Other ‘Simple’ Metaheuristics and Population Based Metaheuristics

Marco Chiarandini

Outline

1. Results Task 2
2. Dynamic Local Search
3. Iterated Local Search
4. Exercise
5. Evolutionary Algorithms

Experimental Set up

- 15 new flat instances created
- Type | # instances | Upper bound
 | flat-1000-50-0-?.col | 5 | 50
 | flat-1000-60-0-?.col | 5 | 60
 | flat-1000-76-0-?.col | 5 | 76
- each algorithm run once on each of the 15 new instances
- fairness principle: same computational resources to all algorithms
- 90 seconds on Intel(R) Celeron(R) CPU 2.40GHz, 1GB RAM (120 seconds for 230183)
- restart ROS heuristic used as reference algorithm
- restart RLF and DSATUR also included
Program Profiling

- Plot the development of
 - best visited solution quality
 - current solution quality
 over time and compare with other features of the algorithm.

- Profile time consumption per program components under Linux:
 - `gprof`
 1. add flag `-pg` in compilation
 2. run the program
 3. `gprof program-file > a.txt`

Dynamic Local Search

- **Key Idea:** Modify the evaluation function whenever a local optimum is encountered.
- Associate *penalty weights* (*penalties*) with solution components; these determine impact of components on evaluation function value.
- Perform Iterative Improvement; when in local minimum, increase penalties of some solution components until improving steps become available.

Dynamic Local Search (DLS):

determine initial candidate solution s
initialize penalties

While termination criterion is not satisfied:

- compute modified evaluation function g' from g
 based on penalties
- perform subsidiary perturbative search on s
 using evaluation function g'
- update penalties based on s

Dynamic Local Search (continued)

- **Modified evaluation function:**

 $$ g'(\pi, s) := g(\pi, s) + \sum_{i \in SC(\pi', s)} \text{penalty}(i), $$

 where $SC(\pi', s)$ is the set of solution components of problem instance π' used in candidate solution s.

- **Penalty initialization:** For all i: \(\text{penalty}(i) := 0 \).

- **Penalty update** in local minimum s: Typically involves penalty increase of some or all solution components of s; often also occasional penalty decrease or penalty smoothing.

- **Subsidiary perturbative search:** Often Iterative Improvement.
Potential problem:
Solution components required for (optimal) solution may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are least likely to occur in (optimal) solutions.

Implementation of B:
[Voudouris and Tsang, 1995] Only increase penalties of solution components with maximal utility:

$$\text{util}(s', i) := \frac{g_i(\pi, s')}{1 + \text{penalty}(i)}$$

where $g_i(\pi, s')$ is the solution quality contribution of i in s'.

Example: Guided Local Search (GLS) for the TSP
[Voudouris and Tsang 1995; 1999]

- **Given:** TSP instance G
- **Search space:** Hamiltonian cycles in G with n vertices;
- **Neighborhood:** 2-edge-exchange;
- **Solution components** edges of G;
 $$g_e(G, p) := w(e);$$
- **Penalty initialization:** Set all edge penalties to zero.
- **Subsidiary perturbative search:** Iterative First Improvement.
- **Penalty update:** Increment penalties for all edges with maximal utility by
 $$\lambda := 0.3 \cdot \frac{w(s_{2-opt})}{n}$$
 where $s_{2-opt} = 2$-optimal tour.

Outline

1. Results Task 2
2. Dynamic Local Search
3. Iterated Local Search
4. Exercise
5. Evolutionary Algorithms

Hybrid Methods

Combination of 'simple' methods often yields substantial performance improvements.

Simple examples:

- Commonly used restart mechanisms can be seen as hybridisations with Uninformed Random Picking
- Iterative Improvement + Uninformed Random Walk = Randomized Iterative Improvement
Iterated Local Search

Key Idea: Use two types of LS steps:
- subsidiary perturbative (local) search steps for reaching local optima as efficiently as possible (intensification)
- perturbation steps for effectively escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary perturbative search on s
While termination criterion is not satisfied:
\[
\tau := s \\
\text{perform perturbation on } s \\
\text{perform subsidiary perturbative search on } s \\
\text{based on acceptance criterion, keep } s \text{ or revert to } s := \tau
\]

Note:
- Subsidiary perturbative search results in a local minimum.
- ILS trajectories can be seen as walks in the space of local minima of the given evaluation function.
- Perturbation phase and acceptance criterion may use aspects of search history (i.e., limited memory).
- In a high-performance ILS algorithm, subsidiary perturbative search, perturbation mechanism and acceptance criterion need to complement each other well.

