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Problems Encountered

1. Balanced academic curriculum
[with Di Gaspero, Gualandi, Schaerf, JoH, 2011]

2. Teacher enrollment in a school
[with Bjerg, 2012]

3. Enrollment based course timetabling
[with Weinkauff Jakobsen, 2011]

4. Enrollment based course timetabling (Elective courses) 4
[since 2007]

5. Project assignment 4
[with Gualandi and Fagerberg, CP2012 (submitted)]

6. Student Sectioning 4
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Study Curriculum

Marco Chiarandini .::. 6



Academic Curriculum
[joint work with Di Gaspero, Gualandi, Schaerf, 2010]

Input
I Periods

P := {1 2 3 4}

I Courses each with a working
load=credit (eg, ECTS)

C := {A B C D E F}
r := {5 10 5 4 20 7}

I Curricula

Q := {[A,B,C,D],

[B,C,D, F ],

[A,B,E, F ]}

Constraints

I Limits to courses per periods
{m, . . . ,M}

I Prerequisites

precedence digraph D = (V,A)

Objectives
I Balance load distribution
I Avoid undesired assignments

U := {(B, 3), (A, 2)}
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Example

X =

A B C D E F
1 0 0 0 1 0 0
2 0 0 1 0 1 0
3 1 0 0 0 0 1
4 0 1 0 0 0 0

σ = [3, 4, 2, 1, 2, 3]

Equivalent to a resource constrained
project scheduling problem
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strongly NP-hard by reduction from
3-partition
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Literature

I [Castro and Manzano, 2001] formalize the problem and include it in
CSPLib with three instances.

I [Hnich, Kiziltan, and Walsh, 2002] apply CP and ILP techniques. Optimal
solutions for all three instances in times ranging from 1 to hundreds
seconds.

I [Lambert, Castro, Monfroy and Saubion, 2006] hybrid genetic + constraint
propagation.

I [Monette, Schaus, Zampelli, Deville, Dupont, 2007] extensive empirical
study on hundreds of easy solvable instances.

However: only one curriculum is considered and no preferences
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Load Balancing Criterion

Modeled by means of norm functions

L0 = max
p∈P

zQp
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IP models

min w`,1L`(s) + w`,2
∑

(c,p)∈U

xcp

Objective in norm `

s.t.
∑
p∈P

xcp = 1 ∀c ∈ C

Every course assigned

m ≤
∑
c∈Q

xcp ≤M ∀Q ∈ Q, p ∈ P

Course load limits

p−1∑
s=1

xc1s ≤ xc2p ∀[c1, c2] ∈ A, p ∈ P

Prerequisites

∑
p∈P

pxc2p −
∑
p∈P

pxc1p ≥ 1 ∀[c1, c2] ∈ A

Prerequisites

xcp ∈ {0, 1} ∀c ∈ C, p ∈ P Variables
(1)
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Linearization

min w`,1L`(s) + . . . Objective in norm `

L` =
∑
Q∈Q

L`,Q =
∑
p∈P
|zQp − α(Q)|` è not linear

yQp ≥ 0 ∀Q ∈ Q, p ∈ P Auxiliary variables

yQp ≥
∑
c∈C

r(c)xcp − α(Q) ∀Q ∈ Q, p ∈ P

yQp ≥ α(Q)−
∑
c∈C

r(c)xcp ∀Q ∈ Q, p ∈ P

min w`,1
∑
p∈P

y`Q,p + . . .

For ` = 1 integer liner programming model
For ` = 2 integer quadratic programming model
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Local Search Approach

I Solution representation: σ = [3, 4, 2, 1, 2, 3]

I Neighborhood: one-exchange ∪ swap
I Evaluation function:

∑
# violations of load and prereq.
+ balance deviations + preferences viol.

