
MIC 2011: The IX Metaheuristics International Conference S1-16–1

A local search heuristic for chromatic sum
Anders Helmar1, Marco Chiarandini1

Department of Mathematics and Computer Science,
University of Southern Denmark

Campusvej 55, 5230 Odense M, Denmark
ahelm06@student.sdu.dk, marco@imada.sdu.dk

Abstract

A coloring of an undirected graph is a labelling of the vertices in the graph such that no two
adjacent vertices receive the same label. The sum coloring problem asks to find a coloring, using
natural numbers as labels, such that the total sum of the colors used is minimized. We design and
test a local search algorithm, based on variable neighborhood search and iterated local search, that
outperforms in several instances the currently existing benchmarks on this problem.

1 Introduction

Let G = (V,E) be an undirected graph with V the set of vertices and E the set of edges. A k-coloring of
G is a mapping ϕ : V �→ N that assigns exactly one natural number, e.g., {1, 2, 3, . . . , k}, to each vertex.
A proper k-coloring of G is a coloring in which ϕ(u) �= ϕ(v) for all uv ∈ E. A proper k-coloring is
also a partition C of V into mutually disjoint independent sets C1, ..., Ck,

�
iCi = V , where ϕ(v) = i

for all v ∈ Ci. The chromatic number χ(G) is the smallest number of independent sets k for which a
proper coloring for G exists. Let xi denote the size of Ci. The sum of a proper coloring ϕ of G is

Sum(ϕ) =
�

v∈V
ϕ(v) = 1 · x1 + 2 · x2 + · · ·+ k · xk =

k�

i=1

i · xi

The minimum sum coloring problem asks to determine

Σ(G) = min{Sum(ϕ) | ϕ is a proper coloring of G} (MSCP)

The number Σ(G) is the chromatic sum of G.
For a partition C any permutation of the independent sets is still a proper coloring. However, for any

pair i > j such that xi > xj , a coloring that is better in terms of sum can be obtained by swapping
the color classes Ci and Cj . Hence, for a partition C the smallest color sum is achieved by the sorted
coloring in which sets are sorted in decreasing order of size, i.e., x1 ≥ x2 ≥ . . . ≥ xk.

The number of colors of the proper coloring associated with Σ(G) is the strength of the graph G
and is denoted by s(G). Note that s(G) ≥ χ(G) and that there exist cases where the inequality is strict,
see [11] for an example.

The concept of chromatic sum was introduced in [11], where it was also proved that the MSCP is
NP-hard for general graphs. Polynomial time algorithms exist for some families of graphs, like trees. A
review of these cases, theoretical lower bounds and NP-hard issues is given in [10]. Heuristic algorithms
have been recently under investigation. Greedy algorithms have been studied in [13]. Metaheuristics
approaches include a parallel genetic algorithm [9] and a tabu search algorithm [1].

The interest in fast heuristics and computational studies is motivated by a few practical applications
of MSCP. In the literature, sum coloring of graphs has been used in VLSI design, scheduling and dis-
tributed resource allocation (see [15] for a list of references). For example, in computer systems with
multiprocessors that are in competition over resources, we might seek an allocation under which no two
jobs with conflicting requirements are executed simultaneously while minimizing the average completion
time of the jobs.

In this paper, we design and test a local search algorithm for finding proper colorings, which corre-
spond to upper bounds of the chromatic number, as well as to find lower bounds. A fundamental choice

Udine, Italy, July 25–28, 2011

161

S1-16–2 MIC 2011: The IX Metaheuristics International Conference

in the application of local search algorithms is the definition of the search space. In the literature on
graph coloring several proposals appeared, combining the following characteristics: partial vs complete
colorings, proper vs unproper colorings, fixed vs variable k (see [3] for a review). We opt for a solution
representation consisting of complete colorings that may be unproper and k variable. We then devise
an evaluation function and a search strategy that guide the search towards good solutions for MSCP. We
present the algorithm, that borrows ideas from both variable neighborhood search [6] and iterated local
search [14], in Section 2. In Section 3, we describe how the same algorithm with just a few modifi-
cations can be applied to find lower bounds to the problem. Finally, in Section 4 we report about the
computational results attained by the devised heuristic algorithm. The comparison with the benchmarks
from the literature indicates that our algorithm finds 27 new best results on 38 instances and it is never
outperformed.

