
DM812
METAHEURISTICS

Lecture 3

Empirical Methods for
Configuring and Tuning

Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark

Introduction
Inferential StatisticsOutline

1. Introduction

2. Inferential Statistics
Basics of Inferential Statistics
Experimental Designs

Introduction
Inferential StatisticsOutline

1. Introduction

2. Inferential Statistics
Basics of Inferential Statistics
Experimental Designs

Introduction
Inferential StatisticsStatistics

Field of mathematics that studies the probability of events on the basis of
inference from empirical data.

Descriptive statistics resumes and visualizes data (Exploratory data
analysis)

Inferential statistics makes inference or prediction about the
populations from which samples are drawn.

Population: total of subjects that share something in
common
Sample: set of subjects drawn from populations

Data:

quantitative (numerical) discrete or continuous (presence of an
order)

qualitative or categorical
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Binomial distribution

P [x = v ] =
(

n
v

)
pv (1− p)n−v
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Binomial Distribution: Trials = 30,
 Probability of success = 0.5
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p probability of successes
x number of successes
The binomial distribution indicates
the probability for each set of
outcomes, i.e., v = {1, . . . ,n}
successes.

One parameter: p
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Uniform distribution (continuous)

f (x ) =
1

b − a
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Normal distribution (continuous)

f (x ) =
1

σ
√

2π
e−

1
2σ2 (x−µ)2
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Normal Distribution: µ = 0, σ = 1
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Theoretical importance

Defined by two parameters:
N (µ, σ).

N (0, 1) is the standardized version.

In N (0, 1) 68.27% of data fall
within µ± σ
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Exponential distribution (continuous)

f (t) = λe−λt
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 lambda = 1
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It has the memory-less property, i.e.,
the probability of a new event to
happen within a fixed time does not
depend on the time passed so far.

Defined by one parameter:
E [X ] = 1

λ .
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Weibull distribution (continuous)

f (x ) =
β

η

( t − γ
η

)β−1
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Weibull Distribution:
 shape=1.5, scale=1, location=0
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Used in life data and reliability
analysis

Defined by three parameters:
β (shape), η (scale), γ (location)
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Others (theoretically relevant)

χ2(n): chi-squared distribution with n degrees of freedom:

distribution of
∑

i X 2
n where X1, . . . ,Xn are independently, standard

normally distributed variables

t(r): Student t-distribution with r degrees of freedom:

distribution of X1/
√

X2/r with X1 ∼ N (0, 1) and X2 ∼ χ2(r)
independently distributed variables

F (r1, r2): Fisher distribution with r1 and r2 degrees of freedom:

distribution of (X1/r1)/(X2/r2) with X1 ∼ χ2 and X2 ∼ χ2

independently distributed variables
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We work with samples (instances, solution quality)

But we want sound conclusions: generalization over a given
population (all possible instances)

Thus we need statistical inference

Random Sample
X n

Statistical Estimator θ̂

Population
P(x , θ)

Parameter θ

Inference

Since the analysis is based on finite-sized sampled data, statements like

“the cost of solutions returned by algorithm A is smaller than
that of algorithm B”

must be completed by

“at a level of significance of 5%”.
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Estimator θ̂(X1, . . . ,Xn) makes a guess on the parameter (Es. X̄ )

Estimate is the actual value θ̂(x1, . . . , xn)

Properties of an estimator:

unbiased: E [θ̂] = θ (e.g., E [X̄ ] = µ)

consistent

efficient (uncertainty must decrease with size, e.g., Var[X̄ ] = σ2/n)

sufficient

Note: The best result bN = mini ci is not a good estimator. It is biased
and not efficient.
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There is a competition and two stochastic algorithms A1 and A2 are
submitted.

We run both algorithms once on n instances.
On each instance either A1 wins (+) or A2 wins (-) or they make a
tie (=).

