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Abstract
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spaces with Grothendieck’s approximation property behave locally like the space of matrices
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obtain a basis for non-commutative L, spaces associated with hyperfinite von Neumann
algebras with separable predual von Neumann algebras generated by free groups, and obtain a
basis for separable nuclear C*-algebras.
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0. Introduction

Non-commutative integration theory goes back to the work of Murray and von
Neumann and has been investigated in the context of von Neumann algebras by
Dixmier [D1], Segal [Se], Kunze [Ku], Nelson [Ne], Connes [C3], Haagerup [Ha2],
Kosaki [Ko] and many other researchers. Following the philosophy of quantization,
non-commutative L, spaces could be considered as non-commutative function
spaces. In particular, the classical Banach spaces of trace class operators, Hilbert—
Schmidt operators and more generally Schatten p-classes share many properties with
their commutative counterparts, the classical 7, spaces (see [A1,A2,Fa,GK,TJ]).
Since these spaces are not compatible with the usual lattice structure of classical
function spaces (except for p =2 see [GL,P1]), their local structure has not been
investigated as thoroughly as for classical function spaces. The main intention of this
paper is to show that non-commutative L, spaces with the bounded approximation
property (BAP) have very nice local properties, for instance, they can be paved out
by copies of finite-dimensional non-commutative L, spaces. This can be achieved
under mild assumptions on the underlying von Neumann algebra by combining
concepts from the local theory of Banach spaces with more recent tools from the
theory of operator spaces. In contrast to the classical theory, these more abstract
techniques provide appropriate tools to prove the existence of bases for some
important spaces like nuclear (in particular type I) C*-algebras, preduals of
hyperfinite von Neumann algebras, and non-commutative L, spaces associated with
hyperfinite von Neumann algebras or the von Neumann algebra generated by the left
regular representation of a countable free group.

Let us first recall the classical notion of %, spaces. Following Lindenstrauss and
Petczynski [LP] a Banach space X is called an £, ; space if every finite-dimensional
subspace E < X is contained in a finite-dimensional subspace £ < F < X such that for
n = dim(F) the Banach-Mazur distance satisfies

d(F, (") <. (0.1)

If this is true for some 4, X is called an £, space. If this is true for all A> 1, then X is
isometrically isomorphic to L,(Q, 2, u) for some measure space (2,2, ) and vice
versa. For 1<p< oo every separable ., space is isomorphic to a complemented
subspace of L,[0,1] and therefore inherits the bounded approximation property.
(The absence of the approximation property for general non-commutative L, spaces
is a substantial but interesting drawback in the non-commutative setting.) The
‘paving’ definition (0.1) is not very practical for showing that the dual of an £, space
is an %, space (p' = 1% the conjugate index). However, using the fundamental
Kadec—Petczynski dichotomy and a ‘cut and paste’ technique, Lindenstrauss and
Rosenthal [LR] managed to prove that the dual of an %, space is an .#; space and
that the copies of /Z in the definition of ., spaces may be assumed to be uniformly
complemented. In order to underline the different notions in the non-commutative
setting, we might call spaces satisfying the complemented condition 4., spaces and
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note by the remarks above that in the commutative setting £, spaces are indeed
€<, spaces.

In the non-commutative setting a Kadec—Petczynski dichotomy (see [KP]) is not
available at the time of this writing. This forces us to introduce the class of 40.%,
spaces, the non-commutative analogue of ¥.%,-space. In contrast to the ¢.%,-spaces
defined by Effros and Ruan [ER1], we assume in addition that the finite-dimensional
copies of non-commutative L, spaces are uniformly (completely) complemented.
This class of 40.%, spaces (for a precise definition see Section 2) seems to be the
right substitute for the class of £, spaces in Banach space theory. We refer to the
end of Section 2 for a discussion of these two notions. In the commutative theory
Johnson et al. [JRZ] showed that a separable £, space admits a basis. Refining their
techniques Nielsen and Wojtaszczyk showed that this basis locally looks like the
basis of /,,. We use this approach as a guideline to discover the local structure of a
separable (0%, space and construct (very nice operator space) bases therein. Let us
note that due to the work of Bourgain [Bo], Bourgain et al. [BRS] many non-
isomorphic £, spaces are known, and thus many of them are not isomorphic to
standard examples L,[0, 1], 7, or £, ®¢». Therefore £, spaces have a very rich global
structure.

The right framework for the investigation of the local structure of non-
commutative L, spaces is the category of operator spaces. We will now indicate
some elementary operator space notations and in particular the notion of 0.%,-
spaces, introduced by Effros and Ruan [ER1]. An operator space X is a norm closed
subspace of some B(H) equipped with the distinguished operator space matrix norm
inherited from M,(X)<B(/5(H)). An abstract matrix norm characterization of
operator spaces was given by Ruan (see e.g. [ER2]). The morphisms in the category
of operator spaces are completely bounded maps. Given operator spaces X and Y, a
linear map T:X—>Y is completely bounded if the corresponding linear maps
T,: M,(X)— M,(Y) defined by T,([x;]) = [T(x;)] are uniformly bounded, i.e.,

1T = sup || Tnl| < co.
neN

A map T is a complete contraction (respectively, a complete isometry, or a complete
quotient) if ||T|| , <1 (respectively, if each T, is an isometry, or a quotient map). A
map T is said to be a complete isomorphism if it is a completely bounded linear
isomorphism with a completely bounded inverse. In this case, we let

d(X,Y) =inf{||T||,||T""||,: T a complete isomorphism from X onto Y}

denote the completely bounded Banach—Mazur distance (in short cb-distance) of X
and Y (see [P4]).

Variations of Grothendieck’s approximation property inspired crucial develop-
ments in operator algebras and operator spaces. An operator space X = B(H) has the
operator space approximation property, in short OAP, if there exists a net of finite
rank maps (7;) such that id, ® T; converges in the point-norm topology to the
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identity on " ® min X = B(/> ® H), where #" denotes the space of compact operators
on /,. An operator space has the completely bounded approximation property (in
short CBAP) if there exists a net (7;) of finite rank maps converging in the point-
norm topology to the identity on X and sup; || T}, < co. We say that an operator
space X has a ch-basis if, X has a basis (x,) and the natural projection maps

o0 n
P, Z wXr | = Z Oljc X
k=1 k=1

satisfy K = sup,, ||Pu]|., < co. In this case we call (x,) a K-cb-basis.