The following definitions will be useful for the rest of the paper. Vertices linked by an edge in
G are said to be adjacent. For a vertex set X ⊆ V the subgraph of G induced by X is G[X] =
(X, {uv ∈ E | u, v ∈ X}). The set of vertices adjacent to v in the graph induced by X ∪ v is denoted
by AX(v) = {w ∈ X | vw ∈ E(G)}. The degree of a vertex v induced by X is the size of AX(v)
and is denoted by dX(v). The saturation degree of a vertex v induced by X is the number of different
colors used in X and is denoted by δX(v). The edge density of a graph G = (V,E) is computed as
ρG = |E|/

�|V |
2

�
.

2 A local search based primal heuristic

We describe a local search algorithm to find a proper coloring that gives an upper bound to the chromatic
sum. First, we give a high level description and then present details on its parts. For an introduction to
local search methods see [7, 16].

A candidate solution is any coloring ϕ (proper or not) that uses k colors and assigns exactly one color
to each vertex. The evaluation function to minimize is

f(ϕ) =
k�

i=1

i · |Ci|+M · |E(Ci)|

where E(Ci) is the set of edges in Ci and M is a large positive natural number.
We define two neighborhood operators. They change a candidate solution ϕ acting on a pair �v, j�

with v ∈ V assigned to color i = ϕ(v), and j a color different from i.

• The one-exchange neighborhood operator changes in ϕ the color of v from i to j. The color j is
selected between 1 and k + 1, hence this operator may eventually increase the number of colors
used by ϕ.

• The swap neighborhood operator changes in ϕ the color of v from i to j and the color of all
vertices in ACj (v) from j to i. This change is illustrated in Figure 1. The color j is any color from
1 to k already in use.

The overall search procedure is illustrated by means of generalized local search machines [7] in Fig-
ure 2. The initial state CH computes a complete coloring not necessarily proper by random assignment
of colors to vertices or by means of the MDSAT or RLF heuristics. Afterwards, it performs swap changes
until no further improvement can be obtained. The state type BI1 computes the best swap change. It
then applies the change only if it improves the current solution. The condition predicate IM is true if
the solution has been improved and false otherwise. A solution that arrives to the state type BI2 from
the state BI1 is thus a local optimum with respect to the swap neighborhood but not necessarily a proper
coloring. A similar process occurs at the state type BI2 that computes the best one-exchange and applies
it, if it improves the current solution. The solution that enters in state SI is a proper coloring (this claim

Udine, Italy, July 25–28, 2011

162

MIC 2011: The IX Metaheuristics International Conference S1-16–3

v

w

u

t

ACj (v)

Ci Cj

Figure 1: Two color classes Ci and Cj with i < j. Depending on the situation we may create new
conflicts, eliminate existing conflicts, or both.

CH BI1 BI2

SI

AC(t)

RP

DET CDET (¬IM(BI1))

CDET (¬IM(BI2))

DETDET : t := s

DET

CDET (IM(BI1)) CDET (IM(BI2))

Figure 2: A generalized local search machine for MSCP.

will be justified below). In SI two operations are performed: (i) assign all vertices to their respective
smallest legal color; (ii) permute the color labels to transform the coloring in a sorted coloring, in which
vertices in the largest class are assigned to color 1, those in the second largest class to color 2, and so
on. Note that operation (i) is the only one in the whole algorithm that can decrease the number of used
colors.

The state type AC implements an acceptance criterion that compares the entering solution with the
solution stored in t and outputs in solution s the best of the two. The state type RP applies a random
perturbation to the solution consisting in changing the color to a fraction p of vertices randomly chosen
from V . The new color for these vertices is chosen at random from the numbers [1..k + 1].

The whole procedure terminates when a time limit, a number of total machine iterations or a number
of non improving iterations has been reached. In this last case, we count as iteration any change in the
current solution. The output is the solution stored in t.

