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Simulated Annealing
ConvergenceProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(g, s): determines probability distribution
over neighbors of s based on their values under
evaluation function g.
Let step(s, s′) := p(f, s, s′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.
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Example: Metropolis PII for the TSP

Search space S: set of all Hamiltonian cycles in given graph G.
Solution set: same as S

Neighborhood relation N (s): 2-edge-exchange
Initialization: an Hamiltonian cycle uniformly at random.
Step function: implemented as 2-stage process:

1. select neighbor s′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T, s, s′) :=

(
1 if f(s′) ≤ f(s)

exp f(s)−f(s′)
T

otherwise

(Metropolis condition), where temperature parameter T controls
likelihood of accepting worsening steps.

Termination: upon exceeding given bound on run-time.
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Inspired by statistical mechanics in matter physics:

candidate solutions ∼= states of physical system
evaluation function ∼= thermodynamic energy
globally optimal solutions ∼= ground states
parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground
states are achieved by very slow lowering of temperature.
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Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule
do

probabilistically choose a neighbor s′ of s using proposal
mechanism
if s′ satisfies probabilistic acceptance criterion (depending on T )
then

s := s′

update T according to annealing schedule
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2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps or number of idle iterations
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Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

proposal mechanism: uniform random choice from
2-exchange neighborhood;
acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability
exp [(f(s)− f(s′))/T ]);
annealing schedule: geometric cooling T := 0.95 · T with n · (n− 1)
steps at each temperature (n = number of vertices in given graph),
T0 chosen such that 97% of proposed steps are accepted;
termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

neighborhood pruning (e.g., candidate lists for TSP)
greedy initialization (e.g., by using NNH for the TSP)
low temperature starts (to prevent good initial candidate solutions
from being too easily destroyed by worsening steps)
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Noising Method
Perturb the objective function by adding random noise.
The noise is gradually reduced to zero during algorithm’s run.

Threshold Method
Removes the probabilistic nature of the acceptance criterion

pk(∆(s, s′)) =
{

1 ∆(s, s′) ≤ Qk

0 otherwise

Qk deterministic, non-increasing step function in k.
Suggested: Qk = Q0(1− i/IMAX)
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Critics to SA:
The annealing schedule strongly depends on

the time bound
the search landscape and hence on the single instance

Evidence that there are search landscapes for which optimal annealing
schedules are non-monotone [Hajek and Sasaki, Althofer and Koschnick,
Hu, Kahng and Tsao].

Old Bachelor Acceptance
Dwindling expectations

Qi+1 =
{

Qi + incr(Qi) if failed acceptance of s′

Qi − decr(Qi) if s′ accepted

decr(Qi) = incr(Qi) = T0/M

Qi =
(
(age

a )b − 1
) ·∆ · (1− i

M

)c

... (self-tuning, non-monotonic)
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‘Convergence’ result for SA:

Theorem ([Geman and Geman, 1984; Hajek, 1998])

Let 〈S, f,N〉 be the search landscape of a combinatorial optimization
problem with S∗ 6= S and S finite. Furthermore, let N be a
neighborhood function defined on S that induces a strongly connected,
symmetric neighborhood graph with diameter d.

Then the finite homogeneous Markov chain associated with a run of sim-
ulated annealing at a fixed value c of the control parameter is strongly
ergodic and the unique stationary distribution q(c) to which its probability
distribution converges satisfies

lim
c→0

qi(c) = 0

for any non-optimal solution i ∈ S.
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‘Convergence’ result for SA:

Theorem ([Geman and Geman, 1984; Hajek, 1998])

Let 〈S, f,N〉 be the search landscape of a combinatorial optimization
problem with S∗ 6= S and S finite. Furthermore, let N be a
neighborhood function defined on S that induces a strongly connected,
symmetric neighborhood graph with diameter d.

If a cooling schedule is assumed in which the sequence {ck}∞k=1 of control
parameter values is non-increasing and satisfies both limk→∞ = 0 and

ck ≥ d∆
log k

with ∆ = maxi∈S,j∈N(i)(f(j) − f(i)), then the inhomogeneous Markov
chain associated with a run of simulated annealing is strongly ergodic
and the stochastic vector q to which its probability distribution converges
satisfies qi = 0 for any non-optimal solution.
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Mathematical modelling of SA

q(3) = (0.38, 0.28, 0.20, 0.14)
q(1) = (0.64, 0.24, 0.09, 0.03)
q(0.1) =
(1, 5 · 10−5, 2 · 10−9, 9 · 10−14)
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Note:

Practical relevance for combinatorial problem solving
is very limited (impractical nature of necessary conditions)

In combinatorial problem solving, ending in optimal solution
is typically unimportant, but finding optimal solution
during the search is (even if it is encountered only once)!