Questions:

1 If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

2 How many instances and how many wins should we observe to gain
a confidence of 95% that the algorithm A1 is the best?
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p: probability that A1 wins on each instance (+)

n: number of runs without ties

Y : number of wins of algorithm A1

If each run is indepenedent and consitent:

Y ∼ B(n, p) : Pr[Y = y ] =
(

n
y

)
py(1− p)n−y
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 Probability of success = 0.5
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1 If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

Under these conditions, we can check how unlikely the situation is if it
were p(+) ≤ p(−).

If p = 0.5 then the chance that algorithm A1 wins 7 or more times out of
10 is 17.2%: quite high!
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2 How many instances and how many wins should we observe to gain
a confidence of 95% that the algorithm A1 is the best?

To answer this question, we compute the 95% quantile, i.e.,
y : Pr[Y ≥ y ] < 0.05 with p = 0.5 at different values of n:

n 10 11 12 13 14 15 16 17 18 19 20
y 9 9 10 10 11 12 12 13 13 14 15

This is an application example of sign test, a special case of binomial test
in which p = 0.5
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General procedure:

Assume that data are consistent with a null hypothesis H0 (e.g.,
sample data are drawn from distributions with the same mean value).

Use a statistical test to compute how likely this is to be true, given
the data collected. This “likely” is quantified as the p-value.

Accept H0 as true if the p-value is larger than an user defined
threshold called level of significance α.

Alternatively (p-value < α), H0 is rejected in favor of an alternative
hypothesis, H1, at a level of significance of α.
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Two kinds of errors may be committed when testing hypothesis:

α = P(type I error) = P(reject H0 |H0 is true)

β = P(type II error) = P(fail to reject H0 |H0 is false)

General rule:

1 specify the type I error or level of significance α

2 seek the test with a suitable large statistical power, i.e.,
1− β = P(reject H0 |H0 is false)
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Theorem: Central Limit Theorem

If X n is a random sample from an arbitrary distribution with mean µ
and variance σ then the average X̄ n is asymptotically normally
distributed, i.e.,

X̄ n ≈ N (µ,
σ2

n
) or z =

X̄ n − µ
σ/
√

n
≈ N (0, 1)

Consequences:

allows inference from a sample
allows to model errors in measurements: X = µ+ ε

Issues:

n should be enough large
µ and σ must be known
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And if the variance is unknown...

then we substitute σ with its estimator σ̂ = S

S2 =
∑n

i=1(Xi − X̄ )2

n − 1
but then

z =
X − µ
S
√

n
≈ tn−1

i.e., z approximates a t-student distribution.
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A test of hypothesis determines how
likely an sampled estimate θ̂ is to
occur under some assumptions on
the parameter θ of the population.

Pr
{
µ−z1

θ√
n
≤ X̄ ≤ µ+z2

θ√
n

}
= 1−α

µ
X̄1

X̄2

X̄3

A confidence interval contains all
those values that a parameter θ is
likely to assume with probability
1− α: Pr(θ̂1 < θ < θ̂2) = 1− α

Pr
{
X̄−z1

θ√
n
≤ µ ≤ X̄+z2

θ√
n

}
= 1−α

µ
X̄1

X̄2

X̄3
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The Procedure of Test of Hypothesis

θ

µ1 µ2

 
 
 
 
 
 
 
 

 

 

 

0 Tδ

 

1 Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2 Obtain P(θ|θ = 0), the null
distribution of θ

3 Compare θ̂ with the α/2-quantiles (for
two-sided tests) of P(θ|θ = 0) and
reject or not H0 according to whether
θ̂ is larger or smaller than this value.
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The Confidence Intervals Procedure

θ

µ1 µ2

N (µ1, σ) N (µ2, σ)

(X̄1,SX1) (X̄2,SX2)

P(θ1) P(θ2)

T =
(X̄1−X̄2)−

`
µ1−µ2

´
r

SX1
−SX2
r

T ∼ Student’s t

Distribution

θ∗ = X̄ ∗
1 − X̄ ∗

2

θ = 0
θ̂

θ̂

1 Specify the parameter θ and the
test hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2 Obtain P(θ, θ = 0), the null
distribution of θ in correspondence
of the observed estimate θ̂ of the
sample X

3 Determine (θ̂−, θ̂+) such that

Pr{θ̂− ≤ θ ≤ θ̂+} = 1− α.

