Outline

1. RCPS Model
 Preliminaries
 Heuristics for RCPSP

2. Reservations without slack

3. Reservations with slack

4. Timetabling with one Operator

RCPS Model

Resource Constrained Project Scheduling Model

Given:
- activities (jobs) $j = 1, \ldots, n$
- renewable resources $i = 1, \ldots, m$
- amount of resources available R_i
- processing times p_j
- amount of resource used r_{ij}
- precedence constraints $j \rightarrow k$

Further generalizations
- Time dependent resource profile $R_i(t)$ given by (t_1^i, R_{i}^0) where $0 = t_1^i < t_2^i < \ldots < t_{m_i}^i = T$
- Multiple modes for an activity j
 processing time and use of resource depends on its mode m: p_{jm}, r_{jkm}.
Modeling

Case 1
- A contractor has to complete \(n \) activities.
- The duration of activity \(j \) is \(p_j \).
- Each activity requires a crew of size \(W_j \).
- The activities are not subject to precedence constraints.
- The contractor has \(W \) workers at his disposal
- His objective is to complete all \(n \) activities in minimum time.

Case 2
- Exams in a college may have different duration.
- The exams have to be held in a gym with \(W \) seats.
- The enrollment in course \(j \) is \(W_j \) and
- all \(W_j \) students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all \(n \) exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

Case 3
- A set of jobs \(J_1, \ldots, J_g \) are to be processed by auditors \(A_1, \ldots, A_m \).
- Job \(J_l \) consists of \(n_l \) tasks \(\ell = 1, \ldots, g \).
- There are precedence constraints \(i_1 \rightarrow i_2 \) between tasks \(i_1, i_2 \) of the same job.
- Each job \(J_l \) has a release time \(r_l \), a due date \(d_l \) and a weight \(w_l \).
- Each task must be processed by exactly one auditor. If task \(i \) is processed by auditor \(A_k \), then its processing time is \(p_{ik} \).
- Auditor \(A_k \) is available during disjoint time intervals \([s^k_\nu, t^k_\nu] \) for \(\nu = 1, \ldots, m \).
- Furthermore, the total working time of \(A_k \) is bounded from below by \(H^k_k \) and from above by \(H^k_m \) \((k = 1, \ldots, m) \).
- We have to find an assignment \(\alpha(i) \) for each task \(i = 1, \ldots, n := \sum_{\ell=1}^g n_\ell \) to an auditor \(A_{\alpha(i)} \) such that
 - Each task is processed without preemption in a time window of the assigned auditor
 - The total workload of \(A_k \) is bounded by \(H^k_m \) and \(H^k_k \) for \(k = 1, \ldots, m \).
 - The precedence constraints are satisfied.
 - All tasks of \(J_l \) do not start before time \(r_l \), and
 - The total weighted tardiness \(\sum_{\ell=1}^g w_\ell T_\ell \) is minimized.

Preprocessing: Temporal Analysis

- Precedence network must be acyclic
- Heads \(r_j \) and Tails \(q_j \) \(\Leftarrow \) Longest paths \(\Leftarrow \) Topological ordering
 (deadlines \(d_j \) can be obtained as \(UB - q_j \))

 Preprocessing: constraint propagation
 - Conjunctions \(i \rightarrow j \)
 \[S_i + p_i \leq S_j \]
 [precedence constrains]
 - Parallellity constraints \(i \parallel j \)
 \[S_i + p_i \geq S_j \text{ and } S_j + p_j \geq S_i \]
 [time windows \([r_j, d_j], [r_i, d_i] \) and
 \(p_i + p_j > max\{d_i, d_j\} - min\{r_i, r_j\} \)]
 - Disjunctions \(i \overleftarrow{j} \)
 \[S_i + p_i \leq S_j \text{ or } S_j + p_j \leq S_i \]
 [resource constraints: \(r_{jk} + r_{lk} > R_k \)]