I Search strategy: R1 runner (tabu search, simulated annealing)
+ K kicker (large neighborhood search)
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Computational Results

Instances from Faculty of Engineering of University of Udine
Periods 6 to 9, Courses 140 to 300, curricula 15 to 40

Optimizing L1 the correlation with L2 is 0.861
Optimizing L2 the correlation with L1 is 0.967

Results on the quadratic model

Inst. LB IP UB @ 3600 IP UB @ 320 Heur. UB @ 320 (best)

UD0 31.74 320 362 55 (49)
UD1 5.51 718 2049 282 (265)
UD2 25.20 190 222 155 (148)
UD3 0.00 373 587 172 (166)
UD4 30.83 396 396 396 (396)
UD5 47.55 313 534 222 (215)
UD6 24.00 57 116 61 (57)
UD7 0.00 608 1560 237 (214)
UD8 0.00 107 107 52 (45)
UD9 5.00 624 1376 236 (221)
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Open Issues

I Finding optimal solutions, faster

I Allowing heterogeneous classes: students can attend a course in different
years of their curricula while still having the course taught only once per
year (with large discrepancies in the academic age of students
penalized) [preliminary work with Schaerf, Di Gaspero, 2010]
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At SDU Nat

I 2020 plan: students can enter university twice a year...

Marco Chiarandini .::. 16



At SDU Nat

I 2020 plan: students can enter university twice a year...
Marco Chiarandini .::. 16



Outline

1. Curriculum Construction

2. School Teacher Enrollment

3. Course Timetabling I

4. Course Timetabling II

5. Project Assignment

Marco Chiarandini .::. 17



School Teacher Enrollment

I A Danish school with 11 grades and about 3 sections per grade
1–3: primary school / 4–6: middle school / 7–9 high-school
Grades 0 and 10 are scheduled apart

How many teachers to enroll for the next year such that all teaching duties
are covered?

I About 15 subjects, and each grade has a required number of hours per
week for each subject.

I About 67 teachers who work 24 hours per week

I A teacher in DK usually teaches 2 to 4 main subjects

I Working week is made of 5 days and each day is divided into 8 time
periods of one hour each. (40 periods)

 Class, a body of students that belong to the same grade and section
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Constraints
Assign teachers to subjects and classes such that competence requirements
and some continuity between grades are satisfied and

from the subject perspective:
1. all required subject meetings for a class must be scheduled
2. same subject in a day has consecutive time periods

from the teacher perspective:
3. no overlaps
4. meetings in a day must occur in consecutive time periods
5. at least 3 meetings on a day or none

from the class (ie, student) perspective:
6. no overlaps
7. meetings in a day must occur in consecutive time periods
8. at least 4 meetings scheduled each day
9. other grade dependent restrictions
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Example

A solution to a small case with 2 grades and 2 sections

Teacher perspective with the working periods
M T W H F

7: [2 3 4] [2 3 4] [] [] []
8: [2 3 4] [1 2 3] [] [] []

16: [0 1 2 3 4] [0 1 2 3 4] [0 1 2 3 4] [] []
19: [] [] [] [] []
21: [] [] [0 1 2 3 4] [0 1 2 3 4] [0 1 2 3 4]
23: [] [] [] [] []
27: [2 3 4] [1 2 3 4] [0 1 2 3 4] [0 1 2 3 4] [0 1 2 3 4]
28: [0 1 2] [2 3 4] [] [0 1 2 3 4] [0 1 2 3 4]
30: [] [] [2 3 4] [0 1 2] [2 3 4]
51: [] [] [2 3 4] [1 2 3] [2 3 4]
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Example

The timetable for the four classes identified by (grade, section)

(1, 0): M {0: ’TyF’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
T {0: ’TyF’, 1: ’Dan’, 2: ’Dan’, 3: ’Dan’, 4: ’TyF’}
W {0: ’Eng’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
H {0: ’Dan’, 1: ’Dan’, 2: ’Dan’, 3: ’Eng’, 4: ’Eng’}
F {0: ’Eng’, 1: ’Eng’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}

