen, Denmark. (Cited on pages 175,
198, 200, 201 and 207.)

Rardin R.L. and Uzsoy R. (2001). “Experimental evaluation of heuristic optimization
algorithms: A tutorial”. Journal of Heuristics, 7(3), pp. 261–304. (Cited on pages 5, 43,
45, 49 and 50.)

Raychaudhuri A. (1994). “Further results on T-coloring and frequency assignment prob-
lems”. SIAM Journal on Discrete Mathematics, 7(4), pp. 605–613. (Cited on page 183.)

Risler M., Chiarandini M., Paquete L., Schiavinotto T., and Stützle T. (2004). “An al-
gorithm for the car sequencing problem of the ROADEF 2005 challenge”. Tech. Rep.
AIDA-04-06, Intellectics Group, Computer Science Department, Darmstadt University
of Technology. (Cited on pages 38 and 257.)

Roberts F.S. (1991). “T-colorings of graphs: Recent results and open problems”. Discrete
Mathematics, 93(2-3), pp. 229–245. (Cited on pages 174 and 175.)

Robertson N., Sanders D.P., Seymour P., and Thomas R. (1996). “A new proof of the
four-colour theorem”. Electronic Research Announcements of the American Mathematical
Society, 2(1), pp. 17–25. (Cited on page 94.)

Rochat Y. and Taillard E.D. (1995). “Probabilistic diversification and intensification in
local search for vehicle routing”. Journal of Heuristics, 1, pp. 147–167. (Cited on
page 32.)

Rossi-Doria O. and Paechter B. (2003). “An hyperheuristic approach to course timeta-
bling problem using evolutionary algorithm”. Tech. Rep. CC-00970503, Napier Uni-
versity, Edinburgh, Scotland. (Cited on page 237.)

Rossi-Doria O., Paechter B., Blum C., Socha K., and Samples M. (2002). “A local search
for the timetabling problem”. In Burke and Causmaecker (2002), pp. 124–127. (Cited
on pages 230, 233 and 237.)

Rossi-Doria O., Samples M., Birattari M., Chiarandini M., Dorigo M., Gambardella L.,
Knowles J., Manfrin M., Mastrolilli M., Paechter B., Paquete L., and Stützle T. (2003).
“A comparison of the performance of different metaheuristics on the timetabling
problem”. In Practice and Theory of Automated Timetabling, edited by E. Burke and
P. Causmaecker, vol. 2740 of Lecture Notes in Computer Science, pp. 329–351. Springer
Verlag, Berlin, Germany. (Cited on pages 229 and 230.)

Rudolph G. (1994). “Convergence analysis of canonical genetic algorithms”. IEEE Trans-
actions on Neural Networks, 5(1), pp. 96–101. (Cited on page 37.)

Russell S. and Norvig P. (2003). Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, New Jersey, USA. Second. (Cited on pages 4 and 19.)

Savelsbergh M., Uma R., and Wein J. (2005). “An experimental study of LP-based ap-
proximation algorithms for scheduling problems”. INFORMS Journal on Computing,
17(1), pp. 123–136. (Cited on page 43.)

332 References

Schiavinotto T. and Stützle T. (2004). “The linear ordering problem: Instances, search
space analysis and algorithms”. Journal of Mathematical Modelling and Algorithms, 3(4),
pp. 367–402. (Cited on page 82.)

Schiavinotto T. and Stützle T. (2005). “Metrics on permutations for search landscape
analysis”. In preparation. (Cited on page 85.)

Schindl D. (2003). “Graph coloring and linear programming”. Presentation at First
Joint Operations Research Days, Ecole Polytechnique Fédérale de Lausanne (EPFL),
available on line (last visited June 2005). (Cited on page 100.)

Schreiber G.R. and Martin O.C. (1999). “Cut size statistics of graph bisection heuristics”.
SIAM Journal on Optimization, 10(1), pp. 231–251. (Cited on page 22.)

Schumacher C., Vose M.D., and Whitley L.D. (2001). “The no free lunch and problem
description length”. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), edited by L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, and E. Burke, pp. 565–570.
Morgan Kaufmann Publishers, San Francisco, CA, USA. (Cited on page 36.)

