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Abstract

This document introduces the reader to the analysis of results of computational experiments
on heuristic algorithms for optimization by means of R, the free software environment for
statistical computing and graphics. In the first chapter relevant R commands are listed. In
the second chapter, a basic analysis is developed on two example studies. In chapter three, the
setup and use of the racing method for configuration and tuning of the algorithms is described.
In chapter four, elements from survival analysis and extreme value theory are used to model
the behaviour of the algorithms. In chapter five, advanced analysis from experimental design
are reviewed.

This is a very preliminary version and suggestions and corrections are very welcome.
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Chapter 1

Introduction

1.1 R Download and Installation

• R web page (http://www.r-project.org/), select Download - CRAN→ Select a mirror
→ Select in the first frame, named ‘Download and Install R’, your operating system.

• Windows: → select ‘base’ → click on ‘R-?.?.?-win32.exe’.

• Under Linux Ubuntu:

sudo apt-get install r-base

• Alternatively, go to http://cran.r-project.org/doc/manuals/R-admin.html and fol-
low description there.

• A package is a collection of functions and programs that can be used within R. To install
new packages type from R command line:

> install.packages("lattice")

• Package Rcmdr provides a graphical interface to R.

• R documentation: see http://www.sbtc.ltd.uk/freenotes.html: ‘Getting Started
in R’ by Saghir Bashir, and the references under the R link http://cran.r-project.

org/manuals.html.

• Emacs users can find a mode for R at http://ess.r-project.org/.

1.2 Basic commands

See help page for details on all commands listed here.
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1.2.1 System commands

• R starts R from command line.

• library(Rcmdr) loads the Rcmdr package and starts graphical interface.

• q() quits your R session.

• options(width=120) determines the position of the line break in R output.

• ?plot a question mark followed by the name of the function opens the help page relative
to that function.

• help.start() opens a browser with documentation.

• example(plot) calls one or more examples implemented for the function.

• demo(package.name) calls a demonstration for the functionality of the defined package.

• ls() provides a list of objects in the current R workspace.

1.2.2 Data and operations

• read.table() and write.table() read and write from text file.

• load() and save() load and save R objects.

• ^, %%, %/% operators for power, modulus and integer part of the division, respectively.

• c() function used to collect objects together into a vector, example: x <- c(1,2,3)

> c(A1 = 1, list(A2 = 1))

$A1

[1] 1

$A2

[1] 1

• vector(), matrix(), array(), data.frame(), list() data structures. Tests or coer-
cions can be done with is.data.frame(), as.data.frame(), respectively

• integer() double() data types. Can be queried or coerced with is.integer() and
as.integer()

• str() compactly displays the structure of an arbitrary R object

• mean(). median(), sum(), var(), summary(), interquartile() range() compute
sample statistics.

• factor() offers an alternative way of storing character data. For example a factor can
have four elements and two levels:
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> algorithms <- c("greedy", "grasp", "greedy", "grasp")

> algorithms

[1] "greedy" "grasp" "greedy" "grasp"

> algorithms <- factor(algorithms)

> algorithms

[1] greedy grasp greedy grasp

Levels: grasp greedy

• Generate sequences of integers by:

> 1:12

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> seq(1, 21, by = 2)

[1] 1 3 5 7 9 11 13 15 17 19 21

> rep(3, 12)

[1] 3 3 3 3 3 3 3 3 3 3 3 3

• Generate factors by specifying the pattern of their levels

> gl(2, 8, labels = c("Control", "Treat"))

[1] Control Control Control Control Control Control Control Control Treat

[10] Treat Treat Treat Treat Treat Treat Treat

Levels: Control Treat

• expand.grid() creates a data frame from all combinations of factors

> (table <- expand.grid(algorithm = algorithms, instance = c("A",

+ "B")))

algorithm instance

1 greedy A

2 grasp A

3 greedy A

4 grasp A

5 greedy B

6 grasp B

7 greedy B

8 grasp B

• paste(), substr() strsplit() work with strings. The first concatenates, the second
returns substrings within two positions, the third splits strings. Example:
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> colors <- c("red", "yellow", "green")

> paste(colors, "flowers")

[1] "red flowers" "yellow flowers" "green flowers"

> paste("several ", colors, "s", sep = "")

[1] "several reds" "several yellows" "several greens"

> paste("I like", colors, collapse = ", ")

[1] "I like red, I like yellow, I like green"

> substr(colors, 1, 2)

[1] "re" "ye" "gr"

> unlist(strsplit("a.b.c", "\\."))

[1] "a" "b" "c"

> sub("(.*)-(.*)-(.*)", "\\1", "a-b-c")

[1] "a"

1.2.3 Graphics

• plot(), lines(), points(), curve(), hist(), barplot(), boxplot(), graphics func-
tions from the base installation

• par() lists and changes graphic setting

• colors() the colors available in R

• Graphics are device independent. Type ?device to see on which device they can be
printed and how.

• dev.copy(dev=pdf,file=’Rplot.pdf’) copies the graphic in a pdf file. Remember to
close the pipeline with dev.off()

• lattice and ggplot two packages for multivariate conditional plots. Try demo() on
them for a demonstration of their facilities. The package lattice is thoroughly ex-
plained in reference [6].
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1.2.4 Data Manipulation and Reshaping Data

• stack, unstack, reshape and merge are useful functions for rearragging data.

> table$res <- runif(8, 0, 1)

> reshape(table, timevar = "algorithm", idvar = "instance", direction = "wide")

instance res.greedy res.grasp

1 A 0.6363240 0.9138498

5 B 0.9843632 0.9745345

> tab <- data.frame(instance = c("A", "B"), opt = c(1, 2))

> merge(table, tab, by.x = "instance", by.y = "instance")

instance algorithm res opt

1 A greedy 0.63632395 1

2 A grasp 0.91384982 1

3 A greedy 0.82857233 1

4 A grasp 0.02554118 1

5 B greedy 0.98436320 2

6 B grasp 0.97453453 2

7 B greedy 0.63009546 2

8 B grasp 0.31191750 2

• which() returns the index of an element in a vector.

Example: which(!(colnames(table) %in% c("algorithm","instace")))

• which.min() returns the index of the minnmal element

• drop unused levels in factors

CHEUR.01<-subset(CHEUR, variability!="no")

CHEUR.01$variability <- CHEUR.01$variability[drop=TRUE]

• For rank transformations within instances:

D<-CHEUR.01

D$rank <- D$res

split(D$rank, D$inst) <- lapply(split(D$res, D$inst), rank)

tapply(D$rank, D$alg, median)

• package xtable provides a function to convert an R object into a LATEX or an HTML
table.

> library(xtable)

> xtable(table)

% latex table generated in R 2.9.1 by xtable 1.5-5 package

% Mon Aug 31 19:41:09 2009

\begin{table}[ht]

\begin{center}

\begin{tabular}{rllr}

\hline

& algorithm & instance & res \\

\hline
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1 & greedy & A & 0.64 \\

2 & grasp & A & 0.91 \\

3 & greedy & A & 0.83 \\

4 & grasp & A & 0.03 \\

5 & greedy & B & 0.98 \\

6 & grasp & B & 0.97 \\

7 & greedy & B & 0.63 \\

8 & grasp & B & 0.31 \\

\hline

\end{tabular}

\end{center}

\end{table}

• Sweave is a tool that allows to embed the R code in latex documents[9, 10]. It implements
the literate programming concept.