For non-commutative L, spaces Pisier [P5] introduced a very natural operator
space structure by interpolation (see [BL] for interpolation theory). Indeed, it is well-
known that the Schatten p-classes S, can be obtained by complex interpolation

S, =4, 7]

-

Here = S| denotes the space of trace class operators and %" = S, the space of
compact operators. Moreover, the natural (operator space structure preserving)
duality between x = [x;]e #" and y = [y;]€ .7 is given by

{x,yy = Z Xy = tr(xy").
i

Pisier [P5] proved that

MH(SP) = [Mn(f)an(y)]ll_j

define matrix norms on S, which satisfy Ruan’s abstract characterization for
operator spaces. Therefore, there is an isometric embedding j, : S, — B(¢») inducing
these matrix norms and this is nowadays called the natural operator space structure of
S,. We refer to [P5] for many nice features. Similarly, we may obtain a natural
operator space structure on L,(A4) for every finite-dimensional C*-algebra 4.

Let us recall the operator space analogue of #, spaces. An operator space X is
called an operator ., space (in short ., ; space) if X can be paved out by copies
of finite-dimensional L, spaces, where the cb-distance is uniformly controlled by A.
An operator space X is called an 0.2, if itis an 0.% ), for some /4> 1. In this case, we
use the parameter 0.%,(X) = inf 1, where the infimum is taken over all A’s above.
For a precise definition see Section 2.

During the last few years, (0., spaces have been intensively studied in
[ER1,JOR,NO]. In particular, it was proved in [ER1] that the predual N, of a von
Neumann algebra N is an (. space if and only if N is hyperfinite. Moreover, a
separable operator space X is an (0.% space with 0.#(X) = 1 if and only if it is the
operator predual of a hyperfinite von Neumann algebra (see [NOJ).

Concerning 0.% , space, we recall that by Szankowski’s result (see [Sz1]) the space
B(H) does not have Grothendieck’s approximation property and hence is not an
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0%, space. In fact contrary to the commutative case, the 0.%,, property for C*-
algebras is very restrictive. More precisely, according to results by Pisier [P4], Effros
and Ruan [ER1], Kirchberg [Ki2], and Junge et al. [JOR] we know that a C*-algebra
Aisan 0% 4 , space for some 4 if and only if 4 is nuclear. In Theorem 3.11, we will
improve a recent result in [JOR] by showing 0.% ., (A4)<3. The microscopic index 4
even provides some additional information on the structure of the underlying C*-

algebra. For example, a C*-algebra is stably finite if )Lg(l%‘/g)% (see [JOR]). From
these results, we can see that the local operator space structure provides a very
important tool for the investigation of operator algebras.

However, not much work has been done for 0.%,, spaces in the range 1 <p<oo. It
is known that every (0.2, space is completely complemented in some non-
commutative L, space. However, it can be derived from Szankowski’s work [Sz2]
that there are finite von Neumann algebras with separable predual such that L,(N)
does not have the approximation property (see Theorem 2.19). Moreover, it is not
known whether every 0%, space has the CBAP. In order to use the concepts from
Banach space theory, we will work with the analogue of 4., spaces. An operator
space X is called a €0.%,; space if it is paved by complemented copies of L,(A4)’s
where cb-distance and the ch-norm of the projections are uniformly controlled by /.
If this is true for some A, X is called a €0.%, space. If we can replace the L,(A4)’s by
Sy’s, we call thisa €05, ,, €0, space, respectively. Again we refer to Section 2 for
a precise definition. Combining Banach space techniques from [JRZ] with
applications of the Fubini Theorem from [Ju2], we obtain the following results on
€0, spaces.

Theorem 0.1. Let 1 <p< oo and X an operator space. X is a €05, space if and only if
X has the CBAP, idy admits a cb-factorization through an ultrapower of S,, and X
contains completely complemented S;’s uniformly.

Theorem 0.2. Let 1 <p, p’' < oo with 117 —&—1% =1 and X an operator space. Then X is a
C€0Z), space if and only if X* is a 0L space.

The cases p =1, p = oo remain true if we assume in addition that X* has the
CBAP and X is locally reflexive (in the operator space sense). Using an idea of
Kirchberg, we can construct an operator space X such that X* is ¥0.% but X does
not have the CBAP. In Section 4, we extend the results of Johnson et al. [JRZ],
Nielsen and Wojtaszczyk [NW] to 40%, spaces.

Theorem 0.3. Let 1<p< o0 and X a separable €0%, space (such that in addition X*
has the CBAP and X is locally reflexive for pe {1, c0}). Then X has a cb-basis.

Before we state our main application to non-commutative L, spaces, we have to
clarify the ‘mild assumptions’ on the underlying von Neumann algebra N. A C*-
algebra A has the weak expectation property of Lance (in short WEP) if for the
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universal representation 4 < A** < B(H) there is a contraction P: B(H)— A** such
that P|, = id4s. A C*-algebra B is said to be QWEP if there exists a C*-algebra A
with the WEP and a closed two-sided ideal I such that B = A4/I. It is a long standing
open problem whether every C*-algebra is QWEP (see [Kil] for many equivalent
formulations). Note that a hyperfinite von Neumann algebra is injective, hence has
WEP and thus is QWEP.

Theorem 0.4. Let N be a QWEP von Neumann algebra with separable predual. Then
for 1<p< oo the following are equivalent

(i) L,(N) has the OAP;

(i) L,(N) has the CBAP;
(iii) L,(N) is a €0%, space;
(iv) L,(N) has a cb-basis.

In particular, if one of the conditions above is satisfied, then L,(N) is an 0%, space.

We apply Haagerup’s pioneering work [CH,Ha3] on approximation properties
and an interpolation argument (see e.g. [JR]) in order to obtain a result for L, spaces
associated to the von Neummann algebra VN([F,) generated by the left regular
representation of the free group F,. As so often in harmonic analysis, the spaces
L,(VN(F,)) behave much nicer for 1 <p< oo than for the border cases pe {1, oo }.
Indeed, here L;(VN(F,)) is not an 0.% space and Creq(F,) is not an 0.2, space
because [, is not amenable.