(1, 1): M {0: ’TyF’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
T {0: ’TyF’, 1: ’Dan’, 2: ’Dan’, 3: ’Dan’, 4: ’Kri’}
W {0: ’Kri’, 1: ’Kri’, 2: ’Mat’, 3: ’Mat’, 4: ’Mat’}
H {0: ’Mat’, 1: ’Mat’, 2: ’Mat’, 3: ’Kri’, 4: ’Kri’}
F {0: ’Kri’, 1: ’Kri’, 2: ’Mat’, 3: ’Mat’, 4: ’Mat’}

(1, 2): M {0: ’Dan’, 1: ’Dan’, 2: ’Dan’, 3: ’Kri’, 4: ’Kri’}
T {0: ’Kri’, 1: ’Kri’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
W {0: ’Kri’, 1: ’Kri’, 2: ’Mat’, 3: ’Mat’, 4: ’Mat’}
H {0: ’Dan’, 1: ’Mat’, 2: ’Mat’, 3: ’Mat’, 4: ’Dan’}
F {0: ’Dan’, 1: ’Dan’, 2: ’Mat’, 3: ’Mat’, 4: ’Mat’}

(2, 0): M {0: ’TyF’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
T {0: ’TyF’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
W {0: ’Kri’, 1: ’Kri’, 2: ’Mat’, 3: ’Mat’, 4: ’Mat’}
H {0: ’Mat’, 1: ’Mat’, 2: ’Mat’, 3: ’Kri’, 4: ’Kri’}
F {0: ’Kri’, 1: ’Kri’, 2: ’Mat’, 3: ’Mat’, 4: ’Mat’}

(2, 1): M {0: ’Dan’, 1: ’Dan’, 2: ’Dan’, 3: ’TyF’, 4: ’TyF’}
T {0: ’TyF’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
W {0: ’Eng’, 1: ’TyF’, 2: ’Dan’, 3: ’Dan’, 4: ’Dan’}
H {0: ’Eng’, 1: ’Kri’, 2: ’Kri’, 3: ’Kri’, 4: ’Eng’}
F {0: ’Eng’, 1: ’Eng’, 2: ’Kri’, 3: ’Kri’, 4: ’Kri’}
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Solution approaches

I Full ILP model does not work:
Largest instance solvable: 4 teachers, 3 classes, 4 subjects and 15 periods

I Very large scale neighborhood with tabu search
(or Logic Based Benders decomposition)

1. enumerate teacher working patterns (dedicated algorithm in java)

2. solve generalized set partitioning problem (gurobi)

3. given the assignment of teachers to subjects solve the timetabling
problem (IP gurobi or CP gecode)

4. if no feasible solution goto 2 introducing constraint that avoids the
same selection of patterns

Marco Chiarandini .::. 22



Solution approaches

I Full ILP model does not work:
Largest instance solvable: 4 teachers, 3 classes, 4 subjects and 15 periods

I Very large scale neighborhood with tabu search
(or Logic Based Benders decomposition)

1. enumerate teacher working patterns (dedicated algorithm in java)

2. solve generalized set partitioning problem (gurobi)

3. given the assignment of teachers to subjects solve the timetabling
problem (IP gurobi or CP gecode)

4. if no feasible solution goto 2 introducing constraint that avoids the
same selection of patterns

Marco Chiarandini .::. 22



Computational Tests

I Timetabling problem (step 3) still hard to solve

I Constraint relaxation (in decreasing order of difficulty to satisfy):

1. compactness for teachers
2. teachers have at least three periods in a row or none
3. compactness for classes
4. same subject in a day have consecutive periods

Several things tried: removal, bringing into objective, iterative insertion

Solutions of reasonable quality were finally found.
Feedback from the school is still pending.
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Post Enrollment Course Timetabling @ SDU Nat
Schedule classes of courses such that:
1. All classes of the quarter must be scheduled in a valid timeslot
2. Students, teachers and rooms do not have overlaps
3. Rooms meet class requirements
4. For exercise classes, students are distributed in teams of limited sizes

(Student sectioning [Müller, 2010])