Subsidiary perturbative search:
- More effective subsidiary perturbative search procedures lead to better ILS performance.
 Example: 2-opt vs 3-opt vs LK for TSP.
- Often, subsidiary perturbative search = iterative improvement, but more sophisticated LS methods can be used. (e.g., Tabu Search).

Perturbation mechanism:
- Needs to be chosen such that its effect cannot be easily undone by subsequent perturbative search phase. (Often achieved by search steps larger neighborhood.)
 Example: perturbative search = 3-opt, perturbation = 4-exchange steps in ILS for TSP.
- A perturbation phase may consist of one or more perturbation steps.
- Weak perturbation \Rightarrow short subsequent perturbative search phase; but: risk of revisiting current local minimum.
- Strong perturbation \Rightarrow more effective escape from local minima; but: may have similar drawbacks as random restart.
- Advanced ILS algorithms may change nature and/or strength of perturbation adaptively during search.
Acceptance criteria:

- Always accept the best of the two candidate solutions
 ⇒ ILS performs Iterative Improvement in the space of local optima reached by subsidiary perturbative search.

- Always accept the most recent of the two candidate solutions
 ⇒ ILS performs random walk in the space of local optima reached by subsidiary perturbative search.

- Intermediate behavior: select between the two candidate solutions based on the Metropolis criterion (e.g., used in Large Step Markov Chains [Martin et al., 1991]).

- Advanced acceptance criteria take into account search history, e.g., by occasionally reverting to incumbent solution.

Example: Iterated Local Search for the TSP (1)

- Given: TSP instance G.
- Search space: Hamiltonian cycles in G.
- Subsidiary perturbative search: Lin-Kernighan variable depth search algorithm
- Perturbation mechanism: ‘double-bridge move’ = particular 4-exchange step:

Example: Iterated Local Search for the TSP (2)

Note:
- Double-bridge move perturbation cannot be directly reversed by a sequence of 2-exchange steps as performed by “usual” LK implementations.
- This perturbation is empirically shown to be effective independent of instance size.

Note:
- This ILS algorithm for the TSP is known as Iterated Lin-Kernighan (ILK) Algorithm.
- Although ILK is structurally rather simple, an efficient implementation was shown to achieve excellent performance [Johnson and McGeoch, 1997].

Iterated local search algorithms...

- are typically rather easy to implement (given existing implementation of subsidiary simple LS algorithms);
- achieve state-of-the-art performance on many combinatorial problems, including the TSP.

There are many LS approaches that are closely related to ILS, including:

- Large Step Markov Chains [Martin et al., 1991]
- Chained Local Search [Martin and Otto, 1996]
- Variants of Variable Neighbourhood Search (VNS) [Hansen and Mladenović, 2002]
Solution Approaches for Graph Coloring

- Design an application of SA to GCP
- Design an application of TS to GCP

Different choices for the candidate solutions, neighborhood structures and evaluation function define different approaches to the problem:

<table>
<thead>
<tr>
<th></th>
<th>k-fixed complete proper</th>
<th>k-fixed partial proper</th>
<th>k-fixed complete unproper</th>
<th>k-fixed partial unproper</th>
<th>k-variable complete proper</th>
<th>k-variable partial proper</th>
<th>k-variable complete unproper</th>
<th>k-variable partial unproper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Population-based LS Methods

LS methods discussed so far manipulate one candidate solution of given problem instance in each search step.

Straightforward extension: Use population (i.e., set) of candidate solutions instead.

Note:

- The use of populations provides a generic way to achieve search diversification.
Evolutionary Algorithms

Key idea (Inspired by Darwinian model of biological evolution): Maintain a population of individuals that compete for survival, and generate new individuals, which in turn again compete for survival.

Iteratively apply genetic operators mutation, recombination, selection to a population of candidate solutions.

