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Exercise 1 Bayesian Networks – Inference.
Figure shows a graphical model with conditional probabilities tables about whether or not
you will panic at an exam based on whether or not the course was boring (“B”), which
was the key factor you used to decide whether or not to attend lectures (“A”) and revise
doing the exercises after each lecture (“R”).
You should use the model to make exact inference and answer the following queries:

• what is the probability that you will panic or not before the exam given that you
attended the lectures and revised after each lecture?

From the CPT, 0.

• what is the probability that you will panic or not before the exam?

Pr(p) = ∑
b,r,a

Pr(b, r, a, p)

= ∑
b,r,a

Pr(b) Pr(r|b) Pr(a|b) Pr(p|r, a)

= ∑
b

Pr(b) ∑
r,a

Pr(r|b) Pr(a|b) Pr(p|r, a)

= 0.5 · (0.3 · 0.1 · 0 + 0.3 · 0.9 · 0.8 + 0.7 · 0.1 · 0.6 + 0.7 · 0.9 · 1)

+0.5 · (0.8 · 0.5 · 0 + ·0.8 · 0.5 · 0.8 + 0.2 · 0.5 · 0.6 + 0.2 · 0.5 · 1)

= 0.684

• Your teacher saw you panicking at the exam and he wants to work out from the model
the reason for that. Was it because you did not come to the lecture or because you
did not revise?

Pr(r|p) =
Pr(p|r) Pr(r)

Pr(p)

=
∑b,a Pr(b, a, r, p)

Pr(p)

=
0.5 · (0.3 · 0.1 · 0 + 0.3 · 0.9 · 0.8) + 0.5 · (0.8 · 0.5 · 0 + 0.8 · 0.5 · 0 + 0.8 · 0.5 · 0.8)

Pr(p)

=
0.268
0.684

= 0.3918
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Pr(r|a) =
Pr(p|a) Pr(a)

Pr(p)

=
0.144
0.684

= 0.2105

Repeat the inference in the last two queries by means of stochastic inference implement-
ing in R the Prior-Sample, Rejection-Sampling, Likelihood-weighting and Markov Chain
Monte Carlo procedures.

B

R A

P

Pr(B = b) Pr(B = ¬b)
0.50 0.50

B Pr(r) Pr(¬r)
T 0.3 0.7
F 0.8 0.2

B Pr(a) Pr(¬a)
T 0.1 0.9
F 0.5 0.5

R A Pr(p) Pr(¬p)
T T 0 1
T F 0.8 0.2
F T 0.6 0.4
F F 1 0

Figure 1: The graphical model of exercise 1. Lower-case letter indicate the outcome that
the upper-case letter can take.

Exercise 2 Directed Graphical Models Consider the graph in Figure left.

• Write down the standard factorization for the given graph.

Solutions The standard factorization for any directed graphical model can be writ-
ten as p(x) = Πv∈V p(xv|xpa(v)), where xpa(v) are the nodes parent of xv. Here, this
yields

p(x) = p(x1)p(x2)p(x3|x10)p(x4|x2, x6, x7)p(x5|x9)p(x6|x1, x2)p(x7)p(x8)p(x9|x3, x7, x8)p(x10|x3).

• For what pairs (i, j) does the statement Xi is independent of Xj hold? (Don’t assume
any conditioning in this part.)

The goal is to find all pairs (i, j) such that Xi and Xj are independent. We can
achieve this by computing from each node its reachability, that is, the nodes that
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Figure 2: A directed graph.
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are reachable by a path that does not have head-to-head subcomponents. From node
1 we can get to nodes 6 and 4. From node 2 we can reach nodes 6, 4, 10, 3, 9, and
5. From nodes 3 and 10 we can reach the sames nodes as node 2. From node 4 we
can reach every node but node 8. From node 5 we can reach every node but node 1.
From node 6 we can reach any node but nodes 7 and 8. From node 7 we can reach
node 9, 4, and 5. Node 8 can only reach nodes 9 and 5. Node 9 can’t reach node 1.
Finally, node 10 can’t reach nodes 1, 7, and 8. Thus (1, 2), (1, 3), (1, 5), (1, 7), (1,
8), (1, 9), (1, 10), (2, 7), (2, 8), (3, 7), (3, 8), (4, 8), (6, 7), (6, 8), (7, 8), (7, 10), and
(8, 10) are all independent pairs. In all there are 17 distinct pairs.