1.3 Development Commands

• missing() tests whether a value was specified as an argument to a function.

• stopifnot() stops if one of a list of conditions is not true reporting an error with the
first violated condition.

• debug() debugs a function. Q to exit debug mode.

• sessionInfo() prints version information about R and attached or loaded packages
(see also Sys.getlocale())

• > Sys.getpid()

[1] 1177

> getAnywhere("friedman.test")

A single object matching 'friedman.test' was found

It was found in the following places

package:stats

namespace:stats

with value

function (y, ...)

UseMethod("friedman.test")

<environment: namespace:stats>

> methods("friedman.test")

[1] friedman.test.default* friedman.test.formula*

Non-visible functions are asterisked

• prompt, promtData, package.skeleton create documentation for functions, data sets
and packages, respectively.

• options(warn=2) warnings are turned into errors
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• debug to proceed step by step

• browser() to stop exectution at that point and open debug mode

• if ( interactive() ) { ANSWER <- readline("Continue?") } stops and asks whether
to continue

• R CMD build package, R CMD check package.tgz, R CMD INSTALL package.tgz

1.4 Memory issues

• .Machine and .Platform variables holding information on the numerical characteristics
of the machine and information on the platform on which R is running. Consult these
for information such as the largest double or integer and the machine’s precision. See
also ?"Memory-limits"

• object.size() provides an estimate of the memory that is being used to store an R
object.

• gc(verbose=TRUE) causes a garbage collection to take place and prints memory usage
statistics
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Chapter 2

Comparing Distributions of
Experimental Results

In this chapter, we discuss basic ways to visualize results for the analysis of computational
experiments in optimization. We have chosen two running examples. The first considers the
combinatorial optimization problem of finding a good approximation to the chromatic number
of a graph and evaluates different heuristics for it. The second is a continuous optimization
problem drawn from the field of statistics and considers both the implementation of the solvers
and their assessment.

2.1 Example 1: Discrete Optimization

In this example we wish to assess different heuristics for the graph coloring problem, ie, finding
a good approximation of the chromatic number of a graph.

2.1.1 Univariate Analysis

We have collected results for different heuristics run for the same amount of time on a class
of instances randomly generated. By construction we know that each instance has a coloring
that uses a certain number of colors. This number is encoded in the name of the instance.
We load the data as an R object and produce a first exploratory plot to investigate the
distribution of data. We may choose one of the three ways to represent distributions depicted
in Figure 2.1. All summary statistics of the distributions, such as location measures (mean,
median, max) or dispersion measures (variance, standard deviation, interquartile) necessarily
omit information. Inspection of the full distribution of data is therefore a good practice to
understand which of these summary statistics better represent the data at hand.

Boxplots are advantages because they allow to fit easily several distributions on the same
plot.

The data are stored in a text file organized in columns. The import in a data frame is
straightforward. By means of str we gain a view on the data. There are three algorithms
and ten instances. For each instance and algorithm ten results are collected. We rename
the columns according to the information they provide and produce the boxplots, shown in
Figure 2.2, upper left plot.
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Figure 2.1: Histogram, density function, empirical distribution function and boxplots are
different ways to look at the distribution of empirical data.

> G <- read.table("Data/TS-class-G.txt")

> names(G) <- c("alg", "inst", "trial", "sol", "time", "best")

> G[1:5, ]

alg inst trial sol time best

1 TS1 G-1000-0.5-30-1.1 1 59 9.90 30

2 TS1 G-1000-0.5-30-1.1 2 64 9.74 30

3 TS1 G-1000-0.5-30-1.1 3 64 9.91 30

4 TS1 G-1000-0.5-30-1.1 4 68 9.95 30

5 TS1 G-1000-0.5-30-1.1 5 63 9.91 30

> str(G)

'data.frame': 300 obs. of 6 variables:

$ alg : Factor w/ 3 levels "TS1","TS2","TS3": 1 1 1 1 1 1 1 1 1 1 ...

$ inst : Factor w/ 10 levels "G-1000-0.5-30-1.1",..: 1 1 1 1 1 1 1 1 1 1 ...

$ trial: int 1 2 3 4 5 6 7 8 9 10 ...

$ sol : int 59 64 64 68 63 63 65 65 71 62 ...

$ time : num 9.9 9.74 9.91 9.95 9.91 ...

$ best : int 30 30 30 30 30 30 30 30 30 30 ...

> par(mfrow = c(2, 2), las = 1, font.main = 1, mar = c(2, 3, 3,

1))

> boxplot(sol ~ alg, data = G, horizontal = TRUE, main = "Original data")

This way of aggregating data tends to confound effects because instances may have different
scales. For example an instance can have optimal solution 20 another 100 and if the algorithms
are good they may find solutions close to these values, thus aggregating data would mix
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Figure 2.2: Aggregate analysis with original data

number that have little to do together. Let’s have a closer look at these data by observing
the distributions separately on each instance. For this we need the multi-panel functionality
of the package lattice.

> library(lattice)

> print(bwplot(alg ~ sol | inst, data = G, layout = c(5, 2)))

It is clear from the resulting plot in Figure 2.3 that there are differences among the
algorithms. Hence an aggregate analysis must make use of some data transformation in order
to uniform instance scales.

We review four possible transformations, standard error, relative error, invariant error and
ranks. The boxplots obtained by these transformations are reported in Figure 2.4

Standard error This is the classical transformation used in statistics indicating the distance
from the mean value in terms of standard deviation. In R the function scale takes care of
the transformation.

> T1 <- split(G$sol, list(G$inst))

> T2 <- lapply(T1, scale, center = TRUE, scale = TRUE)

> T3 <- unsplit(T2, list(G$inst))

> T4 <- split(T3, list(G$alg))

> T5 <- stack(T4)

> boxplot(values ~ ind, data = T5, horizontal = TRUE, main = expression(paste("Standard error: ",

frac(x - bar(x), sqrt(sigma)))))

> library(latticeExtra)

> print(ecdfplot(~T5$values, groups = T5$ind, main = expression(paste("Standard error: ",

frac(x - bar(x), sqrt(sigma))))))

More concisely, the addition of a column with the standard error could have been achieved
as follows:

> G$scale <- 0

> split(G$scale, G$inst) <- lapply(split(G$sol, G$inst), scale,

center = TRUE, scale = TRUE)
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Figure 2.3: Boxplots of solution found by the algorithms on instance basis

Relative error Where lower bounds, best solutions or optimal solutions are known it is
possible to use a measure more typically found in optimization, i.e., the relative error or
optimality gap.

> G$err2 <- (G$sol - G$best)/G$best

> boxplot(err2 ~ alg, data = G, horizontal = TRUE, main = expression(paste("Relative error: ",

frac(x - x^(best), x^(best)))))

> print(ecdfplot(~G$err2, groups = G$alg, main = expression(paste("Relative error: ",

frac(x - x^(best), x^(best))))))

Invariant error The relative error is not invariant with repsct to linear transformation of
the input data. It can be proved that substituting in the denominator xbest with xworst−xbest,
where xworst is the worst possible result on the instance, the resulting mearue is invariant.
Often xworst is unknown and it might be hard to determine. Hence, we use as surrogate of
xworst the median solution returned by the simplest algorithm for the graph coloring, that is,
the ROS heuristic.