Theorem 0.5. Let 1 <p< oo and F,, the free group with n generators. Then L,(VN(F,))
is a 60, space (hence an 0%, space) and has a cb-basis.

We note that the existence of a basis for L;(VN(F,)) or Cwq(F,) is an open
problem. In contrast to the commutative theory a non-commutative C*-algebra A
might not have enough orthogonal finite-dimensional representations. Using the
operator space structure of 4* instead, we can obtain sufficiently many information
about the local structure of A4 in the cases of nuclear C*-algebras.

Theorem 0.6. Every separable nuclear C*-algebra has a cb-basis.

For researchers interested only in Banach space theory, we should mention that all
the results hold in the Banach space sense. For example in Theorem 0.4, L,(N) has
Grothendieck’s approximation property iff it has a basis. A positive solution to the
basis problem for non-commutative L, spaces has previously only been known for
the class of type I von Neumann algebras and the hyperfinite /7; and 11, factors (see
[Su]). However, we note that passing to tensor products of €0, spaces already
requires ch-norm estimates of the basis projections and thus operator space
techniques are very natural (and useful) in this setting. However, our project seems
to be the first attempt to provide more specific information on the local structure of
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L,(N) spaces even on a purely Banach space level. We are indebted to W. B. Johnson
for stressing the fact that the existence of a basis in £, spaces can be proved by
entirely local arguments. Indeed, this entirely local approach unifies the construction
of bases for %, spaces for all values 1 <p< oo even in the commutative case (using
the appropriate new notion of containing /}’s ‘far out’).

In order to make this paper more accessible (for researchers with a Banach space
background), we postpone arguments using modular theory of von Neumann
algebras to the end of Section 5. In the subsequent paper [JRX], we will investigate
the isometric theory in the hyperfinite (non-semifinite) case. Further applications of
L, spaces associated with discrete groups will be given in [JR].

1. Notation and preliminary results

We will use standard notation in operator algebras [D2,KR,Pe,Ta], and Banach
space theory [LT]. In particular, given a Hilbert space H, we let B(H) denote the
space of all bounded linear operators on H. Our general references for operator
spaces are [ER2,P6]. Let us recall some basic notations. A completely bounded map
P on an operator space X is a completely bounded projection if P> = P. A subspace X
of an operator space Y is called a completely complemented (respectively, a
completely contractively complemented) subspace in Y if there is a completely
bounded (respectively, completely contractive) projection from Y onto X. If X is an
operator space, then its dual space X™ is an operator space with matrix norms given
by the isometric identifications

M, (X") = CB(X, M,)

(see [BP,ER2]). This operator space structure on X* is called the operator (space) dual of
X. If X is an operator space, then the canonical embedding 1 : X — X** is a completely
isometric injection, i.e. idy;, ®1 is isometric for all neN. If T: X —» Y is a completely
bounded map, then its adjoint map 7*: Y*— X* is also completely bounded with
1T*|, = 1T Using the Arveson—Wittstock—-Hahn—Banach theorem [ER2,Pa], it is
easy to show that if 7 is a complete isometry, then 7™ is a complete quotient map, 1.e.
idy, ® T* maps the open unit ball onto the open unit ball for all ne N. Similarly, if 7" is
a complete quotient map, then 7* is a complete isometry. Given a von Neumann
algebra NV, the canonical embedding 1 : N, & N* induces an operator space structure on
N,. With these matrix norms, we have the complete isometry

N =(N.)".

In the following, we will use the notation S, (resp. Sy) for the spaces of all compact
operators on the Hilbert spaces £, = /2(N) (resp. /%) such that

], = (B < oo.
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We will always work with the canonical duality between S, and S, (Il) Jrl% = 1) given by

<[alj]7[by]> :Zajjbij (1.1)

ij

and obtain a complete isometry S, =Sy. Similarly, if 4 is a finite-dimensional C*-
algebra given by

A= Mm@oc"'@oo Mn”
then we have
A =8"® @8,

where @ is the operator space /|-direct sum. Let n = n| + --- + n;. The canonical
projection of S” onto A is completely contractive on S” and the same map is also
completely contractive on S}. Therefore, we may apply complex interpolation for the
compatible pair (4, 4*) < (S7% ,S7) and obtain the natural operator space structure on

L,(A)=[A,A"]

— S]’)’l @, ®, SI’)”CS]',’.

=

We refer to [BL] for the complex interpolation method. Note that by complementation,
we still have a complete isometry

and L,(A) is a completely contractively complemented subspace of S, forl<p<oo.In
the sequel, we will also use an infinite-dimensional analogue of these spaces. Let m =
(m(n)),n be a sequence of natural numbers and

b(m) = H Mm(n)a

the von Neumann algebra obtained as block diagonals in B(/>). In the Banach space
literature one may also write b(m) = (>, @ M), . Then the predual of b(m) is

si(m) = (>, @qu’("))l, i.e. the block diagonals in ;. Since the projection onto these
block diagonals is completely contractive in both cases, we see that

sp(m) = (Z CJBSZ“")) = [b(m), 51 (m)]; = L,(b(m))

p

is completely contractively complemented in S,. For p = oo, we use the notation s, (m)
for the ¢y sum. In the special case where m is given by m(n) = n for all ne N, we will
simply use the notation s,.

As in Banach space theory, ultraproducts turn out to be a useful tool in the study
of operator spaces (see for example [P3]). Let us recall that if % is a free ultrafilter on
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an infinite index set I and (X;),., is a family of operator spaces, then we consider the
ultraproduct

11 x =11 xi/7%,

U iel

where [[;.; Xi = {(x;) | sup; ||xi|| < oo} is the space of all bounded families, and

Ju = {(x,-)e IT x lim [[xxil[, = 0}

iel
is the norm closed subspace in [[,.; X; of families tending to 0 along %. An
ultraproduct [], X; of operator spaces carries canonical matrix norms given by

M, (H X,-> = [ M.(x5).

U U

For details see [ER2,P3,P5]. If (4;) is a family of C*-algebras, it is well-known that
[1, A:iis again a C*-algebra. It is also known (see [Gr,Ral,Ra2]) that for 1 <p< o0,
we have [[, S, = L,(N) for some von Neumann algebra N. The following result is
due to Junge [Ju2] and holds only for pe(1, o).