I classes have different durations
I different schedule between weeks

I rooms
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Local Search

Design choices

1. Solution representation

I Complete vs Partial
I Week kern vs quarter

2. Evaluation function

3. Initial solution

4. Neighborhood: one-exchange, swap

5. Search strategy:
((MinConflict heuristic with tabu) + Random Walk) + VNS

6. Termination criterion: Idle iterations
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Complete State Representation
One-exchange neighborhood

Representation:
All lectures scheduled, Ev. funct: |Sc|+ 1000|Pc|+ 10000|Tc|
Neighborhood:
Move a class to a new valid, empty location in the matrix
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Complete State Representation
Swap neighborhood

Representation:
All lectures scheduled, Ev. funct: |Sc|+ 1000|Pc|+ 10000|Tc|
Neighborhood:
Swap with the class occupying the periods
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Partial State Representation
One-exchange neighborhood

Representation:
Only valid lectures scheduled, Ev. funct: |U |
Neighborhood:
Insert a class in an empty, valid room and time
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Partial state representation
Swap neighborhood

Representation:
Only valid lectures scheduled, Ev. funct: |U |
Neighborhood:
Swap with the class that occupies the period
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Configuration

Combined solvers changing representation:

I complete kernel
I complete quarter
I partial kernel
I partial quarter

I complete kernel + complete quarter
I complete kernel + partial kernel
I complete kernel + partial quarter
I partial kernel + partial quarter

I Solvers use the same configurations as when run alone
I Different number of idle iterations are included in the tests

I F-Race in R [Birattari et al. 2002]
I All pairwise comparisons with time limit of 2,5 minutes
I partial kernel + partial quarter was the winner
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Computational Tests

Quarter 1 2 3 4

Students 1063 1013 788 717
Teachers 63 61 69 60
Rooms 36 35 28 30
Courses 90 95 102 67
Classes 294 266 274 174
# slots in total 3408 2977 3707 2346

# of classes not scheduled (% over the total number of classes)
Partial kernel + quarter Complete kernel Current

1. quarter 5 (1,8%) 12 (4,4%) 96 (24,2%)
2. quarter 11 (6,3%) 18 (10,3%) 106 (34,6%)
3. quarter 7 (2,4%) 13(4,4%) 95 (25,7%)
4. quarter 1 (0,4%) 6 (2,3%) 84 (22,2%)
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Course Timetabling

Given the schedule of mandatory courses, schedule classes of elective courses
avoiding students, teachers and room conflicts.
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IMADA Timetabling

Input:

I set of students S, a set of teachers T
I set of courses C = {1, . . . , n} each with l(i) classes, M ⊂ C

mandatories, E = C \M electives
I collection of enrollments Q = {Qs ⊂ C|s ∈ S} that are courses a

student has subscribed (post enrollment model)
I collection of teaching duties D = {Dt ⊂ C|t ∈ T}
I set of periods P = Days×H

(5 days × 5 slots of two hours).
I set of rooms R (seminarrum + dummy)
I Schedule of mandatory courses M
I Teachers unavailabilites U = {Ut ⊂ P | t ∈ T}
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Integer Programming Model
Hard Constraints

Variables

xijrdh ∈ {0, 1} ∀i ∈ E, j ∈ L(i) r ∈ R (d, h) ∈ P

H1. all classes are scheduled∑
(d,h)∈P

∑
r∈R

xijrdh = 1 ∀i ∈ E, j ∈ L(i)

H2. at most one lecture in a room∑
i∈E

∑
j∈L(i)

xijrdh ≤ ardh ∀r ∈ R, (d, h) ∈ P

H3. teacher are available for the class and have at most one class at a time∑
i∈E

∑
j∈L(i)

∑
r∈R

xijrdh ≤ utdh ∀t ∈ T, (d, h) ∈ P
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Integer Programming Model
Hard Constraints

H5. students have at most one class at a time∑
i∈E

∑
j∈L(i)

∑
r∈R

xijrdh +msdh ≤ 1 ∀s ∈ S, (d, h) ∈ P

H6. at most one class of a course in a day∑
j∈L(i)