Implementation details

In the following we refine the description of the procedures associated with the state types of the local
search machine of Figure 2.

Udine, Italy, July 25–28, 2011

163

S1-16–4 MIC 2011: The IX Metaheuristics International Conference

Initial solution (CH) The state CH generates an initial solution. We consider three alternatives: a
completely random assignment of colors to vertices and two construction heuristic strategies.

Minimum Impact heuristics The DSATUR heuristic [2] chooses at each iteration the uncolored vertex
with maximum saturation degree. The MDSAT algorithms in [13] enhance this rule by choosing the
uncolored vertex that minimizes the impact on the saturation degree of the adjacent vertices.

In detail, let v be an uncolored vertex of a partial coloring, c its smallest legal color and U(v) ⊆
AV (v) the set of uncolored vertices adjacent to v. The impact of coloring v with c is measured by the
number δ+(v) of vertices in U(v) whose saturation degree would increase and by the number δ=(v) =
|U(v)| − δ+(v). The MDSAT heuristics define 5 different ways of deciding the next vertex to color
while trying to minimize the impact. In detail, they choose the vertex that achieves the following criteria
in lexicographic order: (1) (max{δ=},min{δ+}), (2) (min{δ+},max{δ=}), (3) (min{δ+/δ=}), (4)
(min{δ+/δ=},min{δ+}), (5) (min{δ+/δ=},max{δ=}). Ties are broken by choosing the vertex with
the largest label.

In each iteration MDSAT goes through all uncolored vertices and for each of them it computes the
impact. This implies looking at all neighbors of the vertex and checking if the saturation degree will
decrease or not. This extra cost makes MDSAT computationally worse than DSATUR. We implemented
the MDSAT algorithms with a complexity of O(n · (n+m)), with m = |E|. Finally, before output, we
sort in decreasing order the color classes. In the experimental analysis, we will denote the instantiation
of these heuristics more concisely by MDS(·), making explicit the vertex selection criterion used.

Recursive largest first (RLF) This heuristic looks at MSCP from the partitioning perspective. Given the
sorting property of solutions a good strategy to construct a coloring with a small sum number might be
to iteratively find a maximum independent set and remove its vertices from the graph. Clearly, finding
the maximum independent set is itself an NP-hard problem. The RLF heuristic for graph coloring [12]
implements a similar strategy finding maximal independent sets.

In [13] the RLF heuristic is enhanced with further rules and shown to perform as the best of the
MDSAT heuristics. Here, we include in our analysis only the standard RLF for graph coloring. It has
worst case complexity of O(n3).

Best improvement on swap (BI1) The best swap is determined after evaluating all pairs �v, j�, with
v ∈ V, j ∈ {1 . . . k} and ϕ(v) < j. Each pair is assessed by evaluating ∆ = f(ϕ�)− f(ϕ), where ϕ� is
the new solution obtained after the corresponding swap. The computation of ∆ can be decomposed into

∆(�v, j�) = ∆1(�v, j�) +M ·∆2(�v, j�)

where ∆1 is the change in the color sum and ∆2 is the change in the number of conflicting edges. These
last two components can be computed as

∆1(�v, j�) = (dCj (v)− 1) · (i− j)

∆2(�v, j�) =
�

u∈ACj
(v)

(dCi(u)− 1)− dCi(v)−
�

u∈ACj
(v)

dT (u).

where T = Cj \ACj (v).
For a vertex v and a color l, a crucial operation is retrieving all vertices adjacent to v with color l,

i.e., ACl(v). To this goal, we keep an array of lists LL with |V |× k indices, where we record ACl(v) for
each (v, l).

The neighborhood examination is executed by considering all pairs of color classes (i, j) with i <
j and for each i considering all vertices v ∈ Ci. Each vertex is thus considered exactly once. The
computation of ∆ is dominated by the last term of ∆2 that costs O(|V |2). Examining and evaluating the
whole neighborhood takes therefore O(|V |3) time.