N. Strengthenings: symmetric triples, etc.
Solutions

Task: Find a schedule indicating the starting time of each activity

- All solution methods restrict the search to feasible schedules, \(S, S' \)
- Types of schedules
 - Local left shift (LLS): \(S \rightarrow S' \) with \(S'_j < S_j \) and \(S'_l = S_l \) for all \(l \neq j \).
 - Global left shift (GLS): LLS passing through infeasible schedule
 - Semi active schedule: no LLS possible
 - Active schedule: no GLS possible
 - Non-delay schedule: no GLS and LLS possible even with preemption

- If regular objectives \(\implies \) exists an optimum which is active

Schedule Generation Schemes

Given a sequence of activity, SGS determine the starting times of each activity

Serial schedule generation scheme (SSGS)
- \(n \) stages, \(S_\lambda \) scheduled jobs, \(E_\lambda \) eligible jobs

Step 1 Select next from \(E_\lambda \) and schedule at earliest.

Step 2 Update \(E_\lambda \) and \(R_k(\tau) \).
 - If \(E_\lambda \) is empty then STOP,
 - else go to Step 1.

Parallel schedule generation scheme (PSGS)
(Time sweep)
- stage \(\lambda \) at time \(t_\lambda \)
- \(S_\lambda \) (finished activities), \(A_\lambda \) (activities not yet finished), \(E_\lambda \) (eligible activities)

Step 1 In each stage select maximal resource-feasible subset of eligible activities in \(E_\lambda \) and schedule it at \(t_\lambda \).

Step 2 Update \(E_\lambda, A_\lambda \) and \(R_k(\tau) \).
 - If \(E_\lambda \) is empty then STOP,
 - else move to \(t_{\lambda+1} = \min \left\{ \min_{j \in A_\lambda} C_j, \min_{k=1,...,r} \min_{i \in m_k} t_i^k \right\} \)
 - and go to Step 1.

- If constant resource, it generates non-delay schedules
Possible uses:
- Forward
- Backward
- Bidirectional
- Forward-backward improvement (justification techniques) [V. Valls, F. Ballestin and S. Quintanill, EJOR, 2005]

Dispatching Rules

Determines the sequence of activities to pass to the schedule generation scheme
- activity based
- network based
- path based
- resource based

Static vs Dynamic

Local Search

All typical neighborhood operators can be used:
- Swap
- Interchange
- Insert
reduced to only those moves compatible with precedence constraints

Genetic Algorithms

Recombination operator:
- One point crossover
- Two point crossover
- Uniform crossover
Implementations compatible with precedence constraints
Outline

1. RCPS Model
 Preliminaries
 Heuristics for RCPSP
2. Reservations without slack
3. Reservations with slack
4. Timetabling with one Operator

Polynomially solvable cases

1. \(p_j = 1 \)
 Solve an assignment problem at each time slot

2. \(w_j = 1, M_j = M \), Obj. minimize resources used
 - Corresponds to coloring interval graphs with minimal number of colors
 - Optimal greedy algorithm (First Fit):
 order \(r_1 \leq r_2 \leq \ldots \leq r_n \)
 Step 1 assign resource 1 to activity 1
 Step 2 for \(j \) from 2 to \(n \) do
 Assume \(k \) resources have been used.
 Assign activity \(j \) to the resource with minimum feasible value from \(\{1, \ldots, k + 1\} \)

Reservations without slack

Interval Scheduling

Given:
- \(m \) parallel machines (resources)
- \(n \) activities
- \(r_j \) starting times (integers),
 \(d_j \) termination (integers),
 \(w_j \) or \(w_{ij} \) weight,
 \(M_j \) eligibility
- without slack \(p_j = d_j - r_j \)

Task: Maximize weight of assigned activities

Examples: Hotel room reservation, Car rental
3. \(w_j = 1, M_j = M \), Obj. maximize activities assigned

- Corresponds to coloring max # of vertices in interval graphs with \(k \) colors
- Optimal \(k \)-coloring of interval graphs:
 - order \(r_1 \leq r_2 \leq \ldots \leq r_n \)
 - \(J = \emptyset, j = 1 \)

 Step 1 if a resource is available at time \(r_j \) then assign activity \(j \)
 to that resource;
 include \(j \) in \(J \); go to Step 3

