DM812 METAHEURISTICS

Lecture 3 Empirical Methods for Configuring and Tuning

Marco Chiarandini

Department of Mathematics and Computer Science University of Southern Denmark, Odense, Denmark

Introduction

nferential Statistics

Outline

1. Introduction

2. Inferential Statistics Basics of Inferential Statistics Experimental Designs

Statistics

Introduction

Introduction

Inferential Statistics

Field of mathematics that studies the probability of events on the basis of inference from empirical data.

Descriptive statistics resumes and visualizes data (Exploratory data analysis)

Inferential statistics makes inference or prediction about the populations from which samples are drawn.

Population: total of subjects that share something in common Sample: set of subjects drawn from populations

Data:

- quantitative (numerical) discrete or continuous (presence of an order)
- qualitative or categorical

1. Introduction

Outline

2. Inferential Statistics

Basics of Inferential Statistics Experimental Designs Intr

Parameter Estimation

Introduction Inferential Statistics Basics of Inferential Statistics Experimental Designs

ics of Inferential Statisti

A Motivating Example

Basics of Inferential Statisti Experimental Designs

Estimator $\hat{\theta}(X_1, \dots, X_n)$ makes a guess on the parameter (Es. \bar{X}) Estimate is the actual value $\hat{\theta}(x_1, \dots, x_n)$

Properties of an estimator:

- unbiased: $E[\hat{\theta}] = \theta$ (e.g., $E[\bar{X}] = \mu$)
- consistent
- efficient (uncertainty must decrease with size, e.g., ${\sf Var}[ar{X}]=\sigma^2/n)$
- sufficient

Note: The best result $b_N = \min_i c_i$ is not a good estimator. It is biased and not efficient.

A Motivating Example

Introduction Inferential Statistics

- p: probability that \mathcal{A}_1 wins on each instance (+)
- n: number of runs without ties
- Y: number of wins of algorithm \mathcal{A}_1

If each run is independent and consitent:

$$Y \sim B(n,p)$$
: $\Pr[Y=y] = \binom{n}{y} p^y (1-p)^{n-y}$

- \bullet There is a competition and two stochastic algorithms \mathcal{A}_1 and \mathcal{A}_2 are submitted.
- We run both algorithms once on n instances.
 On each instance either A₁ wins (+) or A₂ wins (-) or they make a tie (=).

${\sf Questions:}$

- If we have only 10 instances and algorithm A₁ wins 7 times how confident are we in claiming that algorithm A₁ is the best?
- ⁽²⁾ How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm A_1 is the best?

Introduction Inferential Statistics

1 If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?

Under these conditions, we can check how unlikely the situation is if it were $p(+) \leq p(-).$

If p = 0.5 then the chance that algorithm A_1 wins 7 or more times out of 10 is 17.2%: quite high!

Information Inferential Statistics	Basics of Inferential Statistics Experimental Designs	Outline	Introduction Inferential Statistics	Basics of Inferential Statistics Experimental Designs
2 How many instances and how many wins should we ob a confidence of 95% that the algorithm ${\cal A}_1$ is the best	oserve to gain ?			
To answer this question, we compute the 95% quantile, <i>i.e.</i> $y : \Pr[Y \ge y] < 0.05$ with $p = 0.5$ at different values of n :		1. Introduction		
$ \begin{array}{ c cccccccccccccccccccccccccccccccccc$	20 15	2. Inferential Statistics Basics of Inferential Statistics Experimental Designs		
This is an application example of sign test, a special case o in which $p=0.5$	f binomial test			TERN
Inferential Statistics	Basics of Inferential Statistics Experimental Designs	Inferential Statistics	Introduction Inferential Statistics	Basics of Inferential Statistics Experimental Designs
General procedure:		Two kinds of orrors may be committ	od when tecting hypeth	
 Assume that data are consistent with a null hypothesis 	5 <i>H</i> ₀ (e.g.,	$\alpha = B(type arreer) = B(type arreer)$	equivalent testing hypothesis $H \mid H$ is true	
sample data are drawn from distributions with the same	e mean value).	$\alpha = T$ (type l error) = T (to $\beta = P$ (type II error) = P(to	ail to reject $H_0 \mid H_0$ is true	alse)
 Use a statistical test to compute how likely this is to be the data collected. This "likely" is quantified as the p-y 	e true, given value.			
a Accept H as true if the pixeline is larger than an user	defined	General rule:		
threshold called level of significance α .	denned	 specify the type I error or level specify the test with a suitable lar 	of significance α	
• Alternatively (p-value $< \alpha$), H_0 is rejected in favor of	an alternative	$1 - \beta = P(\text{reject } H_0 \mid H_0 \text{ is false})$,
hypothesis, H_1 , at a level of significance of α .	TERN			TERN

Basics of Inferential Statistics Experimental Designs

Theorem: Central Limit Theorem

If X^n is a random sample from an **arbitrary** distribution with mean μ and variance σ then the average \bar{X}^n is asymptotically normally distributed, *i.e.*,

$$ar{X}^n pprox N(\mu, rac{\sigma^2}{n})$$
 or $z = rac{ar{X}^n - \mu}{\sigma/\sqrt{n}} pprox N(0, 1)$

- Consequences:
 - allows inference from a sample
 - $\bullet\,$ allows to model errors in measurements: $X=\mu+\epsilon$
- Issues:
 - *n* should be *enough* large
 - μ and σ must be known

Basics of Inferential Statistics Experimental Designs

And if the variance is unknown...

then we substitute σ with its estimator $\hat{\sigma}=S$

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})}{n-1}$$

Introduction

Inferential Statistics

but then

$$z = \frac{X - \mu}{S\sqrt{n}} \approx t_{n-1}$$

i.e., z approximates a t-student distribution.