Theorem 1.1. Let E and F be finite-dimensional operator spaces and 1 <p < oo. If we
have a commuting diagram of completely bounded maps

I S

E—>X F

then for any ¢>0, there exist an integer n and a commuting diagram of completely

bounded maps
Sp
E—T——F

e 18T < Il s 15l + -

such that

Approximation properties play an important role in operator algebras and
operator spaces. Let X and Y be operator spaces. A linear map 7: X — Y is said
to have the completely bounded approximation property (in short CBAP) if there
exists a constant A and a net of finite rank maps 7;: X — Y such that 7;— T in the
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point-norm topology and sup; ||7;|| ., </. In this case, we let
A(T) =inf 2
denote the infimum of all 4 as above. If T = idy we say that X has the CBAP and let
A(X) = A(idy).

Let 1<p<oo. A linear map 7: X — Y is said to have the y,-approximation property
(in short y,-4P) (i.e. can be approximately factored through S} spaces) if there exist
diagrams of completely bounded maps

Sy
N

x—r vy
which converges in the point-norm topology to 7" and satisfies sup; ||r:] ;5| ., <4
for some constant A< co. We let as above

v (T) = inf 4.
If T = idy, we say that X has the y,-approximation property and let

75 (X) =y, (idx).

It is clear that if 7" has the y,-AP, then T has the CBAP with

A(T)<y/(T).

In the analysis of approximation properties, small perturbation arguments provide
an essential technical tool. Let us recall the following operator space analogue of a
classical Banach space argument due to Pisier [P5].

Lemma 1.2. Let X be an operator space and E < X an n-dimensional subspace with a
biorthogonal system X1, ..., Xu, X1, ..., X, (i.e. ||xi|| <1, [|X}||< 1 and x}(x;) = 0 for all
i,j=1,...,n). Let 0O<e<1, and T : E— X a linear map such that

¢
T(x;) — x| <=
1) - <

foralli=1,...,n. Then there exists a complete isomorphism W : X - X such that

WT(x) =x
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for all xe E and

_ . € _
Wl <(1—¢)", I1W —id|loy <q— and ||W o< +e).  (1.2)

As in the category of Banach spaces, we may obtain the following result.

Corollary 1.3. Let X and F be operator spaces with F finite-dimensional and let
r:F->X and s: X —>F be maps such that sr = idp. If EcX is an n-dimensional
subspace and 0<8<% such that

alndl

[Irs(x) = x[| S e
\7’!| ‘r||cb||s| ‘Cb

for all xe E. Then there exist maps 7: F - X and §: X - F such that §7 = idp, 78|y =
idg and

v -1 -1
e 181 ep < (1 = &) (1 = 28) [y 51 Lep-

Proof. Applying Lemma 1.2 to & = HrH-:HSH.;,<% and T =rs, we may obtain a

complete isomorphism W : X — X such that ||id — W|| , <i% and WT(x) = x for all
xeE. Then we deduce

. . 4
\lidp — sWr||., = Is(id — W)r[| , <[]l 5l I5] fg,<28-

Hence, for b = (sWr)~' we obtain the estimate
-1
1Dy < (1 —2¢)

We define §=bs and 7= Wr. Clearly, §F = bsWr = idr. For xeE, we observe
that

sWrs(x) = sWT(x) = s(x).
Hence, sWr|s(E) = idyg) and therefore b|s(E) = idyg). Thus, we get
7$(x) = Wrbs(x) = Wrs(x) = WT(x) = x
for all xe E. Using the ch-norm estimates for b and W, we obtain the assertions. [

For Banach spaces (and nowadays also for operator spaces) it is well-known
that Lemma 1.2 implies that the ‘point-norm approximation’ can be improved to
obtain finite rank maps which are the identity on a given finite-dimensional
subspace.
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Lemma 1.4. Let T: X - Y be a completely bounded map.

(1) T:X - Y has the CBAP with A(T) </ if and only if for every finite-dimensional
subspace ES X, there exists a finite rank map u: X — Y such that ||u|| ., </ and
u(x) = T(x) for all xeE.

(i) T:X—Y has the y,-AP with y;P (T) <4 if and only if for every finite-dimensional
subspace ES X, there exist neN and maps u:X —>S), v:S)—>Y such that
|| pll0]],p <A and vu(x) = T (x) for all xe E.

Proof. Obviously the second assertion in (i), (ii) implies the CBAP, 7,-AP,
respectively. Since the arguments are very similar, we will only show the missing
implication in (i). If E is a finite-dimensional subspace of X, then T'(E) is a finite-
dimensional subspace of Y. We can find vectors xi, ..., x, in E such that (T’ (x,»))f:1 is
part of a biorthogonal system in T(E). Choose 0<d< 1 such that (1 4 6)*A(T) <.
Since T has the CBAP, there exists a finite rank map T:X —7Y such that
||, < (14 0)A(T) and ||T(x;) — T(x;)|| <2 for all i=1,...,k. It follows from
Lemma 1.2 that there exists a complete isomorphism W : ¥ — Y such that WT'(x;) =
T(x;) for (i=1,...,k) and ||W~!|,<(1 + ). Hence, u = W~'T: X - Y is a finite
rank map which satisfies the requirement of the assertion. [

Using the uniform convexity of S, (see [TJ]) it is easy to prove the following well-
known fact. We refer to [ER1] for the details.

Lemma 1.5. Let 1<p<co. Then [], S, is reflexive for every ultrafilter 9. Moreover,
every 0%, space is completely contractively complemented in some [],, S, and thus
reflexive.

