Lecture 2

Basic LS Methods:
Construction Heuristics and Perturbative Searches

Marco Chiarandini
Outline

1. LS Algorithm Components (Continued)

2. Construction Heuristics on the Traveling Salesman Problem

3. Software Development
Note:

- Procedural versions of `init`, `step` and `terminate` implement sampling from respective probability distributions.

- Memory state m can consist of multiple independent attributes, *i.e.*, $M(\pi) := M_1 \times M_2 \times \ldots \times M_{l(\pi)}$.

- LS algorithms realize Markov processes: behavior in any search state (s, m) depends only on current position s and (limited) memory m.
Example: Uninformed random walk for k-col

- **search space** S: set of all k-colorings of G
- **solution set** S': set of all proper k-colorings of G
- **neighborhood relation** N: 1-exchange neighborhood, i.e., colorings are neighbors under N iff they differ in the color at one vertex
- **memory**: not used, i.e., $M := \{0\}$
- **initialization**: uniform random choice from Γ, i.e., $\text{init}(\varphi', m) := 1/|S|$ for all coloring φ' and memory states m
- **step function**: uniform random choice from current neighborhood, i.e., $\text{step}(\varphi, m)(\varphi', m) := 1/|N(\varphi)|$ for all assignments φ and memory states m, where $N(a) := \{\varphi' \in S \mid N(\varphi, \varphi')\}$ is the set of all neighbors of φ.
- **termination**: when $\text{terminate}(\varphi, m) := 1$ if φ is a feasible coloring of G, and 0 otherwise.
Definition: LS Algorithm Components (continued)

Neighborhood relation (structure): \(N : S \times S \rightarrow \{T, F\} \) or \(N \subseteq S \times S \)

- **neighborhood (set)** of candidate solution \(s \):
 \[
 N(s) := \{ s' \in S \mid N(s, s') \}
 \]

- **neighborhood graph** of problem instance \(\pi \):
 \[
 G_N(\pi) := (S(\pi), N(\pi))
 \]

Note: Diameter of \(G_N \) = worst-case lower bound for number of search steps required for reaching (optimal) solutions

Example:

\(k \)-col instance with \(n \) vertices, 1-exchange neighborhood:
\(G_N = n \)-dimensional hypercube; diameter of \(G_N = n \).
Definition

\textbf{k-exchange neighborhood}: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

- 1-exchange (flip) neighborhood for k-col
 (solution components = single vertex assignments)

- 2-exchange neighborhood for TSP
 (solution components = edges in given graph)
Definition: LS Algorithm Components (continued)

Step function

- **Search step** (or move): pair of search positions s, s' for which s' can be reached from s in one step, i.e., $N(s, s')$ and $\text{step}(s, m)(s', m') > 0$ for some memory states $m, m' \in M$.

- **Search trajectory**: finite sequence of search positions (s_0, s_1, \ldots, s_k) such that (s_{i-1}, s_i) is a search step for any $i \in \{1, \ldots, k\}$ and the probability of initializing the search at s_0 is greater zero, i.e., $\text{init}(s_0, m) > 0$ for some memory state $m \in M$.

- **Search strategy**: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
 - Random
 - Evaluation function
 - ...
Uninformed Random Picking

- $N := S \times S$
- does not use memory
- $init, step$: uniform random choice from S, i.e., for all $s, s' \in S$, $init(s) := step(s)(s') := 1/|S|$

Uninformed Random Walk

- does not use memory
- $init$: uniform random choice from S
- $step$: uniform random choice from current neighborhood, i.e., for all $s, s' \in S$, $step(s)(s') := 1/|N(s)|$ if $N(s, s')$, and 0 otherwise

Note: These uninformed LS strategies are quite ineffective, but play a role in combination with more directed search strategies.
Definition: LS Algorithm Components (continued)

Evaluation function:
- function \(g(\pi) : S(\pi) \rightarrow \mathbb{R} \) that maps candidate solutions of a given problem instance \(\pi \) onto real numbers, such that global optima correspond to solutions of \(\pi \);
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:
- *Objective function*: integral part of optimization problem.
- Some LS methods use evaluation functions different from given objective function (e.g., dynamic local search).
Iterative Improvement (II)

- does not use memory
- \textit{init}: uniform random choice from S
- \textit{step}: uniform random choice from improving neighbors, i.e., $\text{step}(s)(s') := 1/|I(s)|$ if $s' \in I(s)$, and 0 otherwise, where $I(s) := \{ s' \in S \mid N(s, s') \land g(s') < g(s) \}$
- terminates when no improving neighbor available (to be revisited later)
- different variants through modifications of step function (to be revisited later)