• Suppose that we condition on {X2, X9}, shown shaded in the graph. What is the
largest set A for which the statement X1 is conditionally independent of XA given
{X2, X9} holds?

Solution We say that X ⊥ Y | Z if X and Y are d-separated given Z in the digraph,
that is, if there is no active path between any node X ∈ X to Y ∈ Y given Z ∈ Z.
In class we defined the four conditions for a path to be active.

Checking d-separation implies checking all paths from a vertex to another. This
maybe exponential. The following is a linear time algorithm for d-separation. We
begin by traversing the graph bottom up, from the leaves to the roots, marking all
nodes that are in Z or that have descendants in Z. Intuitively, these nodes will serve
to identify a head-to-head structure, ie., X → Z ← Y. In the second phase, we
traverse breadth-first from X to Y, stopping the traversal along a path when we get
to a blocked node. A node is blocked if: (a) it is in the “middle” node of a structure
X → Z ← Y and unmarked in phase I, or (b) is not such a node and is in Z. If our
breadth-first search gets from X to Y, then there is a path between them through Z.

Conditioned on {X2, X9} there is no active path to nodes 3, 10, 7, 8 and 5. Hence,
A = {3, 5, 7, 8, 10}. Note that nodes 2 and 9 are not elements of the set A because
we are conditioning on them.

• What is the largest set B for which X8 is conditionally independent of XB given
{X2, X9} holds?

Solutions Conditioned on {X2, X9} starting at node 8 we cannot reach with an
active path nodes 1, 5, and 6. Therefore, B = {1, 5, 6}.

• Suppose that I wanted to draw a sample from the marginal distribution p(x5) =
Pr[X5 = x5]. (Don’t assume that X2 and X9 are observed.) Describe an efficient
algorithm to do so without actually computing the marginal.

Solution

We wish to generate a sample of x5 from the marginal distribution p(x5). We can
achieve this by sampling from the join distribution p(~x) and then marginalizing. For
example, given a joint distribution Pr[x1, x2], one can generate a sample from the
marginal distribution of x1 by sampling from the joint distribution and discarding
x2. To see this, let A be the event that the sample x̄1 lies in some set F. Therefore,
Pr[A] = Pr[x1 ∈ F ∪ x2 ∈ R] = Pr[x1 ∈ F]. Thus, x̄1 and x1 have the same
distribution.

Hence we can avoid unnecessary computations applying the following algorithm:

– calculate the Topological order of the graph
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– sample using the factorization and the topological sorting until you sample x5.

Hence, we can first generate a sample of x2, x7, and x8. Then, using factorization,
we can generate a sample of from the distribution p(x10|x2), followed by a sam-
ple from the distribution p(x3|x10) by using the sample obtained of x10. Next, we
can generate a sample of x9 from the distribution p(x9|x7, x8, x2). Finally, we can
obtain a sample for x5 by sampling from the distribution p(x5|x9). We can imme-
diately see that generating a sample of x5 did not require actually sampling from
x1, x6, or x4 because conditioned on nodes 2, 7, and 8, x5 is independent of nodes
1, 6, and 4. Thus, what we’ve done is generating a sample from the joint distribution
p(x2, x3, x10, x7, x8, x9, x5) = p(x2)p(x7)p(x8)p(x10|x2)p(x3|x10)p(x9|x3, x8, x7)p(x5|x9).

4


