[GM12] S. Gualandi, F. Malucelli (2012). Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation. INFORMS Journal on Computing, vol. 24, no. 1, pp. 81-100. [ bib | DOI ]
[HCS12] S. Held, W. Cook, E. Sewell (2012). Maximum-weight stable sets and safe lower bounds for graph coloring. Mathematical Programming Computation, vol. 4, no. 4, pp. 363-381. [ bib | DOI | http ]
[HCS11] S. Held, W. Cook, E. Sewell (2011). Safe lower bounds for graph coloring. Integer Programming and Combinatoral Optimization, pp. 261-273. [ bib ]
[MMT11] E. Malaguti, M. Monaci, P. Toth (2011). An Exact Approach for the Vertex Coloring Problem. Discrete Optimization, vol. 8, no. 2, pp. 174-190. [ bib ]
[HLS09] P. Hansen, M. Labbé, D. Schindl (2009). Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results. Discrete Optimization, vol. 6, no. 2, pp. 135 - 147. Also as Tec. Rep. G-2005-76 Cahier du GERAD, Montreal. [ bib | DOI | .html ]
[DGH08] C. Desrosiers, P. Galinier, A. Hertz (2008). Efficient algorithms for finding critical subgraphs. Discrete Applied Mathematics, vol. 156, no. 2, pp. 244-266. [ bib | DOI ]
[Gua08] S. Gualandi (2008). Enhancing Constraint Programming-based Column Generation for Integer Programs. Ph.D. thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano. [ bib ]
[MDZ08] I. Méndez-Díaz, P. Zabala (2008). A cutting plane algorithm for graph coloring. Discrete Applied Mathematics, vol. 156, no. 2, pp. 159-179. [ bib | DOI ]
[BMPR07] E. K. Burke, J. Mareček, A. J. Parkes, H. Rudová (2007). On a Clique-Based Integer Programming Formulation of Vertex Colouring with Applications in Course Timetabling. Tech. Rep. NOTTCS-TR-2007-10, The University of Nottingham, Nottingham. [ bib | http ]
[LMM06] C. Lucet, F. Mendes, A. Moukrim (2006). An exact method for graph coloring. Computers & Operations Research, vol. 33, no. 8, pp. 2189-2207. [ bib | DOI ]
[MDZ06] I. Méndez-Díaz, P. Zabala (2006). A Branch-and-Cut algorithm for graph coloring. Discrete Applied Mathematics, vol. 154, no. 5, pp. 826-847. [ bib | DOI ]
[CD04] M. Caramia, P. Dell'Olmo (2004). Bounding vertex coloring by truncated multistage branch and bound. Networks, vol. 44, no. 4, pp. 231-242. [ bib | DOI ]
[Vas04] M. Vasquez (2004). New Results on the Queens_n2 Graph Coloring Problem. Journal of Heuristics, vol. 10, no. 4, pp. 407-413. [ bib | DOI ]
[Sch03] D. Schindl (2003). Graph coloring and linear programming. Presentation at First Joint Operations Research Days, Ecole Polytechnique Fédérale de Lausanne (EPFL), available on line (last visited June 2005). [ bib | .html ]
[Epp03] D. Eppstein (2003). Small Maximal Independent Sets and Faster Exact Graph Coloring. Journal of Graph Algorithms and Applications, vol. 7, no. 2, pp. 131-140. [ bib ]
[BB02] N. Barnier, P. Brisset (2002). Graph Coloring for Air Traffic Flow Management. In CPAIOR'02: Fourth International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems, pp. 133-147. Le Croisic, France. [ bib ]
[Gel02] A. V. Gelder (2002). Another Look at Graph Coloring via Propositional Satisfiability. In D. S. Johnson, A. Mehrotra, M. Trick (eds.), Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 48-54. Ithaca, New York, USA. [ bib ]
[GS02] C. Gomes, D. Shmoys (2002). Completing Quasigroups or Latin Squares: A Structured Graph Coloring Problem. In D. S. Johnson, A. Mehrotra, M. Trick (eds.), Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 22-39. Ithaca, New York, USA. [ bib ]
[HH02] F. Herrmann, A. Hertz (2002). Finding the chromatic number by means of critical graphs. Journal of Experimental Algorithmics, vol. 7, p. 10. [ bib | DOI ]
[CMMDZ02] P. Coll, J. Marenco, I. Mendez-Diaz, P. Zabala (2002). Facets of the Graph Coloring Polytope. Annals of Operations Research, vol. 116, no. 12, pp. 79-90. [ bib ]
[CD01] M. Caramia, P. Dell'Olmo (2001). Solving the minimum-weighted coloring problem. Networks, vol. 38, no. 2, pp. 88-101. [ bib ]
[MDZ01] I. Méndez-Díaz, P. Zabala (2001). A polyhedral approach for graph coloring. In Electronics Notes in Discrete Mathematics, vol. 7. springer. [ bib ]
[Sew96] E. Sewell (1996). An Improved Algorithm for Exact Graph Coloring. vol. 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 359-373. American Mathematical Society, Providence, RI, USA. [ bib ]
[MT96] A. Mehrotra, M. Trick (1996). A Column Generation Approach for Graph Coloring. INFORMS Journal On Computing, vol. 8, no. 4, pp. 344-354. [ bib ]
[KJ85] M. Kubale, B. Jackowski (1985). A generalized implicit enumeration algorithm for graph coloring. Communications of the ACM, vol. 28, no. 4, pp. 412-418. [ bib | DOI ]
[Pee83] J. Peemöller (1983). A correction to Brelaz's modification of Brown's coloring algorithm. Communications of the ACM archive, vol. 26, no. 8, pp. 595-597. [ bib ]
[Bré79] D. Brélaz (1979). New Methods to Color the Vertices of a Graph. Communications of the ACM, vol. 22, no. 4, pp. 251-256. [ bib ]
[CG73] D. G. Corneil, B. Graham (1973). An Algorithm for Determining the Chromatic Number of a Graph. SIAM Journal on Computing, vol. 2, no. 4, pp. 311-318. [ bib ]
[Bro72] J. R. Brown (1972). Chromatic Scheduling and the Chromatic Number Problem. Management Science, vol. 19, no. 4, pp. 456-463. [ bib | http ]
[Mar] J. Marecek. [ bib | http ]