Lecture 9
Baysian Networks

Marco Chiarandini

Deptartment of Mathematics \& Computer Science
University of Southern DenmarkIntroduction
\checkmark Artificial Intelligence
\checkmark Intelligent Agents
\checkmark Search
\checkmark Uninformed Search
\checkmark Heuristic Search
\checkmark Adversarial Search
\checkmark Minimax search
\checkmark Alpha-beta pruning
\checkmark Knowledge representation and Reasoning
\checkmark Propositional logic
\checkmark First order logic
\checkmark Inference

- Uncertain knowledge and Reasoning
- Probability and Bayesian approach
- Bayesian Networks
- Hidden Markov Chains
- Kalman Filters
- Learning
- Decision Trees
- Maximum Likelihood
- EM Algorithm
- Learning Bayesian Networks
- Neural Networks
- Support vector machines

Outline

Summary

Probability Basis
Bayesian network
Inference in BN

- Interpretations of probability
- Axioms of Probability
- (Continuous/Discrete) Random Variables
- Prior probability, joint probability, conditional or posterior probability, chain rule
- Inference by enumeration

How to reduce the computation of inference?

Independence

DEFINITION

INDEPENDENT EVENTS

Two events A and B are independent of each other if and only if $p(A \cap B)=p(A) p(B)$.
When $p(B) \neq 0$ this is the same as saying that $p(A)=p(A \mid B)$. That is, knowing that B is true does not affect the probability of A being true.

CONDITIONALLY INDEPENDENT EVENTS

Two events A and B are said to be conditionally independent of each other, given event C if and only if $p((A \cap B) \mid C)=p(A \mid C) p(B \mid C)$.

Conditional independence

$\mathbf{P}\left(\right.$ Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$
A and B are independent iff
$\mathbf{P}(A \mid B)=\mathbf{P}(A)$ or $\mathbf{P}(B \mid A)=\mathbf{P}(B)$ or $\mathbf{P}(A, B)=\mathbf{P}(A) \mathbf{P}(B)$

\mathbf{P} (Toothache, Catch, Cavity, Weather)

$$
=\mathbf{P}(\text { Toothache Catch }, \text { Cavity }) \mathbf{P}(\text { Weather })
$$

32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)

$$
=\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch, Cavity })
$$

$$
=\mathbf{P}(\text { Toothache } \mid \text { Catch, Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
$$

$$
=\mathbf{P}(\text { Toothache } \mid \text { Cavity }) \mathbf{P}(\text { Catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
$$

l.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$

$$
\Longrightarrow \text { Bayes' rule } P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

```
P(Cavity|toothache }\wedge\mathrm{ catch)
    = \alpha P
    = \alpha P(toothache | Cavity) P(catch Cavity) P(Cavity)
```

This is an example of a naive Bayes model:

$$
\mathbf{P}\left(\text { Cause } \text { Effect }_{1}, \ldots, \text { Effect }_{n}\right)=\mathbf{P}(\text { Cause }) \prod \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

Probability Basis
Bayesian networks
Inference in

1. Probability Basis
2. Bayesian networks

Outline

Probability Basis
Bayesian networks Bayesian networks
Inference in BN
\diamond Syntax
\diamond Semantics
\diamond Parameterized distributions

Example

Probability Basis Bayesian networks Bayesian networks Inference in BN

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

Definition
A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents:

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values

Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$) If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers

l.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics

Probability Basis
Bayesian networks
Inference in BN

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Example

Suppose we choose the ordering M, J, A, B, E

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- Choose an ordering of variables X_{1}, \ldots, X_{n}
- For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that
$\mathrm{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\mathrm{P}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example: Car insurance

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child
Solution:
canonical distributions that are defined compactly
Deterministic nodes are the simplest case:

$$
X=f(\operatorname{Parents}(X)) \text { for some function } f
$$

E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian \vee US \vee Mexican
E.g., numerical relationships among continuous variables

$$
\frac{\partial \text { Level }}{\partial t}=\text { inflow }+ \text { precipitation }- \text { outflow - evaporation }
$$