Note that when a vertex v is moved from one color class to another, LL must be changed for all the
vertices adjacent to v. The complexity of this operation depends on the data structure that implements

Udine, Italy, July 25–28, 2011

164

MIC 2011: The IX Metaheuristics International Conference S1-16–5

the lists LL. We use a hash-map, where insertions and deletions are performed in amortized constant
time. Hence, updating LL for a vertex that changes color has amortized complexity O(|V |).

Best improvement on one-exchange (BI2) The best one-exchange is found by considering all pairs
�v, j�. Each pair is evaluated by computing ∆ = f(ϕ�) − f(ϕ), where ϕ� is the new solution obtained
after the corresponding one-exchange. As above, the computation of ∆ can be decomposed into its two
components ∆1 and ∆2. In this case, we have

∆1(�v, j�) = j − i

∆2(�v, j�) = M · (dCj (v)− dCi(v)),

thus we spend time O(|V |k) to find the best one-exchange, and O(|V |) to update LL.

We can guarantee that a solution that is local optimum with respect to the one-exchange neighbor-
hood is a proper coloring by setting the value of M to a value that makes always preferable an improve-
ment in ∆2 over an improvement in ∆1. Thus, M has to be set larger than the best possible ∆1. The
largest change that can happen with the one-exchange neighborhood is when moving a vertex v from
the color class k to the color class 1. In this case, we have ∆1 = 1 − k. Since in our definition of
one-exchange we allow to move a vertex into an empty color class, k can be as large as |V |. Hence,
setting M ≥ |V | will guarantee that for any coloring that is not proper, a conflict repair change, possibly
opening a new color class, will always outweigh a worsening in the color sum.

Reassignment and sorting (SI) Reassigning to all vertices the smallest legal color can be done in
linear time if an auxiliary array SC of size |V | is maintained, where we record at index u the smallest
legal color for vertex u. The value of SC is linked to the lists in LL. Precisely, SC[u] = j if and only
if the list LL[u][j] is empty and the lists LL[u][i] for all 1 ≤ i < j are not empty. We can therefore
maintain SC updated throughout the search operations while updating LL. This adds however an extra
cost of O(k) for each update of LL. Thus, when a vertex changes color, the cost of updating LL goes
from the previously mentioned amortized O(|V |) to O(|V |k).

Sorting the color classes in decreasing order is done by keeping an additional data structure consisting
of an array of lists CC indexed by color number i, 1 ≤ i ≤ k, each list containing the vertices assigned
to color class i. Sorting CC in decreasing order takes O(k log k). Consequently, we recolor the vertices
in O(|V |) and for each vertex update LL and SC in O(|V |k).

The overall complexity of reassignment and sorting is dominated by recoloring and updating LL and
SC, and is therefore O(|V |2k).

Random perturbation (RP) We select the value p representing the fraction of vertices that change
color uniformly at random from [0.01; 0.05]. Further, we choose uniformly at random �p|V |� numbers
in [1..|V |]. Finally, to each of these vertices we assign a new color chosen uniformly at random from
[1..k + 1]. Including the update of LL and SC the whole perturbation has a worst case of O(|V |2k).

3 A local search heuristic for lower bounds

Given a clique H of G the best way to color it for MSCP uses the first |H| colors of [1..|V |]. If we
decompose the graph into disjoint cliques, and color each clique without considering the edges between
them, then we obtain a lower bound to the chromatic sum. Formally, a clique decomposition H is a
partition of the vertices V into H1, . . . , Hl, Hi ∩ Hj = ∅, for all i �= j,

�
iHi = V and such that the

induced subgraphs G[H1], . . . , G[Hl] are all cliques. Each clique Hi, 1 ≤ i ≤ l, has associated a best
possible color sum of |Hi|(|Hi| + 1)/2. A clique decomposition H of G gives therefore a lower bound
for Σ(G), i.e., LB(H) =

�l
i=1 |Hi|(|Hi| + 1)/2. The best lower bound is then found by solving the

problem
LB∗ = max{LB(H) | H is a clique decomposition of G}. (LBP)

Udine, Italy, July 25–28, 2011

165

S1-16–6 MIC 2011: The IX Metaheuristics International Conference

Note that LB∗ might be strictly smaller than Σ(G).
This way of computing a lower bound is exploited in [17] where an approximation of LB∗ is de-

termined heuristically by applying the greedy algorithms from [13] on the complementary graph G.
Computational results show that the procedure leads to the best known lower bounds. Similarly, we
approximate LB∗ by applying our local search algorithm from Figure 2 in the previous section on the
complementary graph. The procedure requires a few adjustments that are described next.