\textbf{Note}: II is also known as \textit{iterative descent} or \textit{hill-climbing}.
Example: Iterative Improvement for k-col

- **search space** S: set of all k-colorings of G
- **solution set** S': set of all proper k-coloring of F
- **neighborhood relation** N: 1-exchange neighborhood (as in Uninformed Random Walk)
- **memory**: not used, i.e., $M := \{0\}$
- **initialization**: uniform random choice from S, i.e., $\text{init}(\varphi') := 1/|S|$ for all colorings φ'
- **evaluation function**: $g(\varphi) := \text{number of edges in } G$ whose ending vertices are assigned the same color under assignment φ
 (Note: $g(\varphi) = 0$ iff φ is a proper coloring of G.)
- **step function**: uniform random choice from improving neighbors, i.e., $\text{step}(\varphi)(\varphi') := 1/|I(\varphi)|$ if $s' \in I(\varphi)$, and 0 otherwise, where $I(\varphi) := \{\varphi' \mid N(\varphi, \varphi') \land g(\varphi') < g(\varphi)\}$
- **termination**: when no improving neighbor is available i.e., $\text{terminate}(\varphi)(\top) := 1$ if $I(a) = \emptyset$, and 0 otherwise.
Incremental updates (aka delta evaluations)

- **Key idea:** calculate *effects of differences* between current search position s and neighbors s' on evaluation function value.

- Evaluation function values often consist of *independent contributions of solution components*; hence, $g(s)$ can be efficiently calculated from $g(s')$ by differences between s and s' in terms of solution components.

- Typically crucial for the efficient implementation of II algorithms (and other LS techniques).
Example: Incremental updates for TSP

- solution components = edges of given graph G
- standard 2-exchange neighborhood, i.e., neighboring round trips p, p' differ in two edges

$w(p') := w(p) - \text{edges in } p \text{ but not in } p' + \text{edges in } p' \text{ but not in } p$

Note: Constant time (4 arithmetic operations), compared to linear time (n arithmetic operations for graph with n vertices) for computing $w(p')$ from scratch.
Definition:

- **Local minimum**: search position without improving neighbors w.r.t. given evaluation function g and neighborhood N, i.e., position $s \in S$ such that $g(s) \leq g(s')$ for all $s' \in N(s)$.

- **Strict local minimum**: search position $s \in S$ such that $g(s) < g(s')$ for all $s' \in N(s)$.

- **Local maxima** and **strict local maxima**: defined analogously.
Note:

- Local minima depend on g and neighborhood relation N.
- Larger neighborhoods $N(s)$ induce
 - neighborhood graphs with smaller diameter;
 - fewer local minima.

Ideal case: **exact neighborhood**, i.e., neighborhood relation for which any local optimum is also guaranteed to be a global optimum.

- Typically, exact neighborhoods are too large to be searched effectively (exponential in size of problem instance).
- But: exceptions exist, e.g., polynomially searchable neighborhood in Simplex Algorithm for linear programming.
Trade-off:

▶ Using larger neighborhoods can improve performance of II (and other LS methods).
▶ **But:** time required for determining improving search steps increases with neighborhood size.

More general trade-off:

Effectiveness vs Efficiency (≡ time complexity of search steps).
In II, various mechanisms (pivoting rules) can be used for choosing improving neighbor in each step:

- **Best Improvement** (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbor, i.e., randomly select from $I^*(s) := \{s' \in N(s) \mid g(s') = g^*\}$, where $g^* := \min\{g(s') \mid s' \in N(s)\}$.

 Note: Requires evaluation of all neighbors in each step.

- **First Improvement:** Evaluate neighbors in fixed order, choose first improving step encountered.

 Note: Can be much more efficient than Best Improvement; order of evaluation can have significant impact on performance.
Example: Random-order first improvement for the TSP

- **Given**: TSP instance G with vertices v_1, v_2, \ldots, v_n.

- **search space**: Hamiltonian cycles in G; use standard 2-exchange neighborhood

- **Initialization**:

 search position := fixed canonical path $(v_1, v_2, \ldots, v_n, v_1)$

 $P := \text{random permutation of } \{1,2, \ldots, n\}$

- **Search steps**: determined using first improvement w.r.t. $g(p) = \text{weight of path } p$, evaluating neighbors in order of P (does not change throughout search)

- **Termination**: when no improving search step possible (local minimum)
Speed-up Techniques: Neighborhood Pruning

▶ **Idea:** Reduce size of neighborhoods by excluding neighbors that are likely (or guaranteed) not to yield improvements in g.

▶ **Note:** Crucial for large neighborhoods, but can be also very useful for small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

▶ **Intuition:** High-quality solutions likely include short edges.