Schuurman P. and Woeginger G.J. (2001). “Approximation schemes – a tutorial”. Tech.
Rep. Report Woe-65, Technische Universität Graz, Graz, Austria. (Cited on page 16.)

Sedgewick R. (1988). Algorithms. Addison-Wesley, Reading, MA, USA, second ed. (Cited
on page 237.)

Setubal J.C. (1996). “Sequential and parallel experimental results with bipartite matching
algorithms”. Tech. Rep. EC-96-09, Institute of Computing, University of Campinas,
Brasil. (Cited on pages 6 and 237.)

Shaffer J.P. (1995). “Multiple hypothesis testing”. Annual Review of Psychology, 46, pp.
561–576. (Cited on page 55.)

Sheskin D.J. (2000). Handbook of Parametric and Nonparametric statistical procedures. Chap-
man & Hall, second ed. (Cited on pages 52, 56, 60, 62, 63 and 70.)

Silva J.D.L., Burke E., and Petrovic S. (2004). “An introduction to multiobjective meta-
heuristics for scheduling and timetabling”. In Metaheuristic for Multiobjective Opti-
misation, edited by X. Gandibleux, M. Sevaux, K.Sorensen, and V. T’kindt, vol. 535
of Lecture Notes in Economics and Mathematical Systems, pp. 91–129. Springer Verlag,
Berlin, Germany. (Cited on page 219.)

Simon H.U. (1989). “Approximation algorithms for channel assignment in cellular radio
networks”. In Fundamentals of computation theory, vol. 380 of Lecture Notes in Computer
Science, pp. 405–415. Springer Verlag, Berlin, Germany. (Cited on page 175.)

Sivarajan K.N., McEliece R.J., and Ketchum J.W. (1989). “Channel assignment in cellular
radio”. In Proceedings of the 39th IEEE Vehicular Technology Conference, pp. 846–850.
(Cited on page 189.)

Skiena S. and Berend D. (2004). “Combinatorial dominance and heuristic search”.
Manuscript. (Cited on page 286.)

References 333

Smith B.C. and Sucur M. (1996). “Analysis of solution quality in scheduling planning”.
In The 36th Annual Symposium of AGIFORS. Atlanta, Georgia, USA. (Cited on pages 45
and 290.)

Smith D.H., Allen S.M., and Hurley S. (2002). “Characteristics of good meta-heuristic al-
gorihtms for the frequency assignment problem”. Annals of Operations Research, 107(1–
4), pp. 285–301. (Cited on page 176.)

Smith D.H., Hurley S., and Allen S.M. (2000). “A new lower bound for the channel
assignment problem”. IEEE Transactions on Vehicular Technology, 49(4), pp. 1265–1272.
(Cited on page 175.)

Socha K. (2003). “The influence of run-time limits on choosing ant system parameters”.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003),
edited by E.C.P. et al., vol. 2723 of Lecture Notes in Computer Science, pp. 49–60. Springer
Verlag, Berlin, Germany. (Cited on page 230.)

Socha K., Sampels M., and Manfrin M. (2003). “Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art”. In Applications of Evolutionary
Computing: Proceedings of EvoWorkshops 2003, edited by G.R. Raidl, J.A. Meyer, M. Mid-
dendorf, S. Cagnoni, J.J.R. Cardalda, D. Corne, J. Gottlieb, A. Guillot, E. Hart, C.G.
Johnson, and E. Marchiori, vol. 2611 of Lecture Notes in Computer Science, pp. 334–345.
Springer Verlag, Berlin, Germany. (Cited on page 230.)

Stadler P.F. (1996). “Landscapes and their correlation functions”. Journal of Mathematical
Chemistry, 20(1), pp. 1–45. (Cited on page 84.)

Stockmeyer L. (1973). “Planar 3-colorability is NP-complete”. SIGACT News, 5(3), pp.
19–25. (Cited on page 95.)

Stützle T. (1998). Local Search Algorithms for Combinatorial Problems — Analysis, Improve-
ments, and New Applications. Ph.D. thesis, FB Informatik, Technische Universität Darm-
stadt, Darmstadt, Germany. (Cited on pages 27, 33, 128 and 266.)

Stützle T. and Dorigo M. (2002). “A short convergence proof for a class of ACO algo-
rithms”. IEEE Transactions on Evolutionary Computation, 6(4), pp. 358–365. (Cited on
page 37.)