∑
r∈R

∑
h∈H

xijrdh ≤ 1 ∀i ∈ E, d ∈ Days

Auxiliary variables
vtd ≥ 0 ∀t ∈ T, d ∈ Days

if teacher has more than a class in a day∑
i∈E

∑
j∈L(i)

∑
r∈R

∑
h∈H

xijrdh +
∑
h∈H

mpdh − 1 ≤ vtd ∀t ∈ T, d ∈ Days

H7. at most two classes in a day for teachers
vtd ≤ 1 ∀t ∈ T, d ∈ Days

H8. at most once in unlucky timeslots∑
i∈E

∑
j∈L(i)

∑
r∈R

∑
d∈Days

(xijrd8 + xijrd16) ≤ 1 ∀e ∈ E
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Integer Programming Model
Hard Constraints

H9. preassignments

xijrdh = 1 ∀i, j, r, d, h ∈ preassigned
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Integer Programming Model
Objective function

Auxiliary variables

zsd ∈ {0, 1} ∀s ∈ S, d ∈ Days yij ∈ {0, 1} ∀t ∈ T, d ∈ Days

u′, ue ∈ {0, 1} ∀e ∈ E

zsd = 1 if student has more than three classes in a day∑
h∈H

∑
i∈E

∑
j∈L(i)

∑
r∈R

xijrdh +msdh − 3 ≤ zsd ∀s ∈ S, d ∈ Days

minimum distance between classes∑
i∈E

∑
j∈L(i)

∑
r∈R

∑
h∈H

xi,j,r,k,h + xi,j,r,k,h ≤ yij + 1

not at 8 or at 16∑
i∈E

∑
j∈L(i)

∑
r∈R

∑
d∈Days

(xijrd8 + xijrd16) ≤ ue ∀e ∈ E

ue ≤ u′ ∀e ∈ E
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MIP Model
Objective function

min
∑
i∈E

∑
j∈L(i)

∑
dh∈P

xijDdh+ Not in dummy room

++u′ +
∑
i∈E

ue not at 8 or at 16

−
∑
i∈E

∑
j∈L(i)

yij lectures in consec. days

+
∑
s∈S

∑
d∈Days

zsd
students with > 3 class
per day

+
∑
t∈T

∑
d∈Days

vtd
teacher with > 1 class per
day
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Results 2011

Quarter 3 4

Students 818 774
Teachers 14 16
Rooms 2 2
Periods 25 25
Mandatories 11 13
Classes mandatories 27 32
Elective courses 6 9
Classes 17 27

3th Quarter

SCIP:
Original variables : 45927 (4957 int, 40970 cont)
Original constraints : 2803
Solving Time (sec) : 0.83
Solving Nodes : 1
Number of Solutions : 2

CPLEX even faster in 0.15 sec.

4th Quarter

SCIP:
Original variables : 44027 (5247 int, 38780 cont)
Original constraints : 3241
Solving Time (sec) : 1.28
Solving Nodes : 1
Number of Solutions : 4

CPLEX even faster in 0.18 sec.
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Outline

1. Curriculum Construction

2. School Teacher Enrollment

3. Course Timetabling I

4. Course Timetabling II

5. Project Assignment
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NAT501 Projects Assignment
I a set of project topics P = {1, . . . , n}

with a number of teams tp for each topic p ∈ P
Each team has cardinality bounds [li..ui] on the number of studetns
(Expanision to set of project teams P)

I a set of groups of students G = {g1, . . . , gm}, |gi| ∈ [1..3] wishing to be
in the same team

I for each group preferences by ranking a subset of project topics
r(g) = (p(1), . . . , p(qg)), p(i) ∈ P

Find σ : G→ P s.t. each group to exactly one
project

I team bounds and group requirements are
satisfied

I σ(g) ∈ r(g)

I fairness and collective welfare criteria are
taken into account.