Candidate solutions are now colorings ϕ (proper or not) of the complement graph G corresponding
to clique decompositions in the original graph G. The color classes Ci, 1 ≤ i ≤ k associated to ϕ may
contain edges, i.e., they may not be cliques in the original graph. The evaluation function accounts for
both color sum and violations of the clique requirement. We define it as

f(ϕ) =
k�

i=1

xi(xi + 1)

2
−M · |E(Ci)|

where xi are the sizes of the color classes in G and M is a positive natural number. The goal of the local
search is maximizing this function.

We decompose again ∆ into a contribution ∆1 for the change in color sum and a contribution ∆2 for
the number of conflicting edges. We write ∆ = ∆1 −M∆2, thus improvements are given by ∆1 > 0
and ∆2 < 0. The value of ∆1 has now to be updated for swaps to

∆1(�v, j�) = xi(dCj (v)− 1) + xj(1− dCj (v)) + dCj (v)(dCj (v)− 2) + 1

and for one-exchanges to
∆1(�v, j�) = −xi + (xj + 1).

Further, we have to reconsider the value of M to ensure that after BI2 we have a local optimum with
respect to the one-exchange that is a proper coloring in G and a clique decomposition in G. Following
the same reasoning as above we consider the largest improvement of ∆1 for a one exchange, which
occurs when we move a vertex from the smallest color class to the largest one. The extreme situation is
when we have only two color classes, one containing one single vertex and another containing |V | − 1
vertices and we move the vertex from the former to the latter. In this case we have ∆1 = |V |− 1. Hence
by setting M ≥ |V | we guarantee that a one-exchange diminishing the number of conflicting edges will
always be preferred. For colorings that are not proper there is always a one-exchange with ∆2 < 0 since
we can eventually open a new color class.

Finally, in the state type SI it is not anymore necessary to transform the coloring in a sorted coloring.

4 Experimental results

All algorithms are implemented in C++ and compiled with GNU g++4.4.5 using flag -O3. All tests are
conducted on a Intel Core i7 processor 2.93Ghz with 8192MB cache L2, 4 GB RAM and running Ubuntu
10.10 operating system.

4.1 Construction heuristics

Construction heuristics are worth studying on their own since they constitute the fastest way to produce
a proper coloring addressing the objective of MSCP. To test the construction heuristics we generated five
uniform random graphs for all nine combinations of the characteristics: size {500, 1000, 2000} and edge
density {0.1, 0.5, 0.9}. We ran once each heuristic on the instances. Within each instance we rank the
results separately for the two criteria, number of colors and color sum. For each criterion we compute
separately the 95% confidence intervals of the mean rank value by means of the Friedman Rank Sum
test for unreplicated two-way designs with Bonferroni correction [4]. The result of both analyses is
visualized in Figure 3. We can conclude that MDS(3) and MDS(5) dominate the other heuristics with

Udine, Italy, July 25–28, 2011

166

MIC 2011: The IX Metaheuristics International Conference S1-16–7

Ranks on number of colors

R
an

ks
 o

n
su

m
 n

um
be

r

2

3

4

5

6

7

2 3 4 5 6 7

2

3

4

5

6

7●

●
●

●

● ●
●

DSATUR

LRLF MDS(1)

MDS(2)

MDS(3) MDS(4)MDS(5)

Figure 3: All-pairwise comparisons of construction heuristics on uniform random graphs. Two algo-
rithms are significantly different in statistical terms in one of the two criteria if their intervals in the
corresponding axis do not overlap.

statistical significance. Further analyses unveiled that these conclusions hold also within each class of
instances at specific combinations of the size and density characteristics. An analysis of execution time
is reported in Figure 4. The figure shows that all versions of MDSAT perform the same in terms of
time and that MDSAT takes more time than both RLF and DSATUR. The version of RLF we considered
was Lazy RLF, a fast implementation of RLF. With respect to growth the linear trend in the log-log plot
indicates that all heuristics are polynomial in the size of the instance. On the largest and most dense
graphs it takes more than 100 seconds for MDSAT to terminate.