Stützle T. and Hoos H.H. (2000). “MAX –MIN Ant System”. Future Generation Com-
puter Systems, 16(8), pp. 889–914. (Cited on page 33.)

Stützle T. and Hoos H.H. (2001). “Analysing the run-time behaviour of iterated local
search for the travelling salesman problem”. In Essays and Surveys on Metaheuristics,
edited by P. Hansen and C.C. Ribeiro, pp. 589–611. Kluwer Academic Publishers,
Boston, MA, USA. (Cited on page 80.)

Taillard E. (2001). “Comparaison of non-deterministic iterative methods”. In Proceedings
of the Metaheuristics International Conference, pp. 273–276. Porto, Portugal. (Cited on
page 78.)

Taillard E.D. (1991). “Robust taboo search for the quadratic assignment problem.” Par-
allel Computing, 17(4-5), pp. 443–455. (Cited on page 29.)

334 References

Talbi E.G. (2002). “A taxonomy of hybrid metaheuristics”. Journal of Heuristics, 8(5), pp.
541–564. (Cited on page 34.)

ter Braak C.J. (1992). “Permutation versus bootstrap significance tests in multiple re-
gression and ANOVA”. In Bootstrapping and related techniques, edited by K.H. Jöckel,
G. Rothe, and W. Sendler, pp. 79–86. Springer-Verlag, Berlin. (Cited on page 287.)

Terashima-Marín H., Ross P., and Valenzuela-Rendón. M. (1999). “Evolution of con-
straint satisfaction strategies in examination timetabling”. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-1999), edited by W. Banzhaf, J.M.
Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M.J. Jakiela, and R.E. Smith, pp. 635–
642. Morgan Kaufmann Publishers, San Francisco, CA, USA. (Cited on page 238.)

Tesman B.A. (1990). “Set T-colorings”. Congrussus Numerantium, 77, pp. 229–242. (Cited
on pages 172 and 175.)

Tesman B.A. (1993). “List T-colorings”. Discrete Appied Mathematics, 45(3), pp. 277–289.
(Cited on pages 171 and 175.)

Thompson J. and Dowsland K. (1998). “A robust simulated annealing based examination
timetabling system”. Computers and Operations Research, 25(7-8), pp. 637–648. (Cited
on pages 219 and 239.)

Thompson P. and Orlin J. (1989). “The theory of cycle transfers”. Tech. Rep. 200-89, MIT
Operations Research Center, Cambridge, MA. (Cited on pages 38, 114 and 164.)

Tsang E. and Voudouris C. (1998). “Solving the radio link frequency assignment prob-
lem using guided local search”. In NATO Symposium on Radio Length Frequency Assign-
ment. Aalborg, Denmark. Also available on line at http://cswww.essex.ac.uk/CSP/
papers.html. (June 2005). (Cited on page 198.)

Tuza Z. (1997). “Graph colorings with local restrictions – A survey”. Discussiones Math-
ematicae, Graph Theory. (Cited on page 175.)

van der Tweel I. (2004). Application and efficiency of sequential tests in matched case-control
studies. Ph.D. thesis, University Utrecht. (Cited on page 72.)

Vasquez M. (2004). “New results on the queens_n2 graph coloring problem”. Journal of
Heuristics, 10(4), pp. 407–413. (Cited on page 102.)

Vazirani V.V. (2001). Approximation Algorithms. Springer-Verlag, Berlin. (Cited on
page 16.)

Černý V. (1985). “Thermodynamical approach to the travelling salesman problem: an
efficient simulation algorithm.” Journal Of Optimization Theory And Applications, 45(1),
pp. 41–51. (Cited on page 27.)

Venables W.N. and Ripley B.D. (2002). Modern Applied Statistics with S. Springer-Verlag,
Berlin, fourth ed. (Cited on pages 81, 140 and 159.)

Voudouris C., Dorne R., Lesaint D., and Liret A. (2001). “iOpt: A software toolkit
for heuristic search methods.” In Proceedings of Principles and Practice of Constraint
Programming - CP 2001, edited by T. Walsh, vol. 2239 of Lecture Notes in Computer
Science, pp. 716–719. Springer Verlag, Berlin, Germany. (Cited on page 218.)

http://cswww.essex.ac.uk/CSP/papers.html
http://cswww.essex.ac.uk/CSP/papers.html

References 335

Wald A. (1947). Sequential Analysis. John Wiley & Sons, New York, NY, USA. (Cited on
page 72.)

