Chapter 3

The Racing Method

The racing method is an automatic sequential testing procedure for the comparison, config-
uration or tuning of algorithms. This chapter describes the use of the method in R. For the
theory behind the method, the reader is referred to [1, 2, 4].

3.1 Set up

We assume that the R package race! developed by M.Birattari [1, 2, 3] is installed (see R
documentation on how to install packages.

> install.packages("race")

The package race consists of a library and a wrapper file. The library defines the engine
of the race, that is, the function race. The wrapper file defines all details concerning the
specific experiment that must be undertaken. Only this latter file must be edited to specify
the details of the experiment.

It is worth emphasizing that the function race only implements the race in an unreplicated
design!

It is possible to execute the race in a distributed computing environment. In this case the
machine where the experiments are launched is identified as the master and the other machines
as the slaves. Running the race in a distributed environment requires to have installed pvm
and Rpvm in the master and the slave machines.

The first step in setting up the race is retrieving the wrapper file from the library of the
R installation:

> file.path(system.file(package = "race"), "examples", "example-wrapper.R")

[1] "/home/marco/1ib/R/library/race/examples/example-wrapper.R"

The library example implements the tuning of a neural network algorithm using a cross
validation methodology that divides data in training data and testing data. It might be
confusing for the typical cases of optimization. Hence, alternatively, one can use the examples
available at www.imada.sdu.dk/ marco/Teaching/Files/.

"http://cran.r-project.org/web/packages/race/

29

The wrapper file contains the following functions that have to be adapted to the specific
case:

— race.init the initialization function

— race.wrapper the interface between race and the external optimization program. It is
the function called by the library to launch one single run of an algorithm on a single
instance.

— race.info for reporting purposes
— race.describe for reporting purposes.

The two main functions to look at are race.init and race.wrapper. race.init is needed
to define all data of the race. In particular the instances and the configurations to test. Both
can be either read from an external file or encoded in R:

> instances <- scan(file = "u-1000-10-1000.txt", what = as.character(0),

+ skip = 0, quiet = TRUE)

> n <- length(instances)

> candidates <- as.data.frame(rbind(c(label = "300787", path = "300787/src",
+ command = "Driver -tt 30 -ch 2 -1s 3"), c(label = "100884",

+ path = "100884/", command = "dm81le/Forced")))

Alternatively, candidates can be generated by a full factorial design by crossing several
factors. For example:

> candidates <- expand.grid(solver = c("CH", "LS"), alpha = c(0.5,
+ 1.5), idle = c(100, 300))
> candidates[1:5,]

solver alpha idle

1 CH 0.5 100
2 LS 0.5 100
3 CH 1.5 100
4 LS 1.5 100
5 CH 0.5 300

The output of the race.init function is a list of data. in particular: no.tasks is the
maximum number of stages in the race. Clearly, in an unreplicated design, this number
corresponds to the number of instances. The number of subtasks should be always left to
its default value which is 1. Finally, smpl is a vector of randomly shuffled integers 1:n that
serves as a mask for deciding the order of examination of the instances.

> return(list(name = class, no.candidates = nrow(candidates), no.tasks = n,
+ no.subtasks = 1, wd = wd, smpl = smpl, instances = instances,
+ candidates = candidates))

The race.wrapper function strongly depends on the way the external program has been
implemented. The function must return one single value which is the result of the run of the
algorithm candidate on the instance smpl [task]. The simplest way is to let the optimization
program return one single value and redirect all the rest. For example, with a C program:

30

n n

> command <- paste(data$candidates[candidate,]$command, -i ",
+ instance, " -t ", time, " -s ", data$smpl[task], " -o ",
+ paste(candidate, task, 1, sep = "-"), " 2>/dev/null", sep = "")

> s <- system(command, intern = TRUE, ignore.stderr = TRUE)

It might be wise in a debugging phase to print out the full launch command, for example,
with cat(command). Further, it is advisable, when running long experiments, to write the
outcome of the run in a log file as soon as this result is retrieved.