4.2 Primal heuristics and lower bounds

We test three algorithms to find upper bounds.

RMDS(5) is the control, it repeats MDS(5) |V | times starting from a different vertex every time.

RND+LS implements the local search machine of Figure 2 using a random assignment of colors in CH .

MDS(5)+LS implements the local search machine of Figure 2 using MDS(5) in CH .

In addition, we aim at comparing the results of these three algorithms with those in the literature.
For this task we use as test instances a selection of the DIMACS instances for graph coloring [8]. Un-
fortunately, in the references with which we intend to compare [1, 5, 9, 13], some details to make the
experiments reproducible are missing. Therefore, we decided, arbitrarily, to use one hour of compu-
tation time on the machine indicated. Since this termination condition is likely to observe algorithms
at different stages of their convergence depending on the size of the instance, we also include in the
comparison the results after a common number of full iterations of the local search machine in Figure 2.
This number was determined by number of iterations achieved in one hour on the most onerous instance,
DSJC1000.9, and amounts to 879 iterations. We distinguish the two versions of the algorithms by the
suffixes 1h and 879.

We report the analysis of the comparison in Figure 5, left, and the numerical details in Table 1. One
single run per instance was performed for a total of 38 instances. We do not consider algorithms from
the literature in the analysis of Figure 5 since this would have required reducing the sample of instances
to just 7. The analysis in Figure 5 is conducted in the same ways as for the construction heuristics. We

Udine, Italy, July 25–28, 2011

167

S1-16–8 MIC 2011: The IX Metaheuristics International Conference

size

tim
e

0.01

0.1

1

10

100

500 1000 2000

●●●● ●

●●● ●●

●●●●●

0.1

500 1000 2000

●● ●● ●

●●●●●

●●●●●

0.5

500 1000 2000

● ●●● ●

●●●●●

●●●●●

0.9

DSATUR
LRLF
MDS(1)

MDS(2)
MDS(3)
MDS(4)

MDS(5)●

Figure 4: The growth in runtime for the construction heuristics. A log-log transformation is applied to
both axes. A superimposed line represents the linear regression on the data points. A random perturbation
is applied to the data points on the x-axis to make them visible.

can conclude with statistical significance that after 879 iterations MDS(5)+LS is better than RND+LS
and RMDS(5) in terms of color sum. The results after one hour are clearly better than after 879 iterations
both in terms of color sum and number of colors used. At this point the contribution of MDSAT as
starting heuristic becomes insignificant. Comparing the numerical results of MDS(5)+LS-879 against
those published in the literature and reported in Table 1, we see that out of 38 instances MDS(5)+LS-
879 attains better color sums on 27 instances and it never performs worse. Moreover, the entity of the
improvement grows with instance size. The largest value registered is 6362.

We compared our dual local search algorithm for computing lower bounds, denoted MDS(5)+LS,
against the re-implementation of the algorithm in [17], denoted RMDS(n). This algorithm runs all
five MDSAT heuristics each of them restarted using all vertices in V as the initial vertex. We run our
MDS(5)+LS for one hour on all 38 instances, while we let RMDS(n) run to completion, which took
usually less than one hour. In Figure 5, right, the two algorithms are not significantly different according
to the Friedman Rank Sum test. However a Wilcoxon Signed Rank test, which is possible in this special
case of only two algorithms and that ranks differences taking into account their entities, gives a p-value
of 0.01443 indicating that RMDS(n) performs significantly better on the set of instances. In Table 5,
we computed the differences between the upper bounds found after one hour and the lower bounds.
Among the five instances that are closed, three where already closed in [17], and zeroin.i.2 and
zeroin.i.3 are here closed for the first time.

