DM812 METAHEURISTICS

Lecture 2 Simulated Annealing

Marco Chiarandini

Department of Mathematics and Computer Science University of Southern Denmark, Odense, Denmark Outline

1. Simulated Annealing

2. Convergence of Simulated Annealing

Outline

Simulated Annealing Convergence

1. Simulated Annealing

2. Convergence of Simulated Annealing

Probabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends on respective deterioration in evaluation function value: bigger deterioration \cong smaller probability

Simulated Annealing Convergence

Realization:

• Function p(g, s): determines probability distribution over neighbors of s based on their values under evaluation function g.

• Let step(s, s') := p(f, s, s').

Note:

- Behavior of PII crucially depends on choice of *p*.
- II and RII are special cases of PII.

Example: Metropolis PII for the TSP

- Search space S: set of all Hamiltonian cycles in given graph G.
- Solution set: same as S
- Neighborhood relation $\mathcal{N}(s)$: 2-edge-exchange
- Initialization: an Hamiltonian cycle uniformly at random.
- Step function: implemented as 2-stage process:
 - 1. select neighbor $s' \in N(s)$ uniformly at random;
 - 2. accept as new search position with probability:

 $p(T, s, s') := \begin{cases} 1 & \text{if } f(s') \leq f(s) \\ \exp \frac{f(s) - f(s')}{T} & \text{otherwise} \end{cases}$

(Metropolis condition), where *temperature* parameter T controls likelihood of accepting worsening steps.

• Termination: upon exceeding given bound on run-time.

Simulated Annealing

Simulated Annealing Convergence

Simulated Annealing

Convergence

Key idea: Vary temperature parameter, *i.e.*, probability of accepting worsening moves, in Probabilistic Iterative Improvement according to annealing schedule (aka *cooling schedule*).

Simulated Annealing (SA):

determine initial candidate solution s

set initial temperature ${\cal T}$ according to annealing schedule

while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule $\ensuremath{\textbf{do}}$

probabilistically choose a neighbor s' of s using proposal mechanism

if s' satisfies probabilistic acceptance criterion (depending on T) then

update T according to annealing schedule

Inspired by statistical mechanics in matter physics:

- candidate solutions \cong states of physical system
- \bullet evaluation function \cong thermodynamic energy
- globally optimal solutions \cong ground states
- parameter $T \cong$ physical temperature

Note: In physical process (*e.g.*, annealing of metals), perfect ground states are achieved by very slow lowering of temperature.

Simulated Annealing Convergence

- 2-stage step function based on
 - proposal mechanism (often uniform random choice from N(s))
 - acceptance criterion (often Metropolis condition)
- Annealing schedule
 - (function mapping run-time t onto temperature T(t)):
 - initial temperature T_0 (may depend on properties of given problem instance)
 - temperature update scheme

 (e.g., linear cooling: T_{i+1} = T₀(1 i/I_{max}),
 geometric cooling: T_{i+1} = α · T_i)
 - number of search steps to be performed at each temperature (often multiple of neighborhood size)
 - may be *static* or *dynamic*
 - seek to balance moderate execution time with asymptotic behavior properties
- Termination predicate: often based on *acceptance ratio*, *i.e.*, ratio of proposed *vs* accepted steps *or* number of idle iterations

Simulated Annealing Convergence

Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

- *proposal mechanism:* uniform random choice from 2-exchange neighborhood;
- acceptance criterion: Metropolis condition (always accept improving steps, accept worsening steps with probability $\exp [(f(s) f(s'))/T]);$
- annealing schedule: geometric cooling $T := 0.95 \cdot T$ with $n \cdot (n-1)$ steps at each temperature (n = number of vertices in given graph), T_0 chosen such that 97% of proposed steps are accepted;
- *termination:* when for five successive temperature values no improvement in solution quality and acceptance ratio < 2%.

Improvements:

- neighborhood pruning (e.g., candidate lists for TSP)
- greedy initialization (e.g., by using NNH for the TSP)
- *low temperature starts* (to prevent good initial candidate solutions from being too easily destroyed by worsening steps)

Related Approaches (1)

Simulated Annealing

Noising Method

Perturb the objective function by adding random noise. The noise is gradually reduced to zero during algorithm's run.

Threshold Method

Removes the probabilistic nature of the acceptance criterion

$$p_k(\Delta(s,s')) = \left\{ egin{array}{cc} 1 & \Delta(s,s') \leq Q_k \\ 0 & ext{otherwise} \end{array}
ight.$$

 Q_k deterministic, non-increasing step function in k. Suggested: $Q_k = Q_0(1 - i/I_{MAX})$

Related Approaches (2)

Critics to SA:

The annealing schedule strongly depends on

- the time bound
- the search landscape and hence on the single instance

Evidence that there are search landscapes for which optimal annealing schedules are non-monotone [Hajek and Sasaki, Althofer and Koschnick, Hu, Kahng and Tsao].

Old Bachelor Acceptance

Dwindling expectations

$$Q_{i+1} = \left\{ \begin{array}{ll} Q_i + incr(Q_i) & \text{if failed acceptance of } s \\ Q_i - decr(Q_i) & \text{if } s' \text{ accepted} \end{array} \right.$$

- $decr(Q_i) = incr(Q_i) = T_0/M$ • $Q_i = \left(\left(\frac{age}{a}\right)^b - 1\right) \cdot \Delta \cdot \left(1 - \frac{i}{M}\right)^c$
- ... (self-tuning, non-monotonic)

Simulated Annealing Convergence

Simulated Annealing

onvergence

'Convergence' result for SA:

Theorem ([Geman and Geman, 1984; Hajek, 1998])

Let $\langle S, f, N \rangle$ be the search landscape of a combinatorial optimization problem with $S^* \neq S$ and S finite. Furthermore, let N be a neighborhood function defined on S that induces a strongly connected, symmetric neighborhood graph with diameter d.

Then the finite homogeneous Markov chain associated with a run of simulated annealing at a fixed value c of the control parameter is strongly ergodic and the unique stationary distribution q(c) to which its probability distribution converges satisfies

 $\lim_{c \to 0} q_i(c) = 0$

for any non-optimal solution $i \in S$.

Outline

1. Simulated Annealing

2. Convergence of Simulated Annealing

Simulated Annealing Convergence

'Convergence' result for SA:

Theorem ([Geman and Geman, 1984; Hajek, 1998])

Let $\langle S, f, N \rangle$ be the search landscape of a combinatorial optimization problem with $S^* \neq S$ and S finite. Furthermore, let N be a neighborhood function defined on S that induces a strongly connected, symmetric neighborhood graph with diameter d.

If a cooling schedule is assumed in which the sequence $\{c_k\}_{k=1}^{\infty}$ of control parameter values is non-increasing and satisfies both $\lim_{k\to\infty} = 0$ and

$$c_k \ge \frac{d\Delta}{\log k}$$

with $\Delta = \max_{i \in S, j \in N(i)}(f(j) - f(i))$, then the inhomogeneous Markov chain associated with a run of simulated annealing is strongly ergodic and the stochastic vector q to which its probability distribution converges satisfies $q_i = 0$ for any non-optimal solution.

Simulated Annealing Convergence

Note:

- Practical relevance for combinatorial problem solving is very limited (impractical nature of necessary conditions)
- In combinatorial problem solving, *ending* in optimal solution is typically unimportant, but *finding* optimal solution during the search is (even if it is encountered only once)!