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Linear permutations problems

Construction graph:
Fully connected and the set of vertices consists of the n jobs and the n
positions to which the jobs are assigned.

Constraints: all jobs have to be scheduled.

Pheromone Trails: τij expresses the desirability of assigning job i in
position j (cumulative rule)

Heuristic information: ηij = 1
hi

where hi is a dispatching rule.
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Input:
a set of jobs J = {1, . . . , n} and a set of agents I = {1, . . . ,m}.
the cost cij and the resource requirement aij of a job j assigned to
agent i
the amount bi of resource available to agent i

Task: Find an assignment of jobs to agents σ : J → I such that:

min f(σ) =
∑
j∈J

cσ(j)j

s.t.
∑

j∈J,σ(j)=i

aij ≤ bi ∀i ∈ I
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Assignment problems

Construction Graph:
a complete graph with vertices I ∪ J and costs on edges. An ant walk
must then consist of n couplings (i, j).

(alternatively the graph is given by I × J and ants walk through the list
of jobs choosing agents. An order must be decided for the jobs.)

Constraints:
if only feasible: the capacity constraint can be enforced by
restricting the neighborhood, ie, Nk

i for a ant k at job i contains
only those agents where job i can be assigned.
if also infeasible: then no restriction
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Pheromone:
Two choices:

which job to consider next
which agent to assign to the job

Pheromone and heuristic on:

desirability of considering job i2 after job i1
desirability of assigning job i on agent j
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Subset problems

Construction graph:
Fully connected with set of vertices that corresponds to the set of
columns plus a dummy vertex from where all the ants depart.

Constraints: each vertex can be visited at most once and all rows must
be covered.

Pheromone Trails: associated with components (vertices); τj measures
the desirability of including column j in solution.

Heuristic information: on the components as function of the ant’s
partial solution.
ηj = ej

cj
where ej is the # of additional rows covered by j.
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Input:
complete graph G(V,A), where V = {0, . . . , n}
vertices i = 1, . . . , n are customers that must be visited
vertex i = 0 is the single depot
arc/edges have associated a cost cij (cik + ckj ≥ cij ,∀ i, j ∈ V )
costumers have associated a non-negative demand di
a set of K identical vehicles with capacity C (di ≤ C)

Task: Find collection of K circuits with minimum cost, defined as the
sum of the costs of the arcs of the circuits and such that:

each circuit visit the depot vertex
each customer vertex is visited by exactly one circuit; and
the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity C.
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Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Adaptive Iterated Construction Search:
initialize weights
while termination criterion is not satisfied: do

generate candidate solution s using
subsidiary randomized constructive search
perform subsidiary local search on s
adapt weights based on s

Squeaky Wheel:
Construct, Analyze, Prioritize

Iterated Greedy (IG):
destruct, reconstruct, acceptance criterion
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Focus on general purpose black-box optimization algorithms
(= they exploit little knowledge of the problem)

Examples: simulated annealing, evolutionary algorithms

Goal analyze the matching algorithms to class of problems

=⇒ What can be said a priori on the performance of one or more
algorithms when run once on all problems?

One would expect hill climbing outperforms hill descending and random
walk...
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Simplified Proof

Definitions:
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NFL1: Optimal Strategy Selection

General-purpose universal optimization strategy is theoretically
impossible.

The only way one strategy can outperform another is if it is
specialized to the specific problem under consideration.
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NFL2: Search Algorithms

Assume all algorithms use the same information rationally

No search algorithm, no matter how sophisticated,
absent any a priori assumptions about the cost function being
worked on,
have the same expected performance.

No search algorithm can a priori be expected to perform any better
than blind random picking, which is rather inefficient

Hill climbing strategy should perform the same as hill descending
strategy, (they still return the minimal solution seen during their
trajectories).
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NFL3: Encoding and Neighborhood Structures

For a given search algorithm, and absent any prior information about
which f ∈ F we are working on, no encoding can be expected to
result in better performance than any other.

NFL4: Stochastic Optimization

For problems of the form:

min
x∈X

EΩ[`(x, ω)]

without prior knowledge about the function ` or the probability
distribution Ω that reflects uncertainty, there is no universal strategy
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Conservation of robustness
(robust = perform reasonably well on a set of functions at the cost
of not extremely performing well on any set of functions.) if any
algorithms is robust then every algorithm is robust and if some
algorithm is not robust then no algorithm is robust.

Prior Knowledge

Performance/Sensitivity trade off
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Original Proof
Original proof of NFL theorem is cast in Cast in probability theory.
Motivations:

easy generalization to stochastic algorithms

simple and consistent framework that works for both deterministic
and stochastic settings

immediate advantage of the use of the probability distribution:

Pr(f) = Pr
(
f(x0), f(x1), . . . , f(x|X|−1)

)
Theorem (Wolpert and Macready, 1996)

For any pair of algorithms A1 and A2∑
f∈F

Pr(T ym | f,m,A1) =
∑
f∈F

Pr(T ym | f,m,A2)

Corollary For any performance measure M over T ym the average overall
f of Pr(M(T ym | f,m,A) is independent of A
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Criticism and Research

NFL applies to large sets of functions and it is unclear if the NFL
applies to small sets or to real world problems of practical interest.

Research focuses on finding classes of problems over which the NFL
does not hold. In particular, does the NFL hold over the instances of
a particular combinatorial optimization problem?

Sharpened version of NFL: the NFL holds over classes of functions much
smaller than the set of all functions.
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Sharpened NFL

Def.: π is a permutation of X (π ∈ Π(X)), π : X 7→ Y

Def.: πf := f(π−1(x))
Def.: The set of functions F is closed under permutation if

for all f ∈ F and π ∈ Π(X): πf ∈ F

Theorem (Schumacher et al. 2001)

The NFL theorem holds for a set of functions if and only if that set of
functions is closed under permutation.
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Criticism

The set of all possible discrete functions is incredibly large and most are
incompressible (need a full enumeration look-up table for their
representation)
Restriction to permutation closure still need exponential space
description.

In practice, the function class F has restricted complexity.

Complexity:

limited computation time for f(x)

limited description space (Kolmogorov complexity)

limited circuit size ...

Further developments: Almost No Free Lunch theorem
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Learnings

Should we conclude that all algorithms are equal?

No: we can restrict the study to functions that we believe are
representative of the problems we actually want to solve. But we

must be careful with generalizations because algorithms that perform
well on some benchmark problems may perform bad on others.

An algorithm performance is determined by how “aligned” it is with
the underlying probability distribution over the problems on which it
is run.

NFL is an argument in favor of algorithm specialization. Exploit
problem specific knowledge