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Longrightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy }=\text { true }) \\
& \quad=N\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& \quad=\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

Mean Cost varies linearly with Harvest, variance is fixed
\rightsquigarrow Linear variation is unreasonable over the full range but works OK if the likely range of Harvest is narrow

Option 1: discretization-possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

Hybrid (discrete+continuous) networks $\begin{gathered}\text { Bayesian networks } \\ \text { Inference in } B N\end{gathered}$

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

28

Continuous child variables

Probability Basis
Bayesian networks Bayesian networks
Inference in BN

All-continuous network with linear Gaussian distributions \Longrightarrow full joint distribution is a multivariate Gaussian

Discrete+continuous linear Gaussian network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Why the probit?

Probability Basis
Bayesian networks Bayesian networks
Inference in BN

It's sort of the right shape
2. Can be viewed as hard threshold whose location is subject to noise

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}^{x} N(0,1)(x) d x \\
& P(\text { Buys? }=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma)
\end{aligned}
$$

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

- Bayes nets provide a natural representation for (causally induced) conditional independence
- Topology + CPTs $=$ compact representation of joint distribution
- Generally easy for (non)experts to construct
- Canonical distributions (e.g., noisy-OR) $=$ compact representation of CPTs
- Continuous variables \Longrightarrow parameterized distributions (e.g., linear Gaussian)
- Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$ e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$
- Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
- Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)
- Value of information: which evidence to seek next?
- Sensitivity analysis: which probability values are most critical?
- Explanation: why do I need a new starter motor?

Inference by enumeration

Sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$
\begin{aligned}
\mathbf{P}(B \mid j, m) & =\mathbf{P}(B, j, m) / P(j, m) \\
& =\alpha \mathbf{P}(B, j, m) \\
& =\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)
\end{aligned}
$$

Rewrite full joint entries using product of CPT entries:

$$
\begin{aligned}
\mathbf{P}(B \mid j, m) & =\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

```
function Enumeration-Ask( }X,\textrm{e},bn)\mathrm{ returns a distribution over }
```

 inputs: \(X\), the query variable
 e, observed values for variables E
 \(b n\), a Bayesian network with variables \(\{X\} \cup E \cup Y\)
 \(\mathrm{Q}(X) \leftarrow\) a distribution over \(X\), initially empty
 for each value x_{i} of X do
extend e with value x_{i} for X
$\mathrm{Q}\left(x_{i}\right) \leftarrow$ Enumerate-All $(\operatorname{Vars}[b n], \mathrm{e})$
return Normalize $(\mathrm{Q}(X))$
function Enumerate-All(vars, e) returns a real number
if Empty? (vars) then return 1.0
$Y \leftarrow$ First (vars)
if Y has value y in e
then return $P(y \mid \operatorname{parent}(Y)) \times$ Enumerate-All(Rest(vars), e) else return $\sum_{y} P(y \mid \operatorname{parent}(Y)) \times$ Enumerate-All(Rest(vars), $\left.\mathbf{e}_{y}\right)$ where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost (with variable elimination) are $O\left(d^{k} n\right)$
- hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:

- can reduce 3SAT to exact inference \Longrightarrow NP-hard
- equivalent to counting 3SAT models \Longrightarrow \#P-complete

1. $A v B \vee C$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$

Enumeration is inefficient: repeated computation
e.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Inference by stochastic simulation

Basic idea:

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability \hat{P}
- Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a
stochastic process
whose stationary distribution is the true posterior

0.5

function Prior-Sample(bn) returns an event sampled from $b n$ inputs: bn, a belief network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$
$\mathbf{x} \leftarrow$ an event with n elements
for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathrm{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in \mathbf{x}
return x
robability Basis
Sampling from an empty network contd ditene in
Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Proof: Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n}. Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

\rightsquigarrow That is, estimates derived from PriorSample are consistent
Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

S	R	$\mathrm{P}(\mathrm{W} \mid \mathrm{S}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