Proposition 1.6. Let 1 <p<co and X an operator space. Then X has the y,-AP if and

only if X has the CBAP and there exists a free ultrafilter 9 on some index set I such
that X is completely complemented in [[,, Sy, i.e. there exists a commuting diagram of

completely bounded maps
HW Sp
/ \ (1.3)
idx

X— 3 X

Proof. If X has the y,-AP, then X has the CBAP, and there exist diagrams of
completely bounded maps

n
Sy

7N

X Ty
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which approximately commute in the point-norm topology and in addition satisfy
supllrl s sl = 4 < o0

If we let % be a free ultrafilter on the index set /, then we obtain a commuting
diagram of completely bounded maps

1, Sp

NG n
; |

x L x ety xr

where we let s:X— ][], Sy be the map given by s(x)= (si(x)), and
r: 11y Sy — X the map given by

r((z)a), x> = liqr/n x*(ri(zi))

for all x"eX". Since each S} is completely contractively complemented in S,
11s Sy is completely contractively complemented in I1, Sy, and thus we can
actually replace ], Sy in (1.4) by I1, S,- Hence X is isomorphic to s(X) <[], S,
and thus reflexive according to Lemma 1.5. Thus we obtain the commuting diagram

H’]/ Sp

/LN

X —— X

On the other hand, let us assume that X has the CBAP and satisfies diagram (1.3)
with ||r]|.|l8]],, < C. It follows from Lemma 1.4 that for any finite-dimensional
subspace ESX and ¢>0, there exists a finite rank map u: X —X such that
lul] , < (1 +&)A(X) and u|p = idp for all xeE. In particular u?|; = idg and it
suffices to show that u? factors through S Let us consider the finite-dimensional
operator space G = X /ker(u) with quotient map ¢¢: X — G and the induced map
t:G— X such that u =igg. Note that # has the same ch-norm as u. Let F =
u(X)cX with inclusion map ir:F—X. Then wi=ursii: G- F satisfies the
assumption of Theorem 1.1 and hence admits a factorization wuu =
v, w:Go8 v ST F such that

2 3 2
[ollep [Wlep < (1A )l [y 7l 5] < (1 4 8)7A(X)"C.

Thus u?> = irvwgg factors through S, and satisfies the corresponding cb-norm
estimate. Therefore, X has the 7,-AP with y?(X) < CAX):. O
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Remark 1.7. The same result holds if we replace the ch-norm by the operator norm
in all instances above. Indeed, in Theorem 1.1, this can be casily proved by using
finite d-nets in the unit ball of E and F*.

In the category of operator spaces Proposition 1.6 is no longer true for p = 1.
Indeed, if N is a von Neumann algebra, then y{"(N.)<4 if and only if N is -
semidiscrete, and thus injective by Pisier [P4] or Christensen and Sinclair [CS]. Let [,
denote the free group of n generators. It is known that the von Neumann algebra
VN(F,) is not injective (for any A>1), but satisfies A(VN(F,),) =1 (see [Ha3)).
Using an argument of Wassermann (or the fact that VN(F,) is QWEP with the
results in [EJR, Section 7] and [NO]), we see that there are complete contractions
r:VN(F,),— 1, Si,s: 11, Si—=VN(F,), such that

IO

LN

VN(F ) —2 S VN(F,),

Hence VN(F,), satisfies the assumptions of Proposition 1.6 without having the y,-
AP. In Theorem 5.7, we will show that for 1<p< o, L,(VN(F,)) has the y,-AP.
This indicates that, as so often in harmonic analysis, the L, spaces in the range
1 <p< oo behave much nicer than the extreme cases p =1 and p = 0.

2. €02, and 0.Z), spaces

In this and the following sections (unless stated explicitly otherwise) we will work in
the category of operator spaces. This means that all linear maps, inclusions, quotient
maps and projections are to be understood as completely bounded maps, complete
isomorphisms with values in the images, complete quotient maps and completely
bounded projections, respectively. This convention will simplify our presentation but is
by no means necessary. Let us point out that all the results (stated here in terms of
operator spaces) hold true in the category of Banach spaces. Some of the proofs are
slightly easier for Banach spaces or can be found in the literature, namely in [JRZ,NW].
Therefore, we decided to emphasize the modifications required for operator spaces.

An operator space X is called an operator £, space (in short 0.%, space) if there
exists a constant 1>1 and a family (F;),_; of finite-dimensional subspace such that
\J; Fi is dense in X and for every index i there exists a finite-dimensional C*-algebra
A; such that

dep(Lp(Ai), Fi) < 2. (2.1)

In this case, we denote by 0.%,(X) = inf A, where the infimum is taken over all 4 as
above. Moreover, we say that X is an 0%, ;-space, if 0.Z,(X)<A. We call X an
0%, space if we can replace the L,(4;)’s in (2.1) by Sys.
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An operator space X is called a completely complemented 0%, ; space (in short
€0%Ly, space) for some constant 2> 1 if there exist a family of finite-dimensional
C*-algebras (4;) and commuting diagrams of completely bounded maps

X

/ \ (2.2)
ide[A‘.]
—

Lp(Ai) Lp(Ai)

such that r;s; — idy in the point-norm topology on X and ||r;||.,||si|] ., < 4. We call X
a completely complemented 0%, ; space (in short $0.% ) ; space) if we can replace
L,(4;)in (2.2) by Sy We say that X is a €0.%), space (respectively, a €0, space) if
itisa €02, space (respectively, a 0., ; space) for some A>1. In this case, we
denote by 0% ,(X) = inf A (respectively, 0. ,(X) = inf 1), where the infimum is
taken over all 2 such that X is a 404, ; space (respectively, a 0%, space). The
following perturbation result (Lemma 2.1) shows that these definitions of 0.2,
(respectively, 0%, spaces) are consistent with the idea of paving out the operator
space X by copies (respectively, complemented copies) of finite-dimensional non-
commutative L, spaces. Since the proof is very similar to the proof of Lemma 1.4 we
will leave the details of the proof of Lemma 2.1 to the reader.

Lemma 2.1. Let X be an operator space and 1> 1.

() X isan 0%, space with 0% ,(X) <A if and only if there exists a ' <A such that for
every finite-dimensional subspace E of X there exists a finite-dimensional space
EcFcX and a finite-dimensional C*-algebra A such that

dcb(L[J(A)v F) <2

(i) X isa 0%, space satisfying €¢0%L ,(X) <A if and only if there exists a 2’ <A such
that for every finite-dimensional subspace E< X, there exist a finite-dimensional
C*-algebra A and a commuting diagram of completely bounded maps

/ ) \
Ly(A) 0 51 ()

with ||| |5/l < A" and rs(x) = x for all xeE.
A similar result holds for 0%, spaces and €0.% ), spaces.
It follows from Lemma 2.1 that every 40.%, space is an (., space. For p = o0,

the two notions are equivalent by the injectivity of finite-dimensional C*-algebras.
(However, if we consider the Banach space versions of spaces paved out by Banach
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space copies of finite-dimensional C*-algebras, it is not clear whether they might be
assumed to be norm complemented.) In the context of operator space the two
notions are equivalent for p =1 if 4 is sufficiently close to 1 (see [Oz]). It is not
known whether these notions are still equivalent for large 1. We refer to the end of
this section for more open problems. Let us state the main result in this section.

