DM812 - Metaheuristics

Assignment, Fall 2008

Exercise

Define the following components of ACO when applied to solve each of the three combinatorial optimization problems described below.

- Construction graph
- Constraints (how are they handled?)
- Pheromone trails (where are they set?)
- Heuristic information (where are they set and how are they computed?)

Single Machine Total Weighted Tardiness Problem Each of n jobs (numbered $1, \ldots, n$) is to be processed without interruption on a single machine that can handle no more than one job at a time. $\operatorname{Job} j(j=1, \ldots, n)$ becomes available for processing at time zero, requires an uninterrupted positive processing time $p(j)$ on the machine, has a positive weight $w(j)$, and has a due date $d(j)$ by which it should ideally be finished. For a given processing order of the jobs, the earliest completion time $C(j)$ and the tardiness $T(j)=$ $\max \{C(j)-d(j), 0\}$ of job $j(j=1, \ldots, n)$ can readily be computed. The problem is to find a processing order of the jobs with minimum total weighted tardiness $\sum_{j=1, \ldots, n} w(j) T(j)$.

Generalized Assignment Problem There are n kinds of items, x_{1} through x_{n}, and m kinds of bins b_{1} through b_{m}. Each bin b_{i} is associated with a budget w_{i}. For a bin b_{i}, each item x_{j} has a profit $p_{i j}$ and a weight $w_{i j}$. An assignment is subset of items U to put in the bins. A feasible assignment is an assignment in which for each bin b_{i} the weights sum of assigned items is at most w_{i}. The assignment's profit is the sum of profits for each item-bin assignment. The goal is to find a maximum profit feasible assignment.

Mathematically the generalized assignment problem can be formulated as:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{n} w_{i j} x_{i j} \leq w_{i} \quad i=1, \ldots, m ; \\
& \sum_{i=1}^{m} x_{i j} \leq 1 \quad j=1, \ldots, n ; \\
& x_{i j} \in\{0,1\} \quad i=1, \ldots, m, \quad j=1, \ldots, n ;
\end{aligned}
$$

Set Covering Given a universe \mathcal{U} and a family \mathcal{S} of subsets of \mathcal{U}, a cover is a subfamily $\mathcal{C} \subseteq \mathcal{S}$ of sets whose union is \mathcal{U}. The set covering optimization problem asks to find a set covering which uses the fewest sets.