 Step 2 Else, select \(j^\ast \) such that \(C_{j^\ast} = \max_{j \in J} C_j \)

 if \(C_j = r_j + p_j > C_{j^\ast} \) go to Step 3

 else remove \(j^\ast \) from \(J \), assign \(j \) in \(J \)

 Step 3 if \(j = n \) STOP else \(j = j + 1 \) go to Step 1

Reservations with Slack

Given:
- \(m \) parallel machines (resources)
- \(n \) activities
- \(r_j \) starting times (integers),
- \(d_j \) termination (integers),
- \(w_j \) or \(w_{ij} \) weight,
- \(M_j \) eligibility
- with slack \(p_j \leq d_j - r_j \)

Task: Maximize weight of assigned activities
Heuristics

Most constrained variable, least constraining value heuristic

$|M_j|$ indicates how much constrained an activity is

ν_i: # activities that can be assigned to i in $[t-1,t]$

Select activity j with smallest $I_j = f\left(\frac{w_j}{p_j}, |M_j|\right)$

Select resource i with smallest $g(\nu_{i,t+1}, \ldots, \nu_{i,t+p_j})$ (or discard j if no place free for j)

Examples for f and g:

$$f\left(\frac{w_j}{p_j}, |M_j|\right) = \frac{|M_j|}{w_j/p_j}$$

$$g(\nu_{i,t+1}, \ldots, \nu_{i,t+p_j}) = \max(\nu_{i,t+1}, \ldots, \nu_{i,t+p_j})$$

$$g(\nu_{i,t+1}, \ldots, \nu_{i,t+p_j}) = \sum_{l=1}^{p_j} \frac{\nu_{i,t+l}}{p_j}$$

Timetabling with one Operator

There is only one type of operator that processes all the activities

Example:

- A contractor has to complete n activities.
- The duration of activity j is p_j
- Each activity requires a crew of size W_j.
- The activities are not subject to precedence constraints.
- The contractor has W workers at his disposal
- His objective is to complete all n activities in minimum time.

- RCPS Model
- If p_j all the same → Bin Packing Problem (still NP-hard)

Outline

1. RCPS Model
 - Preliminaries
 - Heuristics for RCPSP
2. Reservations without slack
3. Reservations with slack
4. Timetabling with one Operator

Example: Exam scheduling

- Exams in a college with same duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_j and
- all W_j students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Each student has to attend a single exam.

- Bin Packing model
- In the more general (and realistic) case it is a RCPSP
Heuristics for Bin Packing

- **Construction Heuristics**
 - Best Fit Decreasing (BFD)
 - First Fit Decreasing (FFD) \[C_{\text{max}}(\text{FFD}) \leq \frac{11}{9} C_{\text{max}}(\text{OPT}) + \frac{6}{9} \]

- **Local Search:** [Alvim and Aloise and Glover and Ribeiro, 1999]
 - **Step 1:** remove one bin and redistribute items by BFD
 - **Step 2:** if infeasible, re-make feasible by redistributing items for pairs of bins, such that their total weights becomes equal (number partitioning problem)

The solution before local search (the bin capacity is 10):

- **The bins:** | 3 3 3 | 6 2 1 | 5 2 | 4 3 | 7 2 | 5 4 |

Open the two smallest bins:

- **Remaining:** | 3 3 3 | 6 2 1 | 7 2 | 5 4 |
- **Free items:** 5, 4, 3, 2

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:

- **First bin:** 3 3 3 → 3 5 2 new free: 4, 3, 3, 3
- **Second bin:** 6 2 1 → 6 4 new free: 3, 3, 3, 2, 1
- **Third bin:** 7 2 → 7 3 new free: 3, 3, 2, 2, 1
- **Fourth bin:** 5 4 stays the same

Reinsert the free items using FFD:

- **Fourth bin:** 5 4 → 5 4 1
- **Make new bin:** 3 3 2 2
- **Final solution:** | 3 5 2 | 6 4 | 7 3 | 5 4 1 | 3 3 2 2 |

Repeat the procedure: no further improvement possible