Theorem 2.2. Let 1<p< 0 and X an operator space with the y,-AP. If X contains
S)’s (respectively, complemented S)’s) then X is an 0., space (respectively, a €05,
space).

Here X is said to contain S)’s if there exists a constant C such that for every neN,
we can find G, < X such that
dep (G, ST C.

ny~p

We note that in the Banach space literature the term ‘X contains /)’s uniformly’
(respectively “X contains /)’s uniformly complemented’) is in use. If we want to
specify the constant C we say X contains S;’s with constant C. Accordingly, we say
that X' contains complemented S)’s (with constant C) if for every neN there are
It S; — X and s, : X—>Sl’j such that

Snrn:idS,'; and ||rﬂ||cb||S’1||cb<C'

As a technical (but important) modification we say that X contains complemented
S’s with respect to Y if Y < X* and s,,(S),) <= Y for all neN.

Although this clarifies the assumptions of Theorem 2.2, the proof requires
‘sufficiently many orthogonal® copies of S} with respect to any finite-dimensional

subspace of X. Note that in the commutative setting this is an immediate
consequence of the Kadec—Petczynski dichotomy. In our setting, we have to use a
formal definition of ‘sufficiently orthogonal’. We say that an operator space X
contains complemented S)’s far out if there exists a constant C>0 such that for every

finite-dimensional subspace Ec—X and for every neN and &>0, there exist
Tyt S;—»X, Sn :X—»S]’} such that

Sn’n:idS;Zv lrusnlelley <& and|[rallep [[sallp < C.

Again, we use ‘with constant C” and ‘with respect to Y’ as above. Similarly, we say
that X' contains S’s far out (with constant C) if for every finite rank map

T:X—-X, neN and ¢>0, there exists G, = X such that

dep(Gn, S;)<C and  |[|Tg [|p<e.

Note that it suffices to have ||T|; || <¢ because G, is finite dimensional. Indeed,
using a biorthogonal system one can easily prove that for a linear map 7: E— X on
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a d-dimensional operator space E (see e.g. [EH])

Similarly, the condition ||r,s,|g||, <& can be weakened to ||r,s,|g||<e. Let us start
with the most natural class of examples (see the preliminaries for the definition of s,.)

Example 2.3. Let 1<p<oo. The space s, is a ¥0%,-space with constant
¢0Sy(sp) = 1. 5, contains complemented S)’s far out. Moreover, every operator
space containing s, completely complemented contains complemented S)’s far out.

Proof. For neN, we denote by r,: (>, @S],f)p —s, the natural completely
isometric inclusion map and by s,:5,—> (> ;_, @S;")p the completely contractive
projection. Then r,s, tends to the identity map in the point-norm topology and the
assertion follows from the fact that (3>°;_, @ S[’;' ) = L,(A4,) for the finite-dimensional
C*-algebra 4, =M@ - D, M,. In order to prove the second assertion, we
consider the map vy : Sllf — s, which maps S;f in the kth block and the natural
projection uy : s, — Sﬁ on the kth block. Clearly uiv, = idS[/; for all k and the sequence
of projections (Py) defined by Py = vyuy satisfies limy Py(x) = 0 for all xes, by the
density of elements with finitely many entries in s,. The last assertion is an obvious
consequence. [l

In our context the techniques developed by Lindenstrauss and Rosenthal [LR] in
the commutative setting yield the following key result.

Proposition 2.4. Let 1<p< oo and X an operator space with the y,-AP and containing
complemented S)s far out with constant C. Then X is a €0 space satisfying
COSp(X)<(1+2C)(1 + 297 (X)).

Proof. Let E be a finite-dimensional subspace of X and 0<s<%. Since X has
the y,-AP, we can apply Lemma 1.4 to obtain maps u:X —S} and v:S/—>X
such that

ol =idg, fully =1 and [[elly<(1+ep(X).

Let 0<o<e(4(C+ l)yZP(X)nz)fl, where C is the constant from the ‘far out’
definition. Let F' = v(S)). According to the assumption, we may find r: ) — X and
s: X =S such that

sr=idsy, |lrlley =1, |lslly<C and ||rs|gl]., <o.

We let P=rs: X—> X denote the completely bounded projection from X onto
the range of r, and let 7:S)—X and §:X—.S) be completely bounded maps
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given by
F=v+r(ids, —uv) and §=u(idy —P)+s.

However, in general §7 need not be the identity map on Sj. Since sr = idg; and
(idy — P)r =0, we have

§F = [u(idy — P) + s|[v + r(idsy — uv)]
=uv — uPv + sv + (idsy — uv)
=idgy — uPv + srsv = idsy + (s — u) Pv.
Therefore,
187 — idsy||p < [1(s = ) Poll oy <[Is = ull o[ PlE s [0]]

<(C+ 1)523;;1’(X)<§.

According to Lemma 1.2 we can find an isomorphism w: S} — S} such that wiF =
idg; and

1
1—

Wil S5 —z< (1 +2).

Do

If we define rg, = 7 and sg, = w$, then we deduce
reellep < M10llp + rlles (1 + el o0 c5)
< (T+e)y"(X) + (14 (1 +)y,"(X))
< (T4¢)(1+ 2y (X))
and
5ol oy < (1 + )llu — P + 8]y < (1 +&)(1 + C + C).

Finally, we have to check that rg.sg.(x) = fws(x) = x for all xeE. If we let G =
u(E), then for y = u(x)e G, we have

hence
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This implies that for all xe £

u(x) =y = (W) (y) = wi(x).
In particular,

ws(x) = Flu(x)) = f(y) = x.

We have checked the conditions for ¥(.¥, formulated in the introduction. Thus the
assertion is proved. [

Remark 2.5. For a fixed subspace Y = X*, we may also define the y,-AP with respect
to Y by requiring that the factorizations r; : S;j —X and s;: X —>S;’ with r;s; tending
to idy satisfy the additional property sjf(S]’j,) < Y. The argument above shows that if
X has the y,-AP with respect to ¥ and contains complemented S;’s with respect to ¥’
then X is a 40.%, space with respect to Y (defined as above). Let us point out that
these technical modifications are essential for the interesting applications in the cases
p=1lorp= 0.

