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Probability Basis
Bayesian networks
Inference in BNSummary

Interpretations of probability

Axioms of Probability

(Continuous/Discrete) Random Variables

Prior probability, joint probability, conditional or posterior probability,
chain rule

Inference by enumeration

How to reduce the computation of inference?
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Probability Basis
Bayesian networks
Inference in BNIndependence

A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache,Catch,Cavity ,Weather)
= P(Toothache,Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Inference in BNConditional independence

P(Toothache,Cavity ,Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P(catch|toothache,¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity :
P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch,Cavity) = P(Toothache|Cavity)
P(Toothache,Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Inference in BNConditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Product rule P(a ∧ b) = P(a|b)P(b) = P(b|a)P(a)

=⇒ Bayes’ rule P(a|b) =
P(b|a)P(a)

P(b)

or in distribution form

P(Y |X ) =
P(X |Y )P(Y )

P(X )
= αP(X |Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) =
P(s|m)P(m)

P(s)
=

0.8× 0.0001
0.1

= 0.0008

Note: posterior probability of meningitis still very small!
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Inference in BNBayes’ Rule and conditional independence

P(Cavity |toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
∏
i

P(Effecti |Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Probability is a rigorous formalism for uncertain knowledge
Joint probability distribution specifies probability of every atomic event
Queries can be answered by summing over atomic events
For nontrivial domains, we must find a way to reduce the joint size
Independence and conditional independence provide the tools
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♦ Syntax
♦ Semantics
♦ Parameterized distributions
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Inference in BNBayesian networks

Definition
A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi |Parents(Xi ))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity
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Inference in BNExample

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Inference in BNExample contd.
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Inference in BNCompactness

A CPT for Boolean Xi with k Boolean parents has 2k

rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)
If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint
distribution

For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers
(vs. 25 − 1 = 31)

B E

J

A

M
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Inference in BNGlobal semantics

“Global” semantics defines the full joint distribution
as the product of the local conditional distributions:

P(x1, . . . , xn) =
n∏

i = 1

P(xi |parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998
≈ 0.00063

B E

J

A

M
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Local semantics: each node is conditionally independent
of its nondescendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

Theorem: Local semantics ⇔ global semantics
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Inference in BNMarkov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Inference in BNConstructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

Choose an ordering of variables X1, . . . ,Xn

For i = 1 to n
add Xi to the network
select parents from X1, . . . ,Xi−1 such that
P(Xi |Parents(Xi )) = P(Xi |X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) =
n∏

i = 1

P(Xi |X1, . . . , Xi−1) (chain rule)

=
n∏

i = 1

P(Xi |Parents(Xi )) (by construction)
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Suppose we choose the ordering M, J, A, B, E

MaryCalls

Alarm

Burglary

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P(J|M) = P(J)? No
P(A|J,M) = P(A|J)?
P(A|J,M) = P(A)? No
P(B|A, J,M) = P(B|A)? Yes
P(B|A, J,M) = P(B)? No
P(E |B,A, J,M) = P(E |A)? No
P(E |B,A, J,M) = P(E |A,B)? Yes
Deciding conditional independence is
hard in noncausal directions
(Causal models and conditional
independence seem hardwired for
humans!)
Assessing conditional probabilities is
hard in noncausal directions
Network is less compact:
1+ 2+ 4+ 2+ 4= 13 numbers needed
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SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Inference in BNCompact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution:
canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f (Parents(X )) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level
∂t

= inflow + precipitation - outflow - evaporation
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Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . .Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

=⇒ P(X |U1 . . .Uj ,¬Uj+1 . . .¬Uk) = 1−
j∏

i = 1

qi

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

Number of parameters linear in number of parents
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Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families
1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost = c |Harvest = h, Subsidy = true)

= N(ath + bt , σt)(c)

=
1

σt
√
2π

exp

(
−1
2

(
c − (ath + bt)

σt

)2
)

Mean Cost varies linearly with Harvest, variance is fixed

 Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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P(c | h, subsidy)

All-continuous network with linear Gaussian distributions
=⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous linear Gaussian network is a conditional Gaussian
network i.e., a multivariate Gaussian over all continuous variables for each
combination of discrete variable values
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Probability of Buys? given Cost should be a “soft” threshold:
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Probit distribution uses integral of Gaussian:
Φ(x) =

∫ x
−∞ N(0, 1)(x)dx

P(Buys? = true | Cost = c) = Φ((−c + µ)/σ)
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1. It’s sort of the right shape
2. Can be viewed as hard threshold whose location is subject to noise

Buys?

Cost Cost Noise

32

Probability Basis
Bayesian networks
Inference in BNDiscrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P(Buys? = true | Cost = c) =
1

1 + exp(−2−c+µ
σ )

Sigmoid has similar shape to probit but much longer tails:
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Inference in BNSummary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of
CPTs

Continuous variables =⇒ parameterized distributions (e.g., linear
Gaussian)
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1. Probability Basis

2. Bayesian networks

3. Inference in BN
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Inference in BNInference tasks

Simple queries: compute posterior marginal P(Xi |E = e)
e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Conjunctive queries: P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Sum out variables from the joint without actually constructing its explicit
representation

Simple query on the burglary network:

P(B|j ,m) = P(B, j ,m)/P(j ,m)
= αP(B, j ,m)
= α

∑
e
∑

a P(B, e, a, j ,m)

B E

J

A

M
Rewrite full joint entries using product of CPT entries:

P(B|j ,m) = α
∑

e
∑

a P(B)P(e)P(a|B, e)P(j |a)P(m|a)
= αP(B)

∑
e P(e)

∑
a P(a|B, e)P(j |a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference in BNEnumeration algorithm

function Enumeration-Ask(X, e,bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi )←Enumerate-All(Vars[bn], e)

return Normalize(Q(X ))

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P(y | parent(Y )) × Enumerate-All(Rest(vars), e)
else return

P
y P(y | parent(Y )) × Enumerate-All(Rest(vars), ey )

where ey is e extended with Y = y
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P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation
e.g., computes P(j |a)P(m|a) for each value of e
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Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost (with variable elimination) are O(dkn)
– hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete
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0.5 0.50.50.5
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Inference in BNInference by stochastic simulation

Basic idea:

Draw N samples from a sampling distribution S
Compute an approximate posterior probability P̂
Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with

evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a

stochastic process
whose stationary distribution is the true posterior

Coin

0.5
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function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution

P(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi ))
given the values of Parents(Xi ) in x

return x
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Inference in BNSampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 . . . xn) = P(x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f , t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P(t, f , t, t)

Proof: Let NPS(x1 . . . xn) be the number of samples generated for event
x1, . . . , xn. Then we have

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

=
n∏

i = 1

P(xi |parents(Xi )) = P(x1 . . . xn)

 That is, estimates derived from PriorSample are consistent
Shorthand: P̂(x1, . . . , xn) ≈ P(x1 . . . xn)
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