5 Conclusions

We introduced a new local search algorithm for the minimum sum coloring problem. The algorithm
combines ideas of variable neighborhood search and iterated local search. It oscillates between proper
and unproper colorings and leaves k free to vary during the search. We assessed experimentally the al-
gorithm under the criterion of color sum at two termination conditions. We observed that if long running
times are possible, the algorithm can be simplified by using a random color assignment as initial solution.
Otherwise, a greedy heuristics is profitable. The comparison with the results from the literature reveal
that our new algorithm attains new best results on 27 out of 38 instances and it is never outperformed.

Udine, Italy, July 25–28, 2011

168

MIC 2011: The IX Metaheuristics International Conference S1-16–9

Ranks on number of colors

R
an

ks
 o

n
su

m
 n

um
be

r

2.0

2.5

3.0

3.5

4.0

4.5

2.4 2.6 2.8 3.0 3.2 3.4 3.6

2.0

2.5

3.0

3.5

4.0

4.5

●

●

●

●

●

MDS(5)+LS−1h

MDS(5)+LS−879

RMDS(5)

RND+LS−1h

RND+LS−879

Ranks on lower bound

RMDS(n)

MDS(5)+LS−1h

0.5 1.0 1.5 2.0 2.5

●

●

Figure 5: All-pairwise comparisons for local search algorithms for upper bounds (left) and lower bounds
(right) on 38 DIMACS instances. Two algorithms are significantly different in statistical terms if their
intervals in the corresponding axis do not overlap.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
instance RMDS(n) MDS(5)+LSc-1h [1] [5] [13] [9] RMDS(5) RND+LS-879 RND+LS-1h MDS(5)+LS-879 MDS(5)+LS-1h diff@879 diff@1h UB-LB

DSJC125.1 238 238 344 352 338 338 326 331 326 -13 -18 88
DSJC125.5 504 493 1103 1141 1071 1057 1016 1050 1015 -53 -88 511
DSJC125.9 1600 1621 2631 2653 2624 2569 2512 2542 2511 -89 -120 890
DSJC250.1 537 521 1046 1068 1040 1032 978 1038 977 -8 -69 440
DSJC250.5 1150 1128 3779 3658 3619 3561 3295 3556 3281 -102 -377 2131
DSJC250.9 3972 3779 9198 8942 8861 8577 8430 8620 8412 -322 -530 4440
DSJC500.1 1163 1143 3205 3229 3153 3159 2965 3101 2951 -104 -254 1788
DSJC500.5 2616 2565 12717 12482 12379 11747 12427 11717 -290 -1000 9101
DSJC500.9 10074 9731 32713 32323 31333 30818 31187 30872 -1526 -1841 20798
DSJC1000.1 2499 2456 10276 10182 10423 10165 10155 10123 -121 -153 7624
DSJC1000.5 5787 5660 45408 44422 43744 43067 44382 43614 -1026 -1794 37827
DSJC1000.9 23863 23208 119111 117258 112593 112593 112749 112749 -6362 -6362 88886
2-Insertions 3 55 55 62 62 62 62 62 62 0 0 7
3-Insertions 3 84 84 92 92 94 92 92 92 0 0 8
anna 272 273 281 299 276 276 276 276 -5 -5 3
david 234 234 243 254 238 237 238 237 -5 -6 3
fpsol2.i.1 3402 3151 3405 3473 3403 3403 3403 3403 -2 -2 1
games120 442 442 446 460 449 446 443 444 443 -2 -3 1
huck 243 243 243 243 246 243 243 243 243 0 0 0
inithx.i.1 3581 3486 3679 3846 3676 3676 3676 3676 -3 -3 95
jean 216 216 218 223 217 217 217 217 -1 -1 1
miles250 316 318 343 347 338 330 325 331 325 -12 -18 7
miles500 677 686 755 762 717 726 712 724 712 -31 -43 26
mug100 1 186 188 211 203 204 202 203 202 -8 -9 14
mug100 25 183 186 214 203 204 202 203 202 -11 -12 16
mug88 1 163 164 190 180 180 178 179 178 -11 -12 14
mug88 25 161 162 187 179 180 178 179 178 -8 -9 16
myciel3 16 16 21 21 21 21 21 21 21 0 0 5
myciel4 34 34 45 45 46 47 45 45 45 0 0 11
myciel5 70 70 93 93 96 97 93 93 93 0 0 23
myciel6 142 142 189 189 194 200 193 189 189 0 0 47
myciel7 286 286 381 382 389 396 385 381 381 0 0 95
queen5 5 75 75 75 75 75 75 75 75 0 0 0
queen6 6 126 126 138 138 142 138 138 138 138 0 0 12
queen7 7 196 196 196 196 202 196 196 196 0 0 0
queen8 8 288 288 302 307 296 291 300 291 -2 -11 3
zeroin.i.2 1004 1004 1013 1029 1004 1004 1004 1004 -9 -9 0
zeroin.i.3 998 998 1007 1023 998 998 998 998 -9 -9 0