Strongly NP-hard. Strongly NP-complete by
reduction from 3-partition.

g1

g2

g3

g4

g5

p1

p2

p3

p4

[li;ui][0; 1]
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Lottery
A greedy and fair solution: for priority h = 1..∆ do

for p ∈ P do
let C(p) be the set of groups with p in their hth priority
for g ∈ C(p) in random order do

assign g to p if it fits

Running time: O(|G||P|t′q), t′ = max{tp | p ∈ P}

It may end with:

I teams with less students than the lower bound
I unassigned groups

We used:

I Integer Programming
I Constraint Programming
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Handling Preferences
Quality of an assignment σ determined by:

I a value vector ~v = (v1,σ(1), . . . , vm,σ(m)), vg,σ(g) > 0,∀g ∈ G

I or by the distribution of students over ranks ~δ = (δ1, . . . , δ∆)

Individual utility groups will prefer assignments over others on the basis of
their value vg,σ(g)

Collective welfare: assignments that are Pareto optimal with respect to their
profile vectors ~v.

For two feasible assignments σ1 and σ2:

I classical utilitarian ordering: assigns a weight to each value,
w : [1..∆]→ Z+ and compares

∑
g w(vg,σ1(g)) with

∑
g w(vg,σ2(g))

here joined with minimax min max{vg,σ(g) | g ∈ G}

I egalitarian ordering: leximin order, which consists in reordering the two
vectors ~v1 and ~v2 by increasing coordinates and comparing them
lexicographically.
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Minimax

min f

s.t.
∑
p∈Pg

xgp = 1, ∀g ∈ G

∑
g∈G
|g|xgp ≤ upyp, ∀p ∈ P

∑
g∈G
|g|xgp ≥ lpyp, ∀p ∈ P

f ≥ vgpxgp, ∀g ∈ G,∀p ∈ P
xgp ∈ {0, 1}, ∀g ∈ G,∀p ∈ P
yp ∈ {0, 1}, ∀p ∈ P
f ≥ 0
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Weighted

max
∑
g

w(vg,σ2(g))−Mf

s.t.
∑
p∈Pg

xgp = 1, ∀g ∈ G

∑
g∈G
|g|xgp ≤ upyp, ∀p ∈ P

∑
g∈G
|g|xgp ≥ lpyp, ∀p ∈ P

f ≥ vgpxgp, ∀g ∈ G,∀p ∈ P
xgp ∈ {0, 1}, ∀g ∈ G,∀p ∈ P
yp ∈ {0, 1}, ∀p ∈ P
f ≥ 0
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Lexicographic procedure

Data: a problem instance Π
Result: a leximin optimal solution X∗ to Π
h′ = ∆;
N = ~0
while h′ > 1 do

(N∗,X∗)={cp|ip}_model(Π,N∗,h′);
h′ = h′ − 1;
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Leximin
Lexicographic minimization of distributions

z∗h′ = min zh′

s.t.
∑
p∈Pg

xgp = 1, ∀g ∈ G

∑
g∈G
|g|xgp ≤ upyp, ∀p ∈ P

∑
g∈G
|g|xgp ≥ lpyp, ∀p ∈ P

z∗h =
∑

(g,p)∈Rh

|g|xgp, ∀h ∈ [∆..(h′ + 1)]

zh′ =
∑

(g,p)∈Rh′

|g|xgp

xgp ∈ {0, 1}, ∀g ∈ G,∀p ∈ P
yp ∈ {0, 1}, ∀p ∈ P
zh′ ≥ 0
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Constraint Programming
I Wp subset of groups that are assigned to project p; dom(Wp) ⊆ G
I Xg project p to which group g is assigned; dom(Xg) = Pg
I Yp is 1 if project p has assigned at least one group, 0 otherwise;
I Zp number of students assigned to project p
I a vector of |G| elements that gives |g|, ∀g ∈ G

(1) ∀p ∈ P. Xg = p ⇐⇒ g ∈Wp [channel]
(2) ∀p ∈ P. Zp = weights(Wp,a) [weights]
(3) ∀p ∈ P. Zp ∈ {0, lp..up} [dom]