> H <- read.table("Data/ROS-class-G.txt")

> names(H) <- c("alg", "inst", "trial", "sol", "time")
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> X <- aggregate(H$sol, list(H$inst), median)

> G$ref <- sapply(G$inst, function(x) X[X$Group.1 == x, ]$x)

> G$err3 <- (G$sol - G$best)/(G$ref - G$best)

> boxplot(err3 ~ alg, data = G, horizontal = TRUE, main = expression(paste("Invariant error: ",

frac(x - x^(best), x^(worst) - x^(best)))))

> print(ecdfplot(~G$err3, groups = G$alg, main = expression(paste("Invariant error: ",

frac(x - x^(best), x^(worst) - x^(best))))))

Ranks The last transformation that we consider consists in ranking the data within each
instance.

Let k be the number of candidate solvers and Xi1r, Xi2r, . . . , Xikr the results they obtain
on an instance i in the run r. Results over the r runs can be arranged as follows

Solvers
Instance 1 2 . . . k

1 X1,1,1, . . . , X1,1,r X1,2,1, . . . , X1,1,r . . . X1,k,1, . . . , X1,1,r

2 X2,1,1, . . . , X2,1,r X2,2,1, . . . , X2,1,r . . . X2,k,1, . . . , X2,1,r

3 X3,1,1, . . . , X3,1,r X3,2,1, . . . , X3,1,r . . . X3,k,1, . . . , X3,1,r

. . . . . . . . . . . . . . .
10 X10,1,1, . . . , X3,1,r X10,2,1, . . . , X10,1,r . . . X10,k,1, . . . , X10,1,r

The results are transformed in ranks within each instance i assigning to each Xi,j,r a value
R(Xi,j,r) from 1 to rk. We can compute the sum of the ranks Rj and the average rank Rj for
a solver j by

Rj =
10∑
i=1

r∑
l=1

R(Xi,j,r) Rj =
Rj
rk

.

> G$rank <- 0

> split(G$rank, G$inst) <- lapply(split(G$sol, G$inst), rank)

> boxplot(rank ~ alg, data = G, horizontal = TRUE, main = "Ranks")

> print(ecdfplot(~rank, groups = alg, data = G, main = "Ranks"))

Numerical results and tables Once we observed the distributions we may choose the
statistics worth to be reported in a table with numerical details. Since distributions are not
perfectly symmetric we decide to use the median as summary measure of location and the
interquartile, that is, the difference between the first and the third quartile1. Since we are
also interested in the best results we also report the minimum of the results found. Then we
use xtable to produce the table in LATEX.

> df1 <- aggregate(G$sol, list(inst = G$inst, alg = G$alg), median)

> df2 <- aggregate(G$sol, list(inst = G$inst, alg = G$alg), IQR)

> df3 <- aggregate(G$sol, list(inst = G$inst, alg = G$alg), min)

> df <- cbind(df3, iqr = df1$x, min = df2$x)

1The p-quantile corresponds to the value x of a distribution such that Pr[X < x] = p. The first quartile is
the 25%-quantile, i.e., the value x such that Pr[X < x] = 0.25.
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Figure 2.4: Aggregate analysis with different performance measures
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inst x.TS1 iqr.TS1 min.TS1 x.TS2 iqr.TS2 min.TS2 x.TS3 iqr.TS3 min.TS3
G-1000-0.5-30-1.1 59 64.00 2.00 37 46.00 3.25 47 51.50 4.75
G-1000-0.5-30-1.2 60 63.50 5.50 43 47.50 7.00 49 59.50 6.00
G-1000-0.5-40-1.1 71 75.50 2.75 66 71.50 2.75 68 74.50 7.50
G-1000-0.5-40-1.2 68 72.50 5.25 60 67.50 3.00 66 71.00 4.00
G-1000-0.5-50-1.1 78 80.50 4.50 72 76.50 1.75 76 79.00 2.75
G-1000-0.5-50-1.2 76 81.00 2.00 71 76.00 3.50 71 77.00 2.75
G-1000-0.5-60-1.1 81 82.50 2.00 80 82.00 1.75 78 81.50 1.75
G-1000-0.5-60-1.2 79 83.00 2.75 74 79.50 3.00 76 80.00 3.50
G-1000-0.5-70-1.1 86 87.50 1.00 85 87.50 2.00 81 86.50 2.00
G-1000-0.5-70-1.2 83 86.00 2.00 81 84.00 1.75 82 84.00 2.00

> tab <- reshape(df, timevar = "alg", idvar = "inst", direction = "wide")

> library(xtable)

> print(xtable(tab), include.rownames = FALSE, floating = FALSE)

% latex table generated in R 2.9.2 by xtable 1.5-4 package

% Thu Apr 22 07:57:56 2010

\begin{tabular}{lrrrrrrrrr}

\hline

inst & x.TS1 & iqr.TS1 & min.TS1 & x.TS2 & iqr.TS2 & min.TS2 & x.TS3 & iqr.TS3 & min.TS3 \\

\hline

G-1000-0.5-30-1.1 & 59 & 64.00 & 2.00 & 37 & 46.00 & 3.25 & 47 & 51.50 & 4.75 \\

G-1000-0.5-30-1.2 & 60 & 63.50 & 5.50 & 43 & 47.50 & 7.00 & 49 & 59.50 & 6.00 \\

G-1000-0.5-40-1.1 & 71 & 75.50 & 2.75 & 66 & 71.50 & 2.75 & 68 & 74.50 & 7.50 \\

G-1000-0.5-40-1.2 & 68 & 72.50 & 5.25 & 60 & 67.50 & 3.00 & 66 & 71.00 & 4.00 \\

G-1000-0.5-50-1.1 & 78 & 80.50 & 4.50 & 72 & 76.50 & 1.75 & 76 & 79.00 & 2.75 \\

G-1000-0.5-50-1.2 & 76 & 81.00 & 2.00 & 71 & 76.00 & 3.50 & 71 & 77.00 & 2.75 \\

G-1000-0.5-60-1.1 & 81 & 82.50 & 2.00 & 80 & 82.00 & 1.75 & 78 & 81.50 & 1.75 \\

G-1000-0.5-60-1.2 & 79 & 83.00 & 2.75 & 74 & 79.50 & 3.00 & 76 & 80.00 & 3.50 \\

G-1000-0.5-70-1.1 & 86 & 87.50 & 1.00 & 85 & 87.50 & 2.00 & 81 & 86.50 & 2.00 \\

G-1000-0.5-70-1.2 & 83 & 86.00 & 2.00 & 81 & 84.00 & 1.75 & 82 & 84.00 & 2.00 \\

\hline

\end{tabular}

2.1.2 Bivariate Analysis

We now turn our attention to heurstics with natural termination criterion, leading to perfor-
mance measures that depend on both time and solution quality.

For three such heuristics we collected one single run on 30 different instances with same or
similar characteristics. As we saw, an aggregate analysis calls for some transformation of data.
We choose the standard error transofmation in this case, although better transformations
could be found.

We use the lattice xyplot to produce a scatter plot that gives us a comprehensive visual-
ization of the data. The analysis could be produced also using the standard plot and text

functions.
Figure 2.6 left shows the clouds of points associated with the three algorithms. It is evident

that the algorithm RLF has much higher variability than the other two. If we have many
mor algorithms to compare, we may wish to repsent data more syntetically by plotting only
the median values. Moreover, logarithmic transformations are useful to emphasize differences.
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time

The resulting plot is given in Figure 2.6, right. The conclusion from this analysis is that the
three algorithms are non domaniated in Pareto sense. Hence the decision on which to use will
depend on the application.