Remark 2.6. For a fixed ne N, let us consider the following stronger version of the

7,~AP. We say that X has the y, ,-AP if there exist diagrams of completely bounded
maps
/5:- <ss)\\
X— 3y

which converges in the point-norm topology to idy and satisfies the inequalities
sup; ||7ill | Isillp <755 (X) < co. Similarly, we say that X contains complemented

,/[’j (S,)’s far out with constant C if for every finite-dimensional subspace E < X, for
every keN and ¢>0, there exist r: /';(S;’)—>X and s: X—»/;f(S;) such that

Sr = ld/l;(*gﬁ)’ HVS|E||C/7 <é and Hr”cb”SH(?bgC'

The same proof as above shows that an operator space X with the y,,-AP and
containing complemented /’;(S]’})’s far out with constant C is a 0%, space with
constant

COL,(X)<(1+20)(1 + 25, (X)).

As an application of Proposition 2.4, we deduce that every operator space X with
the y,-AP can be enlarged to provide an example of a ¥0.%, space. This method
provides many interesting examples of ¥0.%, spaces. We refer to Example 2.3 for the
obvious fact that s, contains complemented S)’s far out.
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Corollary 2.7. Let 1<p<oo and X an operator space. Then the following are
equivalent.

(1) X has the CBAP and X is completely isomorphic to a completely complemented
subspace of [[,, S, for some ultrapower of S,;
(i) X has the y,-AP.
(i) X @,s,isa 6€0F, space;
(iv) X is completely complemented in a €05, space.

Proof. For the implication (i) = (ii), we note that X has the y,-AP according to

Proposition 1.6. The implication (ii) = (iii) follows from Proposition 2.4 because X
and s, have the 7,-AP and the space s, contains complemented S;’s far out, see

Example 2.3. The implication (iii) = (iv) is obvious because X is completely
contractively complemented in X @, s,. For the implication (iv) = (i) it suffices to
note that every 0%, space Y has the CBAP and according to Proposition 1.6 is
completely complemented in some [[, S,. Both properties pass to completely
complemented subspaces. [

Similarly as for €0.%, spaces in Proposition 2.4, we can obtain a result in the
context of 0., spaces.

Proposition 2.8. Let 1<p< oo and X an operator space with the y,-AP. If X contains
Sy’s far out, then X is an 0. space.

Proof. Let assume that X contains SI’,”s far out with constant C. Let

0<e<(3C) '(1+ 21/;”()())71 and a finite-dimensional subspace E<X be given.
Choose u: X—»S[',’ and v: S;}—»X such that

ullep <1, ol < (1 + )7 (X)  and  vul|p = idg.
Put F = v(S)) and apply Lemma 1.4 (ii) to find a finite rank map 7 : X — X such that
T|p =idp and |[|T|],<(1+¢&)A(X)<(1+¢)y,P(X). By the assumptions there is
finite-dimensional G< X such that

dp(G,S;)<C and ||T]gll<e.

Let w:S?— G be an isomorphism such that ||w||,<C and [jw™'[|,,<1. We define
R:S)—>X by R=v+w(ids, —uv). Then we have EcR(S}) as in the proof of
Proposition 2.4. Thus it remains to show that R is an isomorphism from S onto its

range. To this end, fix an meN and a unit vector xe M,,(S”). Let 6 = 7l Note
» +2([T1N,y

that 6>1. We consider two cases: ||(idy, ®v)x||>6 or ||(idy, ®v)(x)||<d. If the
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former occurs, then by the choice of T (with id = idy,,)
IT1]c5]1id @ R(x)||= [|(id @ To)x + (id @ T) (id @ w(ids; — vu))x|
> 11(id @ )] — [1wl]ep (1 + [0l 1l )e
=0 — C(1+2y7(X))e.
If we are in the latter case, then
[(id @w)(id @ (ids; — uv))x||> ||(id ® (ids, — wv))x]
= [l = lul || (id @ v) ()|
=>1-0.
Therefore, we get
|I(id ® R)(x)[| > [|(id @ w)(id & (Is; — uv))x]|| — [|(id @ v)x]|

1

>1-60-0=1-20=————.

1+2(|7]],,
This shows that

0
ST
ey 17

IRl < max{ 14 2075~

g 5
5 —eC(1+ 237 (X))

(14 2[[T1[s)-

The assertion is proved and since ¢>0 is arbitrary, we obtain
0L,(X)<(1424(X)) (77 (X) + C(1 + 3,7 (X))).
The assertion is proved. [

Apart from introducing the notion of containing S’s far out, the main new

ingredient in the proof of Theorem 2.2 is the fact that the ‘far out’ properties can be
derived from more natural, weaker assumptions. After a first version of this paper
circulated, E. Ricard considerably improved a technical lemma crucial for this kind
of results. We want to thank him for the permission to publish his refinement of our
result which turned out to be crucial for the final version of Theorem 4.10.

Lemma 2.9. Let 1<p< oo and n,k,l,meN such that the integer part [{l] satisfies
[%]> Ikn®. Let F be a vector space and T : ¢, (Sy) = F alinear map with rk(T)<I. Then

there exists a subspace E C/f(S;’) completely isometric to /jj (S,’)’) and completely



278 M. Junge et al. | Advances in Mathematics 187 (2004) 257-319

contractively complemented such that
T|;=0.

Proof. We may assume that dim(F) =/ and that f', ..., f* are linear independent
vectors in F*. We may assume m = vk + r, r<k and v>/lkn*. Let (h;)"_, be the unit
vector basis in /) and (ey), <, denotes the matrix units in S). Consider the matrix

Lt (w5, :];*(T(hukﬂv,@es,)) where 1 <u<v, ISw<k,1<s,1<n and 1</j</. Since
v>lkn?, there exists a non-trivial solution (aj, ...,a,) of scalars such that

v
E Ay (w,s.t) = 0
u=1

for all 1<s,1<n, 1<w<wv, 1<j</. We may assume ||(a,)||, = 1 and then

E= § aubwsthuk+w ® est|bwsl eC
I<u<vl<w<kI<st<n

is completely isometrically isomorphic to /]’;'(S;) and T vanishes on E. Using a

sequence (b,),_, such that 3= a,b, = 1 and ||(b,)||, = 1, we see that

m /
P(Z hi®xi> - Z auhuker® <Z bu’xu’ker)
i=1 u'=1

I<u<ol<w<k

is a completely contractive projection. [

The following lemma can also be proved by using Ramsey-type arguments and
ultraproduct techniques (see [RX]), but our proofs based on Lemma 2.9 are
significantly more elementary.