I Vg value obtained by group g under assignment Xg; dom(Vg) = [1..∆]
I Uh subset of groups that obtain their preference h; dom(Uh) ⊆ G
I Nh number of students that obtain their preference h; dom(Nh) = [1..m]

(4) ∀g ∈ G. Vg = v−1
Xg

(g) [element]
(5) ∀h ∈ H. Vg = h ⇐⇒ g ∈ Uh [channel]
(6) ∀h ∈ H. Nh = weights(Uh,a) [weights]
Branch on Sp choosing the variable with smallest domain size divided by
accumulated failure count and including largest element.
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Computational Results

Instance Criterion Students per priorities Unassigned Underfull
year |S| |G| |P| |P | 14 13 12 11 10 9 8 7 6 5 4 3 2 1 students projects sec.
2008 200 173 70 52 lottery 0 0 0 0 0 0 0 6 8 9 9 8 21 135 4 4 0.0
2008 200 173 70 52 minimax 0 0 0 0 0 0 0 0 0 0 12 79 64 45 0 0 0.6
2008 200 173 70 52 leximin 0 0 0 0 0 0 0 0 0 0 2 38 69 91 0 0 4.7
2008 200 173 70 52 weighted 0 0 0 0 0 0 0 0 0 0 15 22 46 117 0 0 0.0
2009 129 107 48 45 lottery 0 0 0 0 0 0 0 0 3 4 2 0 10 108 2 0 0.0
2009 129 107 48 45 minimax 0 0 0 0 0 0 0 0 0 0 0 32 46 51 0 0 0.4
2009 129 107 48 45 leximin 0 0 0 0 0 0 0 0 0 0 0 5 31 93 0 0 1.2
2009 129 107 48 45 weighted 0 0 0 0 0 0 0 0 0 0 0 8 24 97 0 0 0.0
2010 193 158 62 52 lottery 0 0 2 0 0 0 0 0 0 3 3 7 23 147 8 1 0.0
2010 193 158 62 52 minimax 0 0 0 0 0 0 0 0 0 0 0 70 64 59 0 0 0.8
2010 193 158 62 52 leximin 0 0 0 0 0 0 0 0 0 0 0 20 56 117 0 0 2.0
2010 193 158 62 52 weighted 0 0 0 0 0 0 0 0 0 0 0 26 43 124 0 0 0.0
2011 259 219 83 69 lottery 0 0 4 0 2 2 3 2 4 6 8 9 28 171 20 3 0.0
2011 259 219 83 69 minimax 0 0 0 0 0 0 0 0 30 59 47 50 40 33 0 0 2.2
2011 259 219 83 69 leximin 0 0 0 0 0 0 0 0 5 17 23 22 77 115 0 0 9.9
2011 259 219 83 69 weighted 0 0 0 0 0 0 0 0 17 15 16 10 51 150 0 0 0.0
2012 300 247 102 81 lottery 0 0 0 0 0 2 4 6 5 8 12 22 29 188 24 4 0.0
2012 300 247 102 81 minimax 0 0 0 0 0 0 0 0 0 59 66 61 59 55 0 0 2.7
2012 300 247 102 81 leximin 0 0 0 0 0 0 0 0 0 18 28 55 72 127 0 0 11.2
2012 300 247 102 81 weighted 0 0 0 0 0 0 0 0 0 32 32 34 45 157 0 0 0.0

I lottery clearly outperformed

I leximin outperforms minimax

I weighted has many in first but also many in last priority
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CP vs IP
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Model and solver
lexip lexcpint lexcpset
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Open Issues

I Disruption management: reassignments with minimal changes

I Partial order in preference expression

I What to tell to the students??
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Summary

I Several combinatorial problems all year around:
some are well solved by CP and IP (consider even Solver in Excel),
some are hard and need heuristics

I Heuristics lack of a modelling framework á la COMET
 hard to apply in practice

I Interesting link with collective welfare and social choice theory

I Good case studies to engage students in education of IP, CP, LS
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