Watson J.P. (2003). Empirical modeling and anlysis of local search algorithms for the Job-Shop
Scheduling Problem. Ph.D. thesis, Department of Computer Science, Colorado State
University, Fort Collins, CO. (Cited on page 82.)

Watson J.P., Beck J.C., Howe A.E., and Whitley L.D. (2003). “Problem difficulty for tabu
search in job-shop scheduling”. Artificial Intelligence, 143(2), pp. 189–217. Preprint.
(Cited on pages 82, 85, 86, 251 and 253.)

Weihe K. (2001). “A software engineering perspective on algorithmics.” ACM Computing
Surveys, 33(1), pp. 89–134. (Cited on page 229.)

Weinberger E.D. (1990). “Correlated and uncorrelated fitness landscapes and how to tell
the difference”. Biological Cybernetics, 63(5), pp. 325–336. (Cited on page 83.)

White G.M. and Zhang J. (1998). “Generating complete university timetables by com-
bining tabu search with constraint logic”. In Burke and Carter (1998), pp. 187–200.
(Cited on page 219.)

Wigderson A. (1983). “Improving the performance guarantee for approximate graph
coloring”. Journal of the ACM, 30(4), pp. 729–735. (Cited on page 95.)

Williams R., Gomes C.P., and Selman B. (2003). “Backdoors to typical case complex-
ity.” In Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence, IJCAI-03, edited by G. Gottlob and T. Walsh, pp. 1173–1178. Morgan Kaufmann
Publishers, CA, USA. (Cited on page 271.)

Wolpert D.H. and Macready W.G. (1997). “No free lunch theorems for optimization”.
IEEE Transactions on Evolutionary Computation, 1(1), pp. 67–82. (Cited on page 36.)

Wolsey L.A. (1998). Integer programming. Wiley-Interscience Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons, New York, USA. (Cited on page 18.)

Wright S. (1932). “The roles of mutation, inbreeding, crossbreeding and selection in
evolution”. In International Proceedings of the Sixth International Congress on Genetics,
edited by D.F. Jones, vol. 1, pp. 356–366. (Cited on page 82.)

Yuan B. and Gallagher M. (2004). “Statistical racing techniques for improved empirical
evaluation of evolutionary algorithms”. In Parallel Problem Solving from Nature - PPSN
VIII, 8th International Conference, Birmingham, UK, September 18-22, 2004, Proceedings,
edited by Xin Yao et al., vol. 3242 of Lecture Notes in Computer Science, pp. 172–181.
Springer Verlag, Berlin, Germany. (Cited on page 72.)

Zemel E. (1981). “Measuring the quality of approximate solutions to zero-one pro-
gramming problems”. Mathematics of operations research, 6(3), pp. 319–332. (Cited on
page 46.)

Zervoudakis K. and Stamatopoulos P. (2001). “A generic object-oriented constraint-
based model for university course timetabling”. In Burke and Erben (2001), pp. 28–47.
(Cited on page 218.)

336 References

Zlochin M. and Dorigo M. (2002). “Model-based search for combinatorial optimization:
A comparative study”. In Parallel Problem Solving from Nature - PPSN VII, 7th Inter-
national Conference, edited by Merelo Guervós J.J. et al., vol. 2439 of Lecture Notes in
Computer Science, pp. 651–661. Springer Verlag, Berlin, Germany. (Cited on page 46.)

Zymolka A., Koster A.M.C.A., and Wessäly R. (2003). “Transparent optical network
design with sparse wavelength conversion”. In Proceedings of the 7th IFIP Working Con-
ference on Optical Network Design & Modelling, pp. 61–80. Budapest, Hungary. (Cited
on pages 91 and 98.)

“[...] si quis in caelum ascendisset
naturamque mundi et pulcheritudinem siderum perspexisset,

insuavem illam admirationem ei fore,
quae iucundissima fuisset, si aliquem, cui narraret, habuisset.”