▶ **Candidate list** of vertex v: list of v’s nearest neighbors (limited number), sorted according to increasing edge weights.

▶ Search steps (e.g., 2-exchange moves) always involve edges to elements of candidate lists.

▶ Significant impact on performance of LS algorithms for the TSP.
For a local search algorithm to be effective, search initialization and individual search steps should be efficiently computable.

Complexity class \mathcal{PLS}: class of problems for which a local search algorithm exists with polynomial time complexity for:

- search initialization
- any single search step, including computation of any evaluation function value

For any problem in \mathcal{PLS} . . .

- local optimality can be verified in polynomial time
- improving search steps can be computed in polynomial time
- **but**: finding local optima may require super-polynomial time

Note: All time-complexities are stated for deterministic machines.
\textbf{PLS-complete}: Among the most difficult problems in \textit{PLS}; if for any of these problems local optima can be found in polynomial time, the same would hold for all problems in \textit{PLS}.

Some complexity results:

- TSP with \(k \)-exchange neighborhood with \(k > 3 \) is \textit{PLS}-complete.
- TSP with 2- or 3-exchange neighborhood is in \textit{PLS}, but \textit{PLS}-completeness is unknown.
Simple Mechanisms for Escaping from Local Optima

- **Restart**: re-initialize search whenever a local optimum is encountered. (Often rather ineffective due to cost of initialization.)

- **Non-improving steps**: in local optima, allow selection of candidate solutions with equal or worse evaluation function value, *e.g.*, using minimally worsening steps. (Can lead to long walks in *plateaus*, *i.e.*, regions of search positions with identical evaluation function.)

Note: Neither of these mechanisms is guaranteed to always escape effectively from local optima.
Diversification vs Intensification

- Goal-directed and randomized components of LS strategy need to be balanced carefully.

- **Intensification**: aims to greedily increase solution quality or probability, e.g., by exploiting the evaluation function.

- **Diversification**: aim to prevent search stagnation by preventing search process from getting trapped in confined regions.

Examples:

- Iterative Improvement (II): *intensification* strategy.
- Uninformed Random Walk/Picking (URW/P): *diversification* strategy.

Balanced combination of intensification and diversification mechanisms forms the basis for advanced LS methods.
TSP: Benchmark Instances

Instance classes

- Real-life applications (geographic, VLSI)
- Random Euclidean
- Random Clustered Euclidean
- Random Distance

Available at the TSPLIB (more than 100 instances upto 85,900 cities) and at the 8th DIMACS challenge
TSP: Benchmark Instances, Examples
Complete Algorithms and Lower Bounds

- Branch & cut algorithms
 - use LP-relaxation for lower bounding schemes
 - effective heuristics for upper bounds
 - branch if cuts cannot be found easily

<table>
<thead>
<tr>
<th>Solution times with Concorde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
</tr>
<tr>
<td>att532</td>
</tr>
<tr>
<td>rat783</td>
</tr>
<tr>
<td>pcb1173</td>
</tr>
<tr>
<td>fl1577</td>
</tr>
<tr>
<td>d2105</td>
</tr>
<tr>
<td>pr2392</td>
</tr>
<tr>
<td>rl5934</td>
</tr>
<tr>
<td>usa13509</td>
</tr>
<tr>
<td>d15112</td>
</tr>
</tbody>
</table>

- Lower bounds: (within less than one percent of optimum for random Euclidean, up to two percent for TSPLIB instances)
Construction Heuristics

In general construction heuristics are closely related to search tree techniques

- a single path from root to leaf
- possible extension: beam search/pilot method
 - maintains a set B of bw (beam width) partial candidate solutions
 - at each level extend fw (filter width) candidate solutions and rank
 - complete candidate solutions obtained by B are maintained in B_f

Construction heuristics specific for TSP

- nearest neighborhood heuristics
- insertion heuristics
- greedy heuristics
- savings heuristics
- Christofides heuristics
Software Development: Extreme Programming

Planning
Release planning creates the schedule // Make frequent small releases //
The project is divided into iterations // A stand-up meeting starts each day

Designing
Simplicity Choose a system metaphor // No functionality is added early //
Refactor: eliminate unused functionality and redundancy

Coding
The customer is always available // Code must be written to agreed
standards // Code the unit test first // All production code is pair
programmed // Only one pair integrates code at a time // Use collective
code ownership // Leave optimization till last // No overtime

Testing
All code must have unit tests // All code must pass all unit tests before it
can be released // When a bug is found tests are created
Software Framework for LS Methods

From EasyLocal++ by Schaerf and Di Gaspero (2003).
Software Framework for LS Methods

From EasyLocal++ by Schaerf and Di Gaspero (2003).