Introduction Inferential Statistics

asics of Inferential Statistics

Basics of Inferential Statistics

xperimental Designs

A test of hypothesis determines how likely an sampled estimate $\hat{\theta}$ is to occur under some assumptions on the parameter θ of the population.

$$Pr\Big\{\mu{-}z_1\frac{\theta}{\sqrt{n}} \leq \bar{X} \leq \mu{+}z_2\frac{\theta}{\sqrt{n}}\Big\} = 1{-}\alpha$$

A confidence interval contains all those values that a parameter θ is likely to assume with probability $1 - \alpha$: $Pr(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 - \alpha$

$$\Pr\left\{\bar{X} - z_1 \frac{\theta}{\sqrt{n}} \le \mu \le \bar{X} + z_2 \frac{\theta}{\sqrt{n}}\right\} = 1 - 1 - \frac{1}{\sqrt{n}} \left\{\bar{X} - z_1 \frac{\theta}{\sqrt{n}}\right\} = 1 - \frac{1}{\sqrt{n}} \left\{\bar{X} - z_1 \frac{\theta}{\sqrt{n}}\right\}$$

The test can be done in R with ks.test.

Parametric vs Nonparametric

Inferential Statistics

Basics of Inferential Statistics

sics of Inferential Statistic

- Parametric assumptions seem to be saliently violated when dealing with optimization algorithms
- Nonparametric rank based tests are based on asymptotic (large sample) theory
- Parametric tests are typically more powerful than nonparametric
- With few data permutations tests are an alternative but less powerful than parametric.

Hence:

- When from diagnostic investigation, assumptions seem satisfied (e.g., with large samples), parametric methods are more powerful and should be preferred.
 - Otherwise, consider data transformations (log x, x^2, \sqrt{x})
- Alternatively, nonparametric methods based on ranks are helpful and also remove scale and location problems due to the instances.

Outline

- 1. Introduction
- 2. Inferential Statistics Experimental Designs

The Design of Experiments

Inferential Statistic

Variance reduction techniques

Preparation of the Experiment Statistics

• Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real vs Statistical significance Study factors until the improvement in the response variable is deemed small
- Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on N instances [Birattari, 2004]

• Statement of the objectives of the experiment

- Comparison of different algorithms
- Impact of algorithm components
- How instance features affect the algorithms
- Identification of the sources of variance
 - Treatment factors (qualitative and quantitative)
 - Controllable nuisance factors \leftarrow blocking
 - Uncontrollable nuisance factors \leftarrow measuring
- Definition of factor combinations to test. Easiest design: Unreplicated or Replicated Full Factorial Design
- Running a pilot experiment and refine the design
 - Bugs and no external biases
 - Ceiling or floor effects
 - Rescaling levels of quantitative factors
 - Detect the number of experiments needed to obtained the desired power.

Inferential Statistics

xperimental Designs

Experimental Design

Introduction Basics of Inferential Statistics Inferential Statistics Experimental Designs

Algorithms \Rightarrow Treatment Factor;

Instances \Rightarrow Blocking Factor

Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X_{11}	X12	X_{1k}
:	:	:	
Instance b	X_{b1}	X _{b2}	X_{bk}

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X_{111}, \ldots, X_{11r}	X_{121}, \ldots, X_{12r}	X_{1k1},\ldots,X_{1kr}
Instance 2	X_{211}, \ldots, X_{21r}	X_{221},\ldots,X_{22r}	X_{2k1},\ldots,X_{2kr}
:	:	:	
	•		· ·
Instance b	X_{b11},\ldots,X_{b1r}	X_{b21}, \ldots, X_{b2r}	X_{bk1},\ldots,X_{bkr}

Multiple Comparisons

Basics of Inferential Statistics Experimental Designs

 $H_0: \ \mu_1 = \mu_2 = \mu_3 = \dots$

 $H_1: \{ at \ least \ one \ differs \}$

Applying a statistical test to all pairs the error of Type I is not α but higher:

 $\alpha_{EX} = 1 - (1 - \alpha)^c$

Eg, for $\alpha=0.05$ and $c=3 \Rightarrow \alpha_{EX}=0.14!$

Adjustment methods

- Protected versions: global test + no adjustments
- Bonferroni $\alpha = \alpha_{EX}/c$ (conservative)
- Tukey Honest Significance Method (for parametric analysis)
- Holm (step-wise)
- Other step procedures

Post-hoc analysis: Once the effect of factors has been recognized a finer grained analysis is performed to distinguish where important differences are.