> G <- read.table("/home/marco/Work08/RTutorial/Data/ch-class-G.txt")

> names(G) <- c("algo", "inst", "sol", "time")

> str(G)

'data.frame': 90 obs. of 4 variables:

$ algo: Factor w/ 3 levels "DSATUR","RLF",..: 3 3 3 3 3 3 3 3 3 3 ...

$ inst: Factor w/ 30 levels "G-1000-0.5-20-0.1",..: 1 2 3 4 5 6 7 8 9 10 ...

$ sol : int 119 117 117 116 119 121 122 122 121 118 ...

$ time: num 0.188 0.184 0.188 0.192 0.188 ...

> G$scale <- 0

> split(G$scale, G$inst) <- lapply(split(G$sol, G$inst), scale,

center = TRUE, scale = TRUE)

> print(xyplot(time ~ scale, data = G, groups = algo, auto.key = list(columns = 3)))

> A <- aggregate(G$scale, list(algo = G$algo), median)

> B <- aggregate(G$time, list(algo = G$algo), median)

> G1 <- merge(A, B, by = "algo")

> names(G1) <- c("algo", "sol", "time")

> print(xyplot(time ~ sol, data = G1, groups = algo, scales = list(relation = "free",

y = list(rot = 0, log = TRUE)), panel = function(x, y, subscripts,

groups) {

panel.grid(h = -1, v = -1, lty = 3, col = "grey30")

ltext(x = x, y = y, label = groups[subscripts], cex = 0.8,

fontfamily = "Helvetica")

}, ylab = "Time", xlab = "Quality"))

2.2 Example 2: Continuous Optimization

Let’s consider a basic linear regression model:

Yi = β0 + β1Xi + ε i = 1, . . . , n
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where Xi is the value of the predictor variable in the ith trial, Yi is the value of the response
variable in the ith trial, β0 and β1 are parameters and εi are mutually independent random
errors with E[εi] = 0 and σ[εi] = 0. We can rewrite in matrix notation:

Y =


Y1

Y2
...
Yn

 X =


1 X1

1 X2
...

...
1 Xn

 β =

[
β0

β1

]
ε =


ε1
ε2
...
εn


The X is often referred to as the design matrix. Hence,

Y = Xβ + ε

We simulate these data in R. The function rexp(N,l) generates N following an exponential
distribution with mean l.

> set.seed(1)

> N <- 100

> X <- array(dim = c(N, 2))

> X[, 1] <- 1

> X[, 2] <- seq(0.01, 1, by = 0.1)

> Y <- X %*% matrix(c(0, 1)) + matrix(rexp(N, 1))

The usual way to estimate the values of the parameters β is by means of the least square
method that minimizes:

min

n∑
i=1

(Yi − β0 − β1Xi)
2

The estimators β0 and β1 can be found by analytical procedure and in R using the method
lm.

> l <- lm.fit(X, Y)

> plot(X[, 2], Y)

> abline(l)

Here, we want instead to use the least median of squares method, that is,

z(β) = min
{

median[(Yi − β0 − β1Xi)
2]
}

The least median method should be more robust against outliers in the model, however the
estimation of the parameters β0 and β1 requires minimizing a non-differentiable, non-linear,
multi-modal function for which an analytical procedure is not known. We can inspect this
visually using R methods for 3D plots.

First, we declare a function that implements the function we want to minimize, i.e.,
median[(Y − βX)2]. R allows to declare functions in the following way:

lmedian <- function(beta, Response, Design) {

counter <<- counter + 1

median((Response - Design %*% beta)^2)

}

18



●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

0.0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

X[, 2]

Y

Figure 2.7: Scatter plot and linear regression line superimposed.

The operator <- is used for assignments. Assignments within functions are local. The
operator <<- is a global assignment, the value of counter will remain modified also outside
the function.

Then, we use the method wireframe from the package lattice to produce a 3D plot. In
order to do this we must first determine plot points and then evaluate the function on these
points

gr <- expand.grid(beta.0=seq(-1,1,0.08),

beta.1=seq(-1,5,0.1))

gr$z <- apply(gr,1,function(x) lmedian(x,Y,X))

trellis.par.set("axis.line",list(col=NA,lty=1,lwd=1))

print(

wireframe(z ~ beta.0 * beta.1, data = gr,

scales = list(arrows = FALSE),

drape = TRUE, colorkey = FALSE,

aspect=c(1,1),

screen = list(z = 120, x = -60),zoom=1)

)

The outcome is shown in Figure 2.8, left. At first sight this might seem a well-shaped
convex function. However a closer look, shown in Figure 2.8, right, unveils its real nature:

gr <- expand.grid(beta.0=seq(-0.01,0.01,0.001),

beta.1=seq(1.2,3,0.01))

gr$z <- apply(gr[,1:2],1,function(x) lmedian(x,Y,X))

trellis.par.set("axis.line",list(col=NA,lty=1,lwd=1))

print(

wireframe(z ~ beta.0 * beta.1, data = gr,

scales = list(arrows = FALSE),
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Figure 2.8: Surface of the function to minimize on the two parameters beta.0 and beta.1.

drape = TRUE, colorkey = FALSE,

aspect=c(1,1),

screen = list(z = 120, x = -60),zoom=1)

)

The presence of local optima becomes evident and together with it the difficulty of solving
this optimization problem.

We must therefore resort to numerical methods and heuristics. The R method optim offers
an implementation of the Nelder-Mead [11] method and Simulated Annealing for continuous
optimization. The Nelder-Mead is the default in the function optim provided by R. It requires
a starting value for the parameters, the function to optimize and its parameters.

> beta.init <- matrix(c(0,0))

> O <- optim(c(beta=beta.init), lmedian, Response=Y, Design=X, control=list(trace=6))

Nelder-Mead direct search function minimizer

function value for initial parameters = 1.730979

Scaled convergence tolerance is 2.57936e-08

Stepsize computed as 0.100000

BUILD 3 1.730979 1.477877

EXTENSION 5 1.599763 1.184003

EXTENSION 7 1.477877 0.856270

EXTENSION 9 1.184003 0.381746

REFLECTION 11 0.856270 0.306620

.....

REFLECTION 115 0.247260 0.247260

HI-REDUCTION 117 0.247260 0.247260

Exiting from Nelder Mead minimizer

119 function evaluations used

> O

$par

beta1 beta2
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Figure 2.9: Least median of squares regression. Colors refer to different starting points: blue
line refers to β0 = [0, 0]T with z(β) = 0.24726, red to β0 = [0, 2]T with z(β) = 0.24581 and
green to β0 = [0, 3]T with z(β) = 0.39371. Finally the black line is the supposed optimum
found by one of the random restart strategies illustrated in the next section.

0.85100 0.45652

$value

[1] 0.24726

$counts

function gradient

119 NA

$convergence

[1] 0

$message

NULL

> plot(X[,2],Y)

> lines( X[,2], O$par[1]+O$par[2]*X[,2], lty=2, col="blue")

Repeating the optimization from different starting points we obtain a value of 0.24581 after
107 function evaluations starting from β0 = [0, 2]T and a value of 0.39371 after 81 function
evaluations starting from β0 = [0, 3]T .

