Lecture 7

Tabu Search,
Dynamic Local Search,
Iterated Local Search

Marco Chiarandini
Outline

1. Competition
2. Tabu Search
3. Dynamic Local Search
4. Ejection Chains and Dynasearch
5. Iterated Local Search
Tabu Search

Key idea: Use aspects of search history (memory) to escape from local minima.

- Associate *tabu attributes* with candidate solutions or solution components.
- Forbid steps to search positions recently visited by underlying iterative best improvement procedure based on tabu attributes.

Tabu Search (TS):

determine initial candidate solution s

While *termination criterion* is not satisfied:

- determine set N' of non-tabu neighbours of s
- choose a best improving candidate solution s' in N'
- update tabu attributes based on s'
- $s := s'$
Example: Tabu Search for GCP – TabuCol

- **Search space:** set of all complete colourings of G.
- **Solution set:** proper colourings of G.
- **Neighbourhood relation:** one-exchange.
- **Memory:** Associate tabu status (Boolean value) with each pair (v, c).
- **Initialisation:** a construction heuristic

Search steps:
- pairs (v, c) are tabu if they have been changed in the last tt steps;
- neighbouring colourings are admissible if they can be reached by changing a non-tabu pair or have fewer unsatisfied edge constr. than the best colouring seen so far (aspiration criterion);
- choose uniformly at random admissible colouring with minimal number of unsatisfied constraints.

- **Termination:** upon finding a proper colouring for G or after given bound on number of search steps has been reached.
Note:

- Non-tabu search positions in $N(s)$ are called **admissible neighbours of s**.

- After a search step, the current search position or the solution components just added/removed from it are declared **tabu** for a fixed number of subsequent search steps (**tabu tenure**).

- Often, an additional **aspiration criterion** is used: this specifies conditions under which tabu status may be overridden (e.g., if considered step leads to improvement in incumbent solution).

- Crucial for efficient implementation:
 - keep time complexity of search steps minimal by using special data structures, incremental updating and caching mechanism for evaluation function values;
 - efficient determination of tabu status: store for each variable x the number of the search step when its value was last changed it_x; x is tabu if $it - it_x < tt$, where $it =$ current search step number.
Note: Performance of Tabu Search depends crucially on setting of tabu tenure tt:

- tt too low \Rightarrow search stagnates due to inability to escape from local minima;
- tt too high \Rightarrow search becomes ineffective due to overly restricted search path (admissible neighbourhoods too small)

Advanced TS methods:

- **Robust Tabu Search** [Taillard, 1991]:
 repeatedly choose tt from given interval;
 also: force specific steps that have not been made for a long time.

- **Reactive Tabu Search** [Battiti and Tecchioi, 1994]:
 dynamically adjust tt during search;
 also: use escape mechanism to overcome stagnation.
Further improvements can be achieved by using *intermediate-term* or *long-term memory* to achieve additional *intensification* or *diversification*.

Examples:

- Occasionally backtrack to *elite candidate solutions*, *i.e.*, high-quality search positions encountered earlier in the search; when doing this, all associated tabu attributes are cleared.

- Freeze certain solution components and keep them fixed for long periods of the search.

- Occasionally force rarely used solution components to be introduced into current candidate solution.

- Extend evaluation function to capture frequency of use of candidate solutions or solution components.
Tabu search algorithms are state of the art for solving many combinatorial problems, including:

- SAT and MAX-SAT
- the Constraint Satisfaction Problem (CSP)
- many scheduling problems

Crucial factors in many applications:

- choice of neighbourhood relation
- efficient evaluation of candidate solutions (caching and incremental updating mechanisms)
Example: Tabu Search for QAP

- **Solution representation**: permutation π
- **Initial Solution**: randomly generated
- **Neighbourhood**: interchange
 \[\Delta_I : \delta (\pi) = \{ \pi' | \pi_k' = \pi_k \text{ for all } k \neq \{r, s\} \text{ and } \pi_i' = \pi_j, \pi_j' = \pi_i \} \]
- **Tabu status**: forbid δ that place back the items in the positions they have already occupied in the last tt iterations (short term memory)

- Implementation details:
 - compute $f(\pi') - f(\pi)$ in $O(n)$ or $O(1)$ by storing the values all possible previous moves.
 - maintain a matrix $[T_{ij}]$ of size $n \times n$ and write the last time item i was moved in location k
 - δ is tabu if it satisfies both:
 - $T_i \pi(j) + \text{tabu list size} \geq \text{current iteration}$
 - $T_j \pi(i) + \text{tabu list size} \geq \text{current iteration}$
Example: Robust Tabu Search for QAP