- **Mutation** introduces random variation in the genetic material of individuals.
- **Recombination** of genetic material during reproduction produces offspring that combines features inherited from both parents.
- **Differences in evolutionary fitness lead selection of genetic traits** (‘survival of the fittest’).

aka Evolutionary Computing Algorithms or Evolutionary Algorithms (EA) while distinct from Evolutionary Programming and Evolution strategy.

Evolutionary Algorithm (EA):

determine initial population \(sp \)

While termination criterion is not satisfied:

- generate set \(spr \) of new candidate solutions by recombination
- generate set \(spm \) of new candidate solutions from \(spr \) and \(sp \) by mutation
- select new population \(sp \) from candidate solutions in \(sp \), \(spr \), and \(spm \)
Problem: Pure evolutionary algorithms often lack capability of sufficient search intensification.

Solution: Apply subsidiary perturbative search after initialization, mutation and recombination.

⇒ Memetic Algorithms (aka Evolutionary Local Search)

- transmission of memes, mimicking cultural evaluation which is supposed to be direct and Lamarckian

Memetic Algorithm (MA):
- determine initial population \(sp \)
- perform subsidiary perturbative search on \(sp \)
- While termination criterion is not satisfied:
 - generate set \(spr \) of new candidate solutions by recombination
 - perform subsidiary perturbative search on \(spr \)
 - generate set \(spm \) of new candidate solutions from \(spr \) and \(sp \) by mutation
 - perform subsidiary perturbative search on \(spm \)
 - select new population \(sp \) from candidate solutions in \(sp, spr, \) and \(spm \)

Solution representation
- neat separation between solution encode or representation (genotype) from actual variables (phenotype)
- a solution \(s \in S \) is represented by a string that is: the genotype set is made of strings of length \(l \) whose elements are symbols from an alphabet \(A \) such that there exists a map:
 \[
 c : A^l \rightarrow S
 \]
 - the elements of strings are the genes
 - the values of elements can take are the alleles
- the search space is then \(A' \subseteq A^l \)
- if the strings are member of a population they are called chromosomes and their recombination crossover
- strings are evaluated by \(f(c(x)) = g(x) \) which gives them a fitness

⇒ binary representation is appealing but not always good (e.g., in constrained problems binary crossovers might not be good)

Example
- 1001010 1101100 0111010 1010010 1000010
- 0101110 0111101 0110110 1101000 1010101
- 1001 10110110011101 01010010100010
- 01011 1001111101011111 011010001010101

Which Produces the Offspring
- 01011101101100011101 0110100010101010
- 1001010011110101101010101000010
Conjectures on the goodness of EA

schema: subset of \(A^1 \) where strings have a set of variables fixed. Ex.: 1*1

- exploit intrinsic parallelism of schemata
- Schema Theorem:
 \[
 E[N(S,t+1)] \geq \frac{F(S,t)}{F(S)}N(s,t)[1 - \epsilon(S,t)]
 \]
- a method for solving all problems \(\Rightarrow \) disproved by the No Free Lunch Theorems
- building block hypothesis

Initial Population

- Which size? Trade-off
- Minimum size: connectivity by recombination is achieved if at least one instance of every allele is guaranteed to be be present at each locus. Ex: if binary:
 \[
 P^*_2 = (1 - (0.5)^{M-1})^l
 \]
 for \(l = 50 \), it is sufficient \(M = 17 \) to guarantee \(P^*_2 > 99.9\% \).
- Often: independent, uninformed random picking from given search space.
- Attempt to cover at best the search space, eg, Latin hypercube.
- But: can also use multiple runs of construction heuristic.

Selection

Main idea: selection should be related to fitness

- Fitness proportionate selection (Roulette-wheel method)
 \[
 p_i = \frac{f_i}{\sum_j f_j}
 \]
- Tournament selection: a set of chromosomes is chosen and compared and the best chromosome chosen.
- Rank based and selection pressure

Recombination (Crossover)

- Binary or assignment representations
 - one-point, two-point, m-point (preference to positional bias w.r.t. distributional bias)
 - uniform cross over (through a mask controlled by a Bernoulli parameter \(p \))
- Non-linear representations
 - (Permutations) Partially mapped crossover
 - (Permutations) mask based
- More commonly ad hoc crossovers are used as this appear to be a crucial feature of success
- Two off-springs are generally generated
- Crossover rate controls the application of the crossover. May be adaptive: high at the start and low when convergence
Example: crossovers for binary representations