Optimization methods and algorithms In the previous section we saw that the initial
solution has a strong impact on the final result of the Nelder-Mead algorithm. In this section
we want to study the effect of random restart on this algorithm. Each descent starts from
a solution randomly chosen in the square [−2, 3] × [0, 100]. We will compare the algorithm
without restart and two versions with 100 random restarts. In the first version start points
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Figure 2.10: Comparison of a sample of 100 points in the square [−2, 3] × [0, 100] by quasi-
Monte Carlo method (left) and uniform distribution (right). (For the use of mathematical
symbols in R plots see ?plotmath.)

are chosen uniformly at random. In the second version a quasi Monte Carlo method is used.
Quasi-Monte Carlo methods are based on low-discrepancy sequences. We use the algorithm
and the Fortran implementation by Niederreiter [5]. The difference between the two sampling
methods is illustrated in Figure 2.10.

> no.restart <- function(seed = 1) {

set.seed(seed)

pc <- matrix(c(runif(1, -2, 3), runif(1, 0, 100)))

O <- optim(c(beta = pc), lmedian, Response = Y, Design = X,

control = list(trace = 0))

return(O$value)

}

> restart.uniform <- function(N, seed = 1) {

set.seed(seed)

values <- array(dim = c(N))

for (i in 1:N) {

pc <- matrix(c(runif(1, -2, 3), runif(1, 0, 100)))

O <- optim(c(beta = pc), lmedian, Response = Y, Design = X,

control = list(trace = 0))

values[i] <- O$value

}

return(min(values))

}

> restart.qmc <- function(N, seed = 1) {

mylib <- file.path(".", "LowDiscrepancy", paste("niederreiter_prb",

.Platform$dynlib.ext, sep = ""))

dyn.load(mylib)
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values <- array(dim = c(N))

s <- seed

f <- vector(mode = "double", length = 2)

for (i in 1:N) {

qmc <- .Fortran("generate", as.integer(2), as.integer(2),

s = as.integer(s), f = as.double(f))

s <- qmc$s

pc <- matrix(c(-2 + qmc$f[1] * (3 - (-2)), 0 + qmc$f[2] *

(100 - 0)))

O <- optim(c(beta = pc), lmedian, Response = Y, Design = X,

control = list(trace = 0))

values[i] <- O$value

}

return(min(values))

}

2.2.1 Comparison on one instance

Univariate analysis We compare these three algorithms on the basis of the solution cost.
We first collect the data:

D <- data.frame(no.restart=sapply(1:30,function(x) no.restart(x)),

uniform.restart=sapply(1:30,function(x) uniform.restart(10,x)),

qmc.restart=sapply(1:30,function(x) qmc.restart(10,x)))

> D

no.restart uniform.restart qmc.restart

1 1.7857 1.7857 1.7852

2 1.7857 1.7855 1.7852

3 1.8247 1.7852 1.7852

.....

29 1.7846 1.7846 1.7852

30 1.8069 1.7857 1.7852

> str(D)

'data.frame': 30 obs. of 3 variables:

$ no.restart : num 1.79 1.79 1.82 1.98 1.80 ...

$ uniform.restart: num 1.79 1.79 1.79 1.78 1.79 ...

$ qmc.restart : num 1.79 1.79 1.79 1.79 1.79 ...

It is good practice to inspect the data and to check that there are no strange results.
We can do this drawing some plots. The following lines show how to produce histograms,
empirical cumulative distribution functions and boxplots (see Figure 2.1 and Figure 2.11).

> hist(D$no.restart,

breaks=seq(-0.01+min(D$no.restart),max(D$no.restart+0.01),0.01),

probability=TRUE,panel.first=grid())

> lines(density(D$no.restart),col="blue")

> lines(density(D$no.restart,adjust=3),lty=2,col="blue")

> plot.ecdf(D$no.restart,panel.first=grid(),do.points=FALSE,verticals=TRUE)

> boxplot(D$no.restart,horizontal=TRUE,names=c("no.restart"),las=1)

Repeating the inspection for the other two algorithms we see that the qmc.restart proce-
dure returns always the same value. Indeed the algorithm of Niederreiter [5] is deterministic
if the same number of samples is required.
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Figure 2.12: Boxplot comparing the three algorithms.

Boxplots can be used for the comparison of the three algorithms. The result of the following
line is reported in Figure 2.12.

> boxplot(D)

It clearly arises that qmc.restart and uniform.restart outperform no.restart while in
the comparison between qmc.restart and uniform.restart it is more difficult to distinguish
a winner. It is also relevant to have a closer insight at some statistics of the numerical data:

> summary(D)

no.restart uniform.restart qmc.restart

Min. :1.78 Min. :1.78 Min. :1.79

1st Qu.:1.79 1st Qu.:1.78 1st Qu.:1.79

Median :1.80 Median :1.78 Median :1.79

Mean :1.81 Mean :1.79 Mean :1.79

3rd Qu.:1.82 3rd Qu.:1.79 3rd Qu.:1.79

Max. :1.98 Max. :1.79 Max. :1.79
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The conclusion is that qmc.restart and uniform.restart perform about the same on
this specific instance.

Bivariate analysis In the previous analysis we have not considered the computation time.
In the following we take that also into account.

D2 <- data.frame()

for ( i in 1:30 )

{

T <- system.time(S <- no.restart(i))

D2 <- rbind(D2,data.frame(algorithm="no.restart",trial=i,quality=S,time=T[[1]]))

T <- system.time(S <- uniform.restart(10,i))

D2 <- rbind(D2,data.frame(algorithm="uniform.restart",trial=i,quality=S,time=T[[1]]))

T <- system.time(S <- qmc.restart(10,i))

D2 <- rbind(D2,data.frame(algorithm="qmc.restart",trial=i,quality=S,time=T[[1]]))

}

> D2

algorithm trial quality time

1 no.restart 1 1.7857 0.024

2 uniform.restart 1 1.7857 0.292

3 qmc.restart 1 1.7852 0.328

.....

88 no.restart 30 1.8069 0.028

89 uniform.restart 30 1.7857 0.352

90 qmc.restart 30 1.7852 0.312

> str(D2)

'data.frame': 90 obs. of 4 variables:

$ algorithm: Factor w/ 3 levels "no.restart","uniform.restart",..: 1 2 3 1 2 3 1 2 3 1 ...

$ trial : int 1 1 1 2 2 2 3 3 3 4 ...

$ quality : num 1.79 1.79 1.79 1.79 1.79 ...

$ time : num 0.024 0.292 0.328 0.028 0.344 ...

This time we collected the data in the data frame structure in a long format, contrary to
D that was in wide format. It is however easy to go from one form to the other by means of
the functions stack, unstack and reshape, for example,

> unstack(D2[,c(3,1)])

no.restart uniform.restart qmc.restart

1 1.7857 1.7857 1.7852

2 1.7857 1.7855 1.7852

.....

29 1.7846 1.7846 1.7852

30 1.8069 1.7857 1.7852

The second format is however more convenient for multivariate analysis, in which the
responses for different variables are reported in different columns. In our case the two variables
are time and quality. Moreover, this format allows us to use the methods from the package
lattice which is specific for multivariate data visualization. For example,

> library(lattice)

> print(histogram(~quality | factor(algorithm), data = D2, layout = c(1,

3)))

produces the output in Figure 2.13.
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Back to our comparison, we can plot the results on a time-quality plot. We may do this
by plotting all the data or by summarizing them by means of the median. See Figure 2.14.