- **Aspiration criteria:**
 - allow forbidden δ if it improves the last π^*
 - select δ if never chosen in the last A iterations (long term memory)
- **Parameters:** $tt \in [0.9n, 1.1n + 4]$ and $A = 5n^2$
Example: Reactive Tabu Search for QAP

▶ **Aspiration criteria:**

 ▶ allow forbidden δ if it improves the last π^*

▶ **Tabu Tenure**

 ▶ maintain a hash table (or function) to record previously visited solutions

 ▶ increase tt by a factor $\alpha_{inc}(=1.1)$ if the current solution was previously visited

 ▶ decrease tt by a factor $\alpha_{dec}(=0.9)$ if tt not changed in the last $sttc$ iterations or all moves are tabu

▶ Trigger escape mechanism if a solution is visited more than $nr (=3)$ times

▶ Escape mechanism $= 1 + (1 + r) \cdot ma/2$ random moves
Dynamic Local Search

- **Key Idea:** Modify the evaluation function whenever a local optimum is encountered.
- Associate *penalty weights (penalties)* with solution components; these determine impact of components on evaluation function value.
- Perform Iterative Improvement; when in local minimum, increase penalties of some solution components until improving steps become available.

Dynamic Local Search (DLS):

- determine *initial candidate solution* s
- initialise *penalties*
- While *termination criterion* is not satisfied:
 - compute *modified evaluation function* g' from g based on *penalties*
 - perform *subsidiary perturbative search* on s
 - using *evaluation function* g'
 - *update penalties* based on s
Dynamic Local Search (continued)

- **Modified evaluation function:**

\[
g'(\pi, s) := g(\pi, s) + \sum_{i \in SC(\pi', s)} \text{penalty}(i),
\]

where \(SC(\pi', s) \) = set of solution components of problem instance \(\pi' \) used in candidate solution \(s \).

- **Penalty initialisation:** For all \(i \): \(\text{penalty}(i) := 0 \).

- **Penalty update** in local minimum \(s \): Typically involves *penalty increase* of some or all solution components of \(s \); often also occasional *penalty decrease* or *penalty smoothing*.

- **Subsidiary perturbative search:** Often *Iterative Improvement*.
Potential problem:

Solution components required for (optimal) solution may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.

B: Only increase penalties of solution components that are least likely to occur in (optimal) solutions.

Implementation of B:

[Voudouris and Tsang, 1995] Only increase penalties of solution components \(i \) with maximal utility:

\[
util(s', i) := \frac{g_i(\pi, s')}{1 + \text{penalty}(i)}
\]

where \(g_i(\pi, s') = \text{solution quality contribution of } i \text{ in } s' \).
Example: Guided Local Search (GLS) for the TSP
[Voudouris and Tsang 1995; 1999]

- **Given**: TSP instance G
- **Search space**: Hamiltonian cycles in G with n vertices;
- **Neighbourhood**: 2-edge-exchange;
- **Solution components** edges of G;
 \[f(G, p) := w(p); \quad f_e(G, p) := w(e); \]
- **Penalty initialisation**: Set all edge penalties to zero.
- **Subsidiary perturbative search**: Iterative First Improvement.
- **Penalty update**: Increment penalties for all edges with maximal utility by
 \[\lambda := 0.3 \cdot \frac{w(s_{2-opt})}{n} \]
 where $s_{2-opt} = 2$-optimal tour.
Ejection Chains

- Attempt to use large neighborhoods without examining them exhaustively
- Sequences of successive steps each influenced by the precedent and determined by myopic choices
- Limited in length
- Local optimality in the large neighborhood is not guaranteed.

Example (on TSP): successive 2-exchanges where each exchange involves one edge of the previous

Example (on GCP): successive 1-exchanges: a vertex v_1 changes colour from $\varphi(v_1) = c_1$ to c_2, in turn forcing some vertex v_2 with color $\varphi(v_2) = c_2$ to change to another color c_3 (which may be different or equal to c_1) and again forcing a vertex v_3 with colour $\varphi(v_3) = c_3$ to change to colour c_4.
Dynasearch

- Iterative improvement method based on building complex search steps from combinations of simple search steps.

- Simple search steps constituting any given complex step are required to be *mutually independent*, i.e., do not interfere with each other w.r.t. effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

```
    u_1  u_i  u_{i+1}  u_j  u_{j+1}  u_k  u_{k+1}  u_l  u_{l+1}  u_n  u_{n+1}
```

Therefore: Overall effect of complex search step = sum of effects of constituting simple steps; complex search steps maintain feasibility of candidate solutions.