M. Tulli Ciceronis, “Laelius de Amicitia”, XXIII, 88.

	Summary
	Acknowledgements
	Introduction
	Large scale optimisation
	Motivations and objectives
	Scientific publications in connection with this thesis
	Organisation of the thesis

	Stochastic Local Search Methods for Combinatorial Optimisation
	Combinatorial Optimisation Problems
	Computational complexity and solution approaches
	Exact solution methods
	Mathematical programming approach
	Network Flow and Dynamic Programming
	Search approach

	Stochastic local search methods
	Construction heuristics
	Iterative improvement
	Metaheuristics
	Hybrid methods
	Theoretical remarks

	Discussion

	Statistical Methods for the Analysis of Stochastic Optimisers
	Introduction
	The need for the empirical approach
	Application scenarios
	Performance measurement
	Statistical analysis
	Design and analysis of experiments
	Experimental design
	Statistical tests
	All-pairwise comparisons
	Design A: Several runs on one single instance
	Design B: One single run on various instances
	Design C: Several runs on various instances
	Remarks

	Sequential analysis
	Time dependent analysis
	Unified representation of time and quality performance
	Qualified run time distributions

	Landscape analysis
	Discussion

	Graph Colouring
	Introduction
	Formal definition of the problem and notation
	Known theoretical results, complexity, and approximations
	Benchmark instances and applications
	Graph reduction
	Exact methods
	Construction heuristics
	Iterative Improvement for graph colouring
	Neighbourhood structure
	Neighbourhood examination

	Analysis of neighbourhood structures for local search
	Analytical results
	Computational analysis on small size graphs
	Neighbourhood examination and heuristic rules for its speed-up

	Stochastic Local Search algorithms
	Solving a sequence of k colouring problems
	Varying the number of used colours
	Extending partial colourings: a semi-exhaustive approach
	Implementation Details

	Experimental analysis on benchmark instances
	Further analyses
	On the time dependent profile
	On the Tabu Search in the very large scale neighbourhood
	On the Tabu Search in the one-exchange neighbourhood

	Experimental analysis on a large set of random graphs
	Discussion

	Graph Colouring Generalisations
	Introduction
	Formal definitions
	Precolouring Extension
	List Colouring
	T-Colouring
	List T-Colouring
	Set T-Colouring
	Related problems
	Known theoretical results
	Problem transformations

	State of the art and motivations
	Benchmark instances
	Algorithms for the Precolouring Extension Problem
	Two solution approaches
	Experimental analysis

	Algorithms for the Set T-Colouring Problem
	Graph reduction
	Exhaustive search
	Lower bounds for the minimal span
	Construction heuristics
	Iterative Improvement
	Stochastic Local Search algorithms
	Experimental Analysis

	Discussion

	Course Timetabling
	Introduction
	Methods for timetabling: the state of the art
	The definition of the problem
	Timetabling and graph colouring formalism
	An engineering methodology for SLS methods
	The methodology
	Design of SLS algorithms in the UCTP-C case
	The racing algorithm for the experimental analysis
	General indications from the race

	An effective algorithm for course timetabling
	High level procedure
	Data management
	The assignment representation
	Construction heuristics
	Iterative Improvement
	Hard constraint solver
	Soft constraint optimiser

	Analysis of the algorithm
	Benchmark comparisons
	Contribution of algorithm components
	Qualified run time distributions
	Landscape Analysis
	Further analyses

	General guidelines for the application of SLS methods
	Discussion

	Conclusions
	Main themes of this thesis
	Contributions and results
	Open issues
	Experimental methodology
	A library of basic SLS components
	The algorithmic context

	A Formal Study on Iterative Improvement for Graph Colouring
	The conditions of local optimality
	Dominance relations between local searches
	Summary of results and discussion

	On the Behaviour of the Statistical Tests
	Implementation details
	A simulation study for general hypothesis testing
	Comparison of Type I Error Rates
	Comparison of powers

	A simulation study for all-pairwise comparisons
	Family-wise type I error rate
	Comparison of power

	Discussion

	Numerical Results on the Benchmark Instances for Graph Colouring Problems
	Graph colouring
	Instance statistics
	The parameter set used for XRLF
	Machine benchmark
	Detailed results

	Set T-colouring
	Instance statistics and computation times
	Validation of our re-implementation of tabu search
	Detailed results

	References