> print(xyplot(quality ~ time, groups = algorithm, data = D2))

> A <- aggregate(D2$quality, list(algorithm = D2$algorithm), median)

> B <- aggregate(D2$time, list(algorithm = D2$algorithm), median)

> D2s <- merge(A, B, by = "algorithm")

> names(D2s) <- c("algorithm", "quality", "time")

> D2s

algorithm quality time

1 no.restart 1.80 0.028

2 qmc.restart 1.79 0.304

3 uniform.restart 1.78 0.312

> print(xyplot(quality ~ time, data = D2s, groups = algorithm,

scales = list(relation = "free", y = list(rot = 0, log = FALSE)),

panel = function(x, y, subscripts, groups) {

panel.grid(h = -1, v = -1, lty = 3)

ltext(x = x, y = y, label = groups[subscripts], cex = 0.8,

fontfamily = "Helvetica")

}, ylab = "Mean time", xlab = "Mean quality"))

From Figure 2.14, right, we may conclude that since the quality of the solutions returned
is slightly better for the uniform.restart and the computation time is about the same,
uniform.restart seems a better algorithm in this experiment.
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results are used as coordinate for the algorithm’s label.

2.2.2 Comparison on a set of instances

So far we only evaluated our three algorithms on a single instance. This might be misleading
if we want to take a conclusion on which algorithm is the best for instances of a certain type
because the instance used for comparison might not be a good representative of the whole
population. In this section we will focus on the comparison over a set of instances sampled
from the distribution of instances of a certain type.

Let’s first generate the instances and store them in a list

generate.instance <- function(seed)

{

set.seed(seed)

N <- 1000

X <- array(dim=c(N,2))

X[,1] <- 1

X[,2] <- 10*seq(0.01,1,by=0.1)#rnorm(N,5,10)#seq(0.01,1,by=0.1)

Y <- X %*% matrix(c(0,1)) + matrix(rnorm(N,0,2))

return(list(X=X,Y=Y))

}

instances <- list()

for (i in 1:30)

{

instances[[i]] <- generate.instance(i)

}

and then let’s collect the results

D3 <- data.frame()
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for ( i in 1:30 )

{

X <<- instances[[i]]$X

Y <<- instances[[i]]$Y

T <- system.time(S <- no.restart(i))

D3 <- rbind(D3,data.frame(algorithm="no.restart",instance=i,quality=S,time=T[[1]]))

T <- system.time(S <- uniform.restart(10,i))

D3 <- rbind(D3,data.frame(algorithm="uniform.restart",instance=i,quality=S,time=T[[1]]))

T <- system.time(S <- qmc.restart(10,i))

D3 <- rbind(D3,data.frame(algorithm="qmc.restart",instance=i,quality=S,time=T[[1]]))

}

This time we present the analysis of the two variates time and quality using the conditional
plots of lattice. We first need to reshape the data as follows

> str(D3)

'data.frame': 90 obs. of 4 variables:

$ algorithm: Factor w/ 3 levels "no.restart","uniform.restart",..: 1 2 3 1 2 3 1 2 3 1 ...

$ instance : int 1 1 1 2 2 2 3 3 3 4 ...

$ quality : num 1.79 1.79 1.79 1.9 1.83 ...

$ time : num 0.032 0.312 0.332 0.044 0.364 ...

> D3r <- reshape(D3, idvar = "id", timevar = "response", varying = list(c("time",

"quality")), direction = "long", times = c("time", "quality"),

v.names = "values")

> str(D3r)

'data.frame': 180 obs. of 5 variables:

$ algorithm: Factor w/ 3 levels "no.restart","uniform.restart",..: 1 2 3 1 2 3 1 2 3 1 ...

$ instance : int 1 1 1 2 2 2 3 3 3 4 ...

$ response : chr "time" "time" "time" "time" ...

$ values : num 0.032 0.312 0.332 0.044 0.364 ...

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

- attr(*, "reshapeLong")=List of 4

..$ varying:List of 1

.. ..$ : chr "time" "quality"

..$ v.names: chr "values"

..$ idvar : chr "id"

..$ timevar: chr "response"

and then produce the plot of Figure 2.15 with the command

> print(bwplot(algorithm ~ values | response, data = D3r, layout = c(1,

2), scales = "free"))

Looking at the quality response we see that apparently there are no significant differences.
This contrasts with the conclusion of Figure 2.12 and should make us suspicious. Indeed, if no
transformation of data is applied the different scale of the instances is likely to hide differences
among the performance of the algorithms. We redo the analysis by using rank transformation
of the results within each instance (hence results are mapped in the interval [1, 3] because we
have three algorithms and one run per instance). The result is illustrated in Figure 2.16.
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Figure 2.15: Boxplots of time and quality responses of the three algorithms over 30 instances
of the least median of squares regression problem. Times are expressed in seconds and refer
to a Intel(R) Core(TM)2 CPU at 1.86GHz.

> D3$rank <- unsplit(tapply(D3$quality, D3$instance, rank, ties.method = "average"),

D3$instance)

> F <- aggregate(D3$rank, list(D3$algorithm), mean)

> l <- F[order(F$x), 1]

> print(bwplot(factor(algorithm, levels = l) ~ rank, data = D3))

The conclusion we should draw from Figure 2.16 is opposite to what we had before. When
we consider a set of instances the algorithm qmc.restart shows best performance.

It might be also worth reporting a table with numerical results. For LATEX this can be
easily achieved with the package xtable:

> D3t <- unstack(D3[, c(3, 1)])

> library(xtable, lib.loc = "/home/marco/.R/library")

> xtable(D3t[1:5, ])

% latex table generated in R 2.9.2 by xtable 1.5-4 package

% Thu Apr 22 07:58:02 2010

\begin{table}[ht]

\begin{center}

\begin{tabular}{rrrr}

\hline

& no.restart & uniform.restart & qmc.restart \\

\hline

1 & 1.79 & 1.79 & 1.79 \\

2 & 1.90 & 1.83 & 1.83 \\
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Figure 2.16: The comparison on a set of instances after rank transformation.

3 & 1.81 & 1.78 & 1.78 \\

4 & 1.67 & 1.67 & 1.67 \\

5 & 4.26 & 1.72 & 1.72 \\

\hline

\end{tabular}

\end{center}

\end{table}

no.restart uniform.restart qmc.restart

1 1.79 1.79 1.79
2 1.90 1.83 1.83
3 1.81 1.78 1.78
4 1.67 1.67 1.67
5 4.26 1.72 1.72
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Chapter 3

The Racing Method

The racing method is an automatic sequential testing procedure for the comparison, config-
uration or tuning of algorithms. This chapter describes the use of the method in R. For the
theory behind the method, the reader is referred to [1, 2, 4].

3.1 Set up

We assume that the R package race1 developed by M.Birattari [1, 2, 3] is installed (see R
documentation on how to install packages.

> install.packages("race")

The package race consists of a library and a wrapper file. The library defines the engine
of the race, that is, the function race. The wrapper file defines all details concerning the
specific experiment that must be undertaken. Only this latter file must be edited to specify
the details of the experiment.

It is worth emphasizing that the function race only implements the race in an unreplicated
design!

It is possible to execute the race in a distributed computing environment. In this case the
machine where the experiments are launched is identified as the master and the other machines
as the slaves. Running the race in a distributed environment requires to have installed pvm

and Rpvm in the master and the slave machines.