- **Key idea:** Efficiently find optimal combination of mutually independent simple search steps using *Dynamic Programming*.
Hybrid LS Methods

Combination of ‘simple’ LS methods often yields substantial performance improvements.

Simple examples:

- Commonly used restart mechanisms can be seen as hybridisations with Uninformed Random Picking
- Iterative Improvement + Uninformed Random Walk = Randomised Iterative Improvement
Iterated Local Search

Key Idea: Use two types of LS steps:

- subsidiary perturbative (local) search steps for reaching local optima as efficiently as possible (intensification)
- perturbation steps for effectively escaping from local optima (diversification).

Also: Use *acceptance criterion* to control diversification vs intensification behaviour.

Iterated Local Search (ILS):

1. determine initial candidate solution \(s \)
2. perform *subsidiary perturbative search* on \(s \)
3. While termination criterion is not satisfied:
 - \(r := s \)
 - perform *perturbation* on \(s \)
 - perform *subsidiary perturbative search* on \(s \)
 - based on *acceptance criterion*,
 - keep \(s \) or revert to \(s := r \)
Note:

- *Subsidiary perturbative search* results in a local minimum.
- ILS trajectories can be seen as walks in the space of local minima of the given evaluation function.
- *Perturbation phase* and *acceptance criterion* may use aspects of *search history* (i.e., limited memory).
- In a high-performance ILS algorithm, *subsidiary perturbative search*, *perturbation mechanism* and *acceptance criterion* need to complement each other well.
Subsidiary perturbative search:

- More effective subsidiary perturbative search procedures lead to better ILS performance.
 Example: 2-opt vs 3-opt vs LK for TSP.

- Often, subsidiary perturbative search = iterative improvement, but more sophisticated LS methods can be used. *(e.g., Tabu Search).*
Perturbation mechanism:

- Needs to be chosen such that its effect *cannot* be easily undone by subsequent perturbative search phase. (Often achieved by search steps larger neighbourhood.)
 Example: perturbative search = 3-opt, perturbation = 4-exchange steps in ILS for TSP.

- A perturbation phase may consist of one or more perturbation steps.

- Weak perturbation \Rightarrow short subsequent perturbative search phase; *but*: risk of revisiting current local minimum.

- Strong perturbation \Rightarrow more effective escape from local minima; *but*: may have similar drawbacks as random restart.

- Advanced ILS algorithms may change nature and/or strength of perturbation adaptively during search.
Acceptance criteria:

- Always accept the *better* of the two candidate solutions
 ⇒ ILS performs Iterative Improvement in the space of local optima reached by subsidiary perturbative search.

- Always accept the *more recent* of the two candidate solutions
 ⇒ ILS performs random walk in the space of local optima reached by subsidiary perturbative search.

- Intermediate behaviour: select between the two candidate solutions based on the *Metropolis criterion* (e.g., used in *Large Step Markov Chains* [Martin et al., 1991].)

- Advanced acceptance criteria take into account search history, *e.g.*, by occasionally reverting to *incumbent solution*.
Example: Iterated Local Search for the TSP (1)

- **Given:** TSP instance G.

- **Search space:** Hamiltonian cycles in G.

- **Subsidiary perturbative search:** Lin-Kernighan variable depth search algorithm

- **Perturbation mechanism:**
 ‘double-bridge move’ = particular 4-exchange step:

- **Acceptance criterion:** Always return the better of the two given candidate round trips.
Example: Iterated Local Search for the TSP (2)

Note:
- Double-bridge move perturbation cannot be directly reversed by a sequence of 2-exchange steps as performed by ”usual” LK implementations.
- This perturbation is empirically shown to be effective independent of instance size.

Note:
- This ILS algorithm for the TSP is known as *Iterated Lin-Kernighan (ILK) Algorithm*.
- Although ILK is structurally rather simple, an efficient implementation was shown to achieve excellent performance [Johnson and McGeoch, 1997].
Iterated local search algorithms . . .

- are typically rather easy to implement (given existing implementation of subsidiary simple LS algorithms);

- achieve state-of-the-art performance on many combinatorial problems, including the TSP.

There are many LS approaches that are closely related to ILS, including:

- Large Step Markov Chains [Martin et al., 1991]

- Chained Local Search [Martin and Otto, 1996]

- Variants of Variable Neighbourhood Search (VNS) [Hansen and Mladenović, 2002]