4 Do not reject H0 if θ = 0 falls
inside the interval (θ̂−, θ̂+).
Otherwise reject H0.
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The test compares empirical cumulative distribution functions.
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It uses maximal difference between the two curves, supx |F1(x)− F2(x)|, and
assesses how likely this value is under the null hypothesis that the two curves
come from the same data

The test can be used as a two-samples or single-sample test (in this case to
test against theoretical distributions: goodness of fit)

The test can be done in R with ks.test.
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Parametric assumptions:

independence

homoschedasticity

normality

N (µ, σ)

Nonparametric assumptions:

independence

homoschedasticity

P(θ)

Rank based tests

Permutation tests

Exact
Conditional Monte Carlo
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Parametric assumptions seem to be saliently violated when dealing
with optimization algorithms

Nonparametric rank based tests are based on asymptotic (large
sample) theory

Parametric tests are typically more powerful than nonparametric

With few data permutations tests are an alternative but less
powerful than parametric.

Hence:

When from diagnostic investigation, assumptions seem satisfied
(e.g., with large samples), parametric methods are more powerful
and should be preferred.
Otherwise, consider data transformations (log x , x2,

√
x )

Alternatively, nonparametric methods based on ranks are helpful and
also remove scale and location problems due to the instances.
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Variance reduction techniques

Same pseudo random seed

Sample Sizes

If the sample size is large enough (infinity) any difference in the
means of the factors, no matter how small, will be significant

Real vs Statistical significance
Study factors until the improvement in the response variable is
deemed small

Desired statistical power + practical precision ⇒ sample size

Note: If resources available for N runs then the optimal design is one run
on N instances [Birattari, 2004]
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Statement of the objectives of the experiment

Comparison of different algorithms
Impact of algorithm components
How instance features affect the algorithms

Identification of the sources of variance

Treatment factors (qualitative and quantitative)
Controllable nuisance factors ⇐ blocking
Uncontrollable nuisance factors ⇐ measuring

Definition of factor combinations to test
Easiest design: Unreplicated or Replicated Full Factorial Design

Running a pilot experiment and refine the design

Bugs and no external biases
Ceiling or floor effects
Rescaling levels of quantitative factors
Detect the number of experiments needed to obtained the desired
power.
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Algorithms ⇒ Treatment Factor; Instances ⇒ Blocking Factor

Design A: One run on various instances (Unreplicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k

Instance 1 X11 X12 X1k

.

.

.
.
.
.

.

.

.
.
.
.

Instance b Xb1 Xb2 Xbk

Design B: Several runs on various instances (Replicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k

Instance 1 X111, . . . ,X11r X121, . . . ,X12r X1k1, . . . ,X1kr

Instance 2 X211, . . . ,X21r X221, . . . ,X22r X2k1, . . . ,X2kr

.

.

.
.
.
.

.

.

.
.
.
.

Instance b Xb11, . . . ,Xb1r Xb21, . . . ,Xb2r Xbk1, . . . ,Xbkr
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H0 : µ1 = µ2 = µ3 = . . . H1 : {at least one differs}

Applying a statistical test to all pairs the error of Type I is not α but
higher:

αEX = 1− (1− α)c

Eg, for α = 0.05 and c = 3 ⇒ αEX = 0.14!

Adjustment methods

Protected versions: global test + no adjustments

Bonferroni α = αEX /c (conservative)

Tukey Honest Significance Method (for parametric analysis)

Holm (step-wise)

Other step procedures

Post-hoc analysis: Once the effect of factors has been recognized a finer
grained analysis is performed to distinguish where important differences
are.