The first step in setting up the race is retrieving the wrapper file from the library of the
R installation:

> file.path(system.file(package = "race"), "examples", "example-wrapper.R")

[1] "/examples/example-wrapper.R"

The library example implements the tuning of a neural network algorithm using a cross
validation methodology that divides data in training data and testing data. It might be
confusing for the typical cases of optimization. Hence, alternatively, one can use the examples
available at www.imada.sdu.dk/~marco/Teaching/Files/.

1http://cran.r-project.org/web/packages/race/
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The wrapper file contains the following functions that have to be adapted to the specific
case:

– race.init the initialization function

– race.wrapper the interface between race and the external optimization program. It is
the function called by the library to launch one single run of an algorithm on a single
instance.

– race.info for reporting purposes

– race.describe for reporting purposes.

The two main functions to look at are race.init and race.wrapper. race.init is needed
to define all data of the race. In particular the instances and the configurations to test. Both
can be either read from an external file or encoded in R:

> instances <- scan(file = "u-1000-10-1000.txt", what = as.character(0),

skip = 0, quiet = TRUE)

> n <- length(instances)

> candidates <- as.data.frame(rbind(c(label = "300787", path = "300787/src",

command = "Driver -tt 30 -ch 2 -ls 3"), c(label = "100884",

path = "100884/", command = "dm811e/Forced")))

Alternatively, candidates can be generated by a full factorial design by crossing several
factors. For example:

> candidates <- expand.grid(solver = c("CH", "LS"), alpha = c(0.5,

1.5), idle = c(100, 300))

> candidates[1:5, ]

solver alpha idle

1 CH 0.5 100

2 LS 0.5 100

3 CH 1.5 100

4 LS 1.5 100

5 CH 0.5 300

The output of the race.init function is a list of data. in particular: no.tasks is the
maximum number of stages in the race. Clearly, in an unreplicated design, this number
corresponds to the number of instances. The number of subtasks should be always left to
its default value which is 1. Finally, smpl is a vector of randomly shuffled integers 1:n that
serves as a mask for deciding the order of examination of the instances.

> return(list(name = class, no.candidates = nrow(candidates), no.tasks = n,

no.subtasks = 1, wd = wd, smpl = smpl, instances = instances,

candidates = candidates))

The race.wrapper function strongly depends on the way the external program has been
implemented. The function must return one single value which is the result of the run of the
algorithm candidate on the instance smpl[task]. The simplest way is to let the optimization
program return one single value and redirect all the rest. For example, with a C program:
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> command <- paste(data$candidates[candidate, ]$command, " -i ",

instance, " -t ", time, " -s ", data$smpl[task], " -o ",

paste(candidate, task, 1, sep = "-"), " 2>/dev/null", sep = "")

> s <- system(command, intern = TRUE, ignore.stderr = TRUE)

It might be wise in a debugging phase to print out the full launch command, for example,
with cat(command). Further, it is advisable, when running long experiments, to write the
outcome of the run in a log file as soon as this result is retrieved.

When the wrapper file is ready it is advisable to run some tests. For example:

> D <- race.init()

> D

> race.wrapper(1, 1, D)

If the tests run fine then everything is ready to be launched. The following is an example
of launch command:

> O <- race("wrapper-race.R", maxExp = 5000, stat.test = c("friedman"),

conf.level = 0.95, first.test = 5, interactive = TRUE, log.file = "race.log",

no.slaves = 0)

See the race documentation (?race) for an explanation of the parameters.

When the race is finished it is possible to plot a profile of what happened by means of the
function plot.race available from www.imada.sdu.dk/ marco/Teaching/Files/plot.race.R.

> source("plot.race.R")

> plot.race(O, "wrapper-file.R")

It might be necessary to edit the function for layout adjustments.

3.2 An Example

> O <- race(wrapper.file="example-wrapper.R",

+ maxExp=3240, ## multiple of number of candidates

+ stat.test=c("friedman"),

+ conf.level=0.95,

+ first.test=5,

+ interactive=TRUE,

+ #log.file=paste(file,".log",sep=""),

+ no.slaves=0)

Racing methods for the selection of the best

Copyright (C) 2003 Mauro Birattari

This software comes with ABSOLUTELY NO WARRANTY

Race name.......................NM for Least Median of Squares

Number of candidates........................................162

Number of available tasks....................................45

Max number of experiments..................................3240

Statistical test..................................Friedman test
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Tasks seen before discarding..................................5

Initialization function......................................ok

Parallel Virtual Machine.....................................no

Markers:

x No test is performed.

- The test is performed and

some candidates are discarded.

= The test is performed but

no candidate is discarded.

+-+-----------+-----------+-----------+-----------+-----------+

| | Task| Alive| Best| Mean best| Exp so far|

+-+-----------+-----------+-----------+-----------+-----------+

|x| 1| 162| 81| 2.869e-05| 162|

|x| 2| 162| 140| 2.761e-05| 324|

|x| 3| 162| 86| 2.607e-05| 486|

|x| 4| 162| 140| 2.887e-05| 648|

|-| 5| 52| 140| 3.109e-05| 810|

|=| 6| 52| 34| 3.892e-05| 862|

...

|=| 42| 13| 32| 4.76e-05| 1703|

|=| 43| 13| 32| 4.684e-05| 1716|

|=| 44| 13| 32| 4.616e-05| 1729|

|=| 45| 13| 32| 4.55e-05| 1742|

+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: 32 mean value: 4.55e-05

Description of the selected candidate:

initial.method max.reinforce alpha beta gamma label

32 quasi-random 1 1.5 0.5 1.5 quasi-random-1-1.5-0.5-1.5

The race finished after all instances available (45) have been used without a single winner.
At the end 13 configurations were still alive, that is, not yet found significantly different. The
race returns however a winner decided on the basis of the median rank of its results.

Figure 3.1 visualizes the process. The grey area represents the aggregate computation time
effectively used by the race. This corresponds to 1742 runs of the algorithms with the best
of them tested on 45 instances. Given the 162 initial algorithm configurations, experimenting
all of them on the 45 instance would have required 3240 runs corresponding to the whole area
covered by the graph. Alternatively, with the same computation time it would have been
possible to experiment only on 20 instances.
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Figure 3.1: Graphical view of the race described in the text.
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Chapter 4

Performance Modelling

4.1 Modelling Run Time Distributions

Modelling of run time distributions has roots in the field of statistics that handle lifetime
data, namely survival analysis [8].

In this context the models are typically represented by a probability density function f
(assuming time is a continous variable). It is then typical to derive the survivor function

S(t) = Pr(T ≥ t) =∈∞t f(x)dx = 1− F (t)

that represents the probability that an individual survives till time t, and the hazrd function,
given by

h(t) = lim
∆t←0

Pr(t ≤ T < t+ ∆t | T ≥ t)
∆t

The hazard function specifies the instantaneous rate of death or failure at time t given that
the individual survives up till t.

In the analysis of the algorithms, the sense of terms is reversed and death means finding
a solution while surviving means not having found yet a solution. The survivor functiuon is
therefore not very useful, while the cumulative distribution fucntion F has a more intuitive
meaning. The profile of the hazard function might be useful for qualitative information
about the capability of an algorithm to solve an instance. It can have different patterns.
A monotonoe decreasing hazard function indicates a decrease of the chances of solving an
instance with time. An constant hazard function is typical os memory less distributions that
are important in this kind of analysis.