Table 1: Numerical results in terms of color sum on the DIMACS instances. Columns 2 and 3 report
lower bounds. Columns 4–7 report results from the literature and columns 8–12 the results of our algo-
rithms. Column 13 (14) gives the difference between column 11 (12) and the best of columns 4–7. The
last column gives the difference between column 12 and the best of columns 2–3.

Udine, Italy, July 25–28, 2011

169

S1-16–10 MIC 2011: The IX Metaheuristics International Conference

References

[1] H. Bouziri and M. Jouini. A tabu search approach for the sum coloring problem. Electronic Notes
in Discrete Mathematics, 36:915–922, 2010.

[2] D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22(4):251–
256, 1979.

[3] M. Chiarandini, I. Dumitrescu, and T. Stützle. Stochastic local search algorithms for the graph
colouring problem. In T. F. Gonzalez, editor, Handbook of Approximation Algorithms and Meta-
heuristics, Computer & Information Science Series, pages 63.1–63.17. Chapman & Hall/CRC,
Boca Raton, FL, USA, 2007.

[4] W. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, NY, USA, third
edition, 1999.

[5] S. M. Douiri and S. Elbernoussi. New algorithm for the sum coloring problem. International
Journal of Contemporary Mathematical Sciences, 6(10):453–463, 2011.

[6] P. Hansen and N. Mladenovic. Variable neighborhood search: Principles and applications. Euro-
pean Journal of Operational Research, 130(3):449–467, 2001.

[7] H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 2004.

[8] D. S. Johnson and M. Trick, editors. Cliques, Coloring, and Satisfiability: Second DIMACS Imple-
mentation Challenge, 1993, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, Providence, RI, USA, 1996.

[9] Z. Kokosiński and K. Kwarciany. On sum coloring of graphs with parallel genetic algorithms. In
Proceedings of the 8th international conference on Adaptive and Natural Computing Algorithms,
pages 211–219. Springer, 2007.

[10] E. Kubicka. The chromatic sum of graphs; history and recent developments. The International
Journal of Mathematical Sciences, 30:1563–1573, 2004.

[11] E. Kubicka and A. J. Schwenk. An introduction to chromatic sums. In Proceedings of the 17th
conference on ACM Annual Computer Science Conference, CSC ’89, pages 39–45, New York, NY,
USA, 1989. ACM.

[12] F. T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of Research of
the National Bureau of Standards, 84(6):489–506, 1979.

[13] Y. Li, C. Lucet, A. Moukrim, and K. Sghiouer. Greedy Algorithms for the Minimum Sum Coloring
Problem. In Logistique et transports, pages 1–6, Sousse Tunisia, 03 2009. Available as hal-
00451266 at Hyper Articles en Ligne.

[14] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research &
Management Science, pages 321–353. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[15] M. Malafiejski. Sum coloring of graphs. In M. Kubale, editor, Graph Colorings, volume 352 of
Contemporary Mathematics, pages 55–65. AMS, 2004.

[16] W. Michiels, E. Aarts, and J. Korst. Theoretical Aspects of Local Search. Monographs in Theoret-
ical Computer Science. Springer, 2007.

[17] A. Moukrim, K. Sghiouer, C. Lucet, and Y. Li. Lower bounds for the minimal sum coloring
problem. Electronic Notes in Discrete Mathematics, 36:663 – 670, 2010.

Udine, Italy, July 25–28, 2011

170