Mutation

- **Goal:** Introduce relatively small perturbations in candidate solutions in current population + offspring obtained from *recombination*.
- Typically, perturbations are applied stochastically and independently to each candidate solution; amount of perturbation is controlled by *mutation rate*.
- Mutation rate controls the application of bit-wise mutations. May be adaptive: low at the start and high when convergence.
- Possible implementation through Poisson variable which determines the m genes which are likely to change allele.
- Can also use *subsidiary selection function* to determine subset of candidate solutions to which mutation is applied.
- The role of mutation (as compared to recombination) in high-performance evolutionary algorithms has been often underestimated.

Subsidiary perturbative search

- Often useful and necessary for obtaining high-quality candidate solutions.
- Typically consists of selecting some or all individuals in the given population and applying an *iterative improvement procedure* to each element of this set independently.

New Population

- Determines population for next cycle (*generation*) of the algorithm by selecting individual candidate solutions from current population + new candidate solutions obtained from *recombination, mutation (+ subsidiary perturbative search)*. (λ, μ) $(\lambda + \mu)$
- **Goal:** Obtain population of high-quality solutions while maintaining population diversity.
- Selection is based on evaluation function (*fitness*) of candidate solutions such that better candidate solutions have a higher chance of ‘surviving’ the selection process.
- It is often beneficial to use *elitist selection strategies*, which ensure that the best candidate solutions are always selected.
- Most commonly used: *steady state* in which only one new chromosome is generated at each iteration.
- Diversity is checked and duplicates avoided.
Example: A memetic algorithm for TSP

- **Search space**: set of Hamiltonian cycles
 Note: tours can be represented as permutations of vertex indexes.

- **Initialization**: by randomized greedy heuristic (partial tour of \(n/4 \) vertices constructed randomly before completing with greedy).

- **Recombination**: greedy recombination operator \(GX \) applied to \(n/2 \) pairs of tours chosen randomly:
 1) copy common edges (param. \(p_e \))
 2) add new short edges (param. \(p_n \))
 3) copy edges from parents ordered by increasing length (param. \(p_c \))
 4) complete using randomized greedy.

- **Subsidiary perturbative search**: LK variant.

- **Mutation**: apply double-bridge to tours chosen uniformly at random.

- **Selection**: Selects the \(\mu \) best tours from current population of \(\mu + \lambda \) tours (=simple *elitist selection mechanism*).

- **Restart operator**: whenever average bond distance in the population falls below 10.

Types of evolutionary algorithms

- **Genetic Algorithms (GAs)** [Holland, 1975; Goldberg, 1989]:
 - have been applied to a very broad range of (mostly discrete) combinatorial problems;
 - often encode candidate solutions as bit strings of fixed length, which is now known to be disadvantageous for combinatorial problems such as the TSP.

- **Evolution Strategies** [Rechenberg, 1973; Schwefel, 1981]: 7
 - originally developed for (continuous) numerical optimization problems;
 - operate on more natural representations of candidate solutions;
 - use *self-adaptation* of perturbation strength achieved by *mutation*;
 - typically use *elitist deterministic selection*.

- **Evolutionary Programming** [Fogel *et al.*, 1966]:
 - similar to Evolution Strategies (developed independently), but typically does not make use of *recombination* and uses *stochastic selection* based on *tournament mechanisms*.
 - often seek to adapt the program to the problem rather than the solutions

Theoretical studies

- Through Markov chains modelling some versions of evolutionary algorithms can be made to converge with probability 1 to the best possible solutions in the limit [Fogel, 1992; Rudolph, 1994].

- Convergence rates on mathematically tractable functions or with local approximations [Bäck and Hoffmeister, 2004; Beyer, 2001].

- "No Free Lunch Theorem" [Wolpert and Macready, 1997]. On average, within some assumptions, blind random search is as good at finding the minimum of all functions as is hill climbing.

However:

- These theoretical findings are not very practical.

- EAs are made to produce useful solutions rather than perfect solutions.
Research Goals

- Analyzing classes of optimization problems and determining the best components for evolutionary algorithms.
- Applying evolutionary algorithms to problems that are dynamically changing.
- Gaining theoretical insights for the choice of components.