4.2 Some important models

In the following we illustrate four parametric univariate models that are occupy a central
role because of their demonstrated usefulneses in a wide range of situations. For a thorough
treatment of probability distributions we refer to [7].

We remark that all models are presented without the inclusion of an initialization threash-
old paramters. Briefly, this is a time µ ≥ 0 before which it is assumed that an algorithm cannot
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find a solution. The distributiuons can be extended to include such a parameter by merely
replacing the soltuiono time t by t′ = t− µ, with t′ satisfyiong the restriction t′ ≥ 0.

The exponential distribution has the nice feature of being memory less. The Weibull
distributiuon is very flexible and appeling for the semplicity of its analytical formula of dis-
tribtuiin function, cumulative distribtuion function and hazard function. The log-normal
distribution is used when the logarithm of time is distributed as a normal distribution. More-
over it has the feature that its hazard function is decreasing with t→∞ which might be the
case for several algorithms, as we might often have experienced that if an algorithm does not
find a solution soon it may time long time before it finds one (for this feature the log-normal
distribution is instead often ruled out in survival analysis). The gamma distribution is also
very flexible, moreover it has the nice mathematical property that a gamma distribution is a
sum of indepenendt indentically distributed exponential random variables.
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We analyse the runs of tow algorithms for solving the Hadamard problem. This problem
can be formulated as a constraint satistfaction problem. It consists in finding a vector of values
{−1, 1} that generates a Hadamard matrix. The empirical cumulative distribution functions
of the time to find a solution for the two algorithms are depicted in Figure 4.1. Each algorithm
was run 50 tines on a sigle instance of this problem, corresponding to Hadamard matrices of
size 68.

We search for linearity in plots with appropriate scales. For example, for an exponential
distribution, it is:

logS(t) = −λt, whereS(t) = 1− F (t) survivor function

hence the plot of logS(t) against t should be linear. Similarly, for the Weibull distribution,
the cumulative hazard function is linear on a log-log plot. In Figure ?? we observe that a
Weibull distribution seem appropriate. We proceed therefore to fit this model.

> par(mfrow = c(1, 2))

> plot(t, fun = "log", ylab = "log S(t)", xlab = "t", main = "linear => exponential",

panel.first = grid(nx = NULL, ny = NULL, col = "grey60",
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> load("Data/r33.RData")

> require(survival)

> t <- survfit(Surv(time, event) ~ case, data = R33, type = "kaplan-meier",

conf.type = "plain", conf.int = 0.95, se.fit = T)

> plot(t, conf.int = F, panel.first = grid(nx = NULL, ny = NULL,

col = "grey60"), xlab = "Time to find a solution", col = c("grey50",

"black"), lty = c(1, 1), ylab = "ecdf", fun = "event", ylim = c(0,

1))
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Figure 4.1: Emprical cumulative distribution functions on the Hadamard case.
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equilogs = TRUE), xlim = c(1, 50), col = c("grey50",

"black"), lty = c(1, 1), lwd = c(2, 2))

> plot(t, fun = "cloglog", ylab = "log H(t)", xlab = "log t", main = "linear => weibull",

panel.first = grid(nx = NULL, ny = NULL, col = "grey60",

equilogs = TRUE), xlim = c(1, 50), col = c("grey50",

"black"), lty = c(1, 1), lwd = c(2, 2))
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> require(MASS)

> par(mar = c(3, 4, 1, 1))

> plot(t, conf.int = F, lty = c(1, 1), col = c("grey50", "black"),

panel.first = grid(nx = NULL, ny = NULL, col = "grey60"),

xlab = "Time to find a solution", ylab = "ecdf", fun = "event",

ylim = c(0, 1))

> fm <- fitdistr(R33[R33$case == 2, ]$time, "exponential")

> fm$loglik

[1] -125

> ks.test(R33[R33$case == 2, ]$time, "pexp", rate = fm$estimate["rate"])

One-sample Kolmogorov-Smirnov test

data: R33[R33$case == 2, ]$time

D = 0.132, p-value = 0.3470

alternative hypothesis: two-sided

> curve(pexp(x, rate = fm$estimate["rate"]), from = 1, to = 50,

add = TRUE)

> fm <- fitdistr(R33[R33$case == 1, ]$time + 0.001, "weibull")

> fm$loglik

[1] -141

> ks.test(R33[R33$case == 1, ]$time + 0.001, "pweibull", scale = fm$estimate["scale"],

shape = fm$estimate["shape"])
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One-sample Kolmogorov-Smirnov test

data: R33[R33$case == 1, ]$time + 0.001

D = 0.117, p-value = 0.4955

alternative hypothesis: two-sided

> curve(pweibull(x, shape = fm$estimate["shape"], scale = fm$estimate["scale"]),

from = 1, to = 50, add = TRUE, col = "grey50")
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> plot(t, log = "xy", conf.int = F, col = c("grey50", "black"),

lty = c(1, 1), xlim = c(2, 50), ylim = c(0.015, 0.3), panel.first = grid(nx = NULL,

ny = NULL, col = "grey60", equilogs = TRUE), xlab = "Time to find a solution",

ylab = "ecdf")
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Model fitting for censored distributions We may have two types of censoring. In Type
I censor sampling one decides a cutoff time tc and stops experiments that exceed that cutoff.
Using indicator function δi the likelihood to maximize in order to fiind the parameters of a
tentive model f is

L(T |θ) =

k∏
i=1

f(Ti|θ)δi
(∫ ∞

tc

f(τ |θ)dτ
)1−δi

In Type II censor sampling, r experiments are run in parallel and stopped whenever u
uncensored samples are obtained. Thus, c = (r − u)/r are set in advance, and tc is equal to
time of uth fastest.

Below we report our experience on the Hadamard problem when we have a type I censoring
for a restart tabu search algorithm run with two different parameter settings. The time limit
was imposed to be 100 seconds. Many runs did not finished with a solution foudn, and are
therefore to be considered censored.1

We fit a Weibull distribution to both algorithms. The fitting of other models can be
conducted similarly.

> require(survival)

> load("Data/r37.RData")

1Note that in statistics literature a difference is made between censored, for which a value exists but it is
not observed and truncated, for which a value does not exist because the one reached is a threshold.
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> y <- R37[R37$case == 1, ]$time

> y <- y[y > 0]

> censored.weibull <- function(param, t, threshold = 100) {

ifelse(t < threshold, dweibull(t, scale = param[1], shape = param[2]),

pweibull(threshold, scale = param[1], shape = param[2],

lower.tail = FALSE))

}

> ll <- function(x, y) -sum(log(censored.weibull(x, y, 100)))

> opt.w1 <- optim(c(100, 10), ll, y = y, method = "Nelder-Mead")

> curve(pweibull(x, shape = opt.w1$par[2], scale = opt.w1$par[1]),

from = 1, to = 200, add = TRUE)

> y <- R37[R37$case == 2, ]$time

> y <- y[y > 0]

> opt.w2 <- optim(c(100, 10), ll, y = y, method = "Nelder-Mead")

> curve(pweibull(x, shape = opt.w2$par[2], scale = opt.w2$par[1]),

from = 1, to = 200, col = "gray50", lty = 1, add = TRUE)
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Figure 2: Log transformations and linear trends. Three different growth functions are depicted
in the three rows, while in the columns different transformations are applied on the scales of
the graph
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