When the wrapper file is ready it is advisable to run some tests. For example:

> D <- race.init()
>D
> race.wrapper(1, 1, D)

If the tests run fine then everything is ready to be launched. The following is an example
of launch command:

> 0 <- race("wrapper-race.R", maxExp = 5000, stat.test = c("friedman"),
+ conf.level = 0.95, first.test = 5, interactive = TRUE, log.file = "race.log",
+ no.slaves = 0)

See the race documentation (?race) for an explanation of the parameters.

When the race is finished it is possible to plot a profile of what happened by means of the
function plot.race available from www.imada.sdu.dk/ marco/Teaching/Files/plot.race.R.

> source("plot.race.R")
> plot.race(0, "wrapper-file.R")

It might be necessary to edit the function for layout adjustments.

3.2 An Example

> 0 <- race(wrapper.file="example-wrapper.R",

+ maxExp=3240, ## multiple of number of candidates
+ stat.test=c("friedman"),

+ conf.level=0.95,

+ first.test=5,

+ interactive=TRUE,

+ #log.file=paste(file,".log",sep=""),

+ no.slaves=0)

Racing methods for the selection of the best

Copyright (C) 2003 Mauro Birattari
This software comes with ABSOLUTELY NO WARRANTY

Race mame............. NM for Least Median of Squares
Number of candidates.............. i, 162
Number of available tasks..........ouiuiuiiiiiiininni., 45
Max number of experiments.................. i, 3240
Statistical test......... i, Friedman test

Tasks seen before discarding.............. 5
Initialization function........, ok
Parallel Virtual Machine...........c.iiiiiiiiiiininineennnnnn no

Markers:
x No test is performed.
- The test is performed and
some candidates are discarded.
= The test is performed but
no candidate is discarded.

et ————— Fm———————— o ——————— Fm————————— Fm————————— +
[Task| Alivel Best| Mean best| Exp so far|
et e e o e o +
Ix| 1] 162 81| 2.869e-05]| 162
Ix| 2| 162] 140| 2.761e-05]| 324
Ix| 3| 162 86| 2.607e-05]| 486 |
Ix| 4| 162 140| 2.887e-05] 648|
-1 5] 52| 140| 3.109e-05] 810
[=1 6l 52| 34| 3.892e-05]| 862|
[=1 42| 13| 32| 4.76e-05]| 1703
[=1 43| 13| 32| 4.684e-05]| 1716
[=1 44| 13| 32| 4.616e-05]| 1729]
[=| 45| 13| 32| 4.55e-05]| 1742
e e b o e e e et o +
Selected candidate: 32 mean value: 4.55e-05

Description of the selected candidate:
initial.method max.reinforce alpha beta gamma label
32 quasi-random 1 1.5 0.5 1.5 quasi-random-1-1.5-0.5-1.5

The race finished after all instances available (45) have been used without a single winner.
At the end 13 configurations were still alive, that is, not yet found significantly different. The
race returns however a winner decided on the basis of the median rank of its results.

Figure 3.1 visualizes the process. The grey area represents the aggregate computation time
effectively used by the race. This corresponds to 1742 runs of the algorithms with the best
of them tested on 45 instances. Given the 162 initial algorithm configurations, experimenting
all of them on the 45 instance would have required 3240 runs corresponding to the whole area
covered by the graph. Alternatively, with the same computation time it would have been
possible to experiment only on 20 instances.

32

NM for Least Median of Squares (45 Instances)

quasi-random-5-0.5-0.5-1.5
random-5-1-1-1:5]
random-3-1-1-1:51
quasi-random-5-1-0-1:5]
random-3-1-0.5-1:5]
quasi-random-3-1.5-0-2:5]
random-5-0.5-0.5-1:5
quasi-random-3-0.5-0.5-2]
random-1-1.5-0-2 1
quasi-random-1-0.5-0.5-1:5 7
random-5-1.5-0.5-1:5
random-1-0.5-0—1:5 1
random—1-1.5-1-2]
quasi-random-1-1-1-15]
quasi-random-3-1.5-1-1:5]
random-3-0.5-0-25
quasi-random-5-1.5-1-15
quasi-random-3-1-1-1:5]
quasi-random-5-1.5-0.5-2]
random—1-1-0.5-2:5
quasi-random-1-1.5-0.5-1:5 7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Stage

Figure 3.1: Graphical view of the race described in the text.

33