Lemma 2.10. Let 1<p< oo, neN fixed and X an operator space.

() If X contains /];(S;’)’s for all k, then X contains /f,f(Sl’,’)’s Sfar out with ¢ = 0.
(i) If X contains complemented flp‘ (S,)’s, then X contains complemented /]; (Sy)’s far
out with ¢ = 0.

In particular, if X contains Szl;"s (complemented SII;"S), then it contains Szlf’s far out,

complemented S'fj’s far out, respectively.

Proof. (i) We assume that X contains /ﬁ(S;)’s with constant C. Let 7: X — X be a
finite rank map, keN. Choose m such that [%|>rk(T)kn*. Let G, =X such that
dcb(Gm,/;”(S,’j))sC. Let r:/Z’(Sﬁ)—»Gm and s: Gm—>/;”(S;}) such that sr = id and
||l 5151l < C. According to Lemma 2.9, there exists a subspace Ec/)'(S))
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completely isometric to /];(S;) such that Tr|p =0. Hence, F =r(E) is C-cb-
isomorphic to /];(S;}) and T|r = 0. In order to prove (ii) we assume that X contains
complemented /}'(S})’s with constant C. Let ' < X be a /-dimensional subspace. Let
[#] > lkn®. Let u: /7'(Sy)— X and v:/}(S?) such that

w=idpsy. |lully<l and [ofl,<C.

Let 1p: F—X. We apply Lemma 2.9 to (vip)":/}(Sy)—F* and find a completely
contractively complemented copy G of fllj,(SZ,) such that (vig)*|; = 0. Using either
the proof of Lemma 2.9 or a simple duality argument, we find a completely
contractive projection Q:/'(Sy)—7/,'(S,) such that Q(£}'(S}))) is completely
isometric to /’;(S’p’) and Quv|r = 0. Then, we deduce that P = uQv is a projection
satisfying P|, =0 and idQ(/;r(Spn)) = Quu. This concludes the proof of (b). For the
particular part, we only have to observe that /;“(S;) is completely contractively
complemented in S". Hence for all n the assumptions are satisfied. [

Remark 2.11. In (a) and in (b), we may add ‘with respect to Y’ in every place.

Proof of Theorem 2.2. Combine Proposition 2.4 and Lemma 2.10 in the
complemented case and Proposition 2.8 and Lemma 2.10 in the non-complemented
case. O

Remark 2.12. In the complemented case, we may again add ‘with respect to Y’
everywhere.

Corollary 2.13. Let |<p< 0.

(i) Let X be a complemented subspace of a €0, space containing complemented
Sy's. Then X is a €0, space.

(i) Let X be an operator space with the CBAP and containing Sy’s. If X is a
complemented subspace of an 0%, space, then X is an 0., space.

Proof. In case (i), it suffices to note that a complemented subspace of a ¥0.%, space
has the y,-AP and thus Theorem 2.2 yields the assertion. In case (ii) again by
Theorem 2.2, it remains to prove that X has the y,-AP. Let X = Y such that Y is an
0%, space. Let Ec X be a finite-dimensional subspace and a finite rank map
T:X—X such that T|; = idg according to Lemma 1.2. Then T(X)cX <Y is a
finite-dimensional subspace and we can find a finite-dimensional C*-algebra 4 and
T(X)cFcY such that de(F,L,(A))<C. Let v: L,(A)—F and u: F— L,(A) such
that u = v~!, then we deduce for the inclusion map 1y : X — Y that

iyl = 1ipouT
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factors through L,(4), and thus factors through Sy for m large enough. Let
P:Y — X be a completely bounded projection. Then

T = Piy = PipouT

factors through S and X has the y,-AP. [

Resuming Lemma 1.5, Propositions 1.6, 2.4 and 2.8, we can formulate the
following result.

Theorem 2.14. Let 1 <p< oo and X an operator space with the CBAP. Then,

() X is a €0, space if and only if X is completely complemented in 1], S, and
contains complemented S)’s.

(i) X is an 0%, space if and only if X is completely complemented in [],, S, and
contains S’s.

As mentioned above our main motivation is the investigation of non-commutative
L, spaces. Let us recall some definitions. A von Neumann algebra N is called
semifinite if there exists a normal semifinite faithful (in short n.s.f.) trace, i.e. a
positive homogeneous and additive function on N, = {x*x|xe N}, the cone of
positive elements of N, such that for all increasing nets (x;); with supremum in N and
for all xe N,

n. t(sup; x;) = sup; t(x;);

s. For every 0<x there exists 0 <y<x such that t(y) < o0;
f. 7(x) = 0 implies x = 0;

t. For all unitaries ue N: t(uxu*) = t(x).

A positive homogeneous and additive function w: N, — [0, oo] satisfying n.s.f. but
not the last property t. is called an n.s.f. (normal semifinite faithful) weight. If 7 is an
n.s.f. trace then

{Z yixi | neN, Z (yiyi) +1 xx,)]<oo}

is the definition ideal on which there exists a unique linear extension t:m(t)—C
which satisfies 7(xy) = t(yx). The L,-norm is defined for xem(r) and 1<p< oo by

[SIiS]

1
Ixll, = =((x"x)2).
Then L,(N,t) is the completion of m(t) with respect to the L,-norm. For two
faithful traces 7, and 7, on IV, we can find an element d affiliated with the center of N
such that 7,(x) = 12(dx). Thus the space L,(N,t1) and L,(N,1;) are (completely)
isometrically isomorphic. Therefore, we will often use the notation L,(N) for this
(class of) operator space(s). We use the convention L., (N,7) = N. We refer to
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[D1,FK,Ku,Ne,Se,Te] for more on this and for information on the topological
algebra of t-measurable operators affiliated with N in which all the spaces L,(N, 1)
embed topologically. It is well-known that the complex interpolation method yields

Ly(N,t) = [N,Li(N,7)];.

Here L, (N, ) inherits the natural operator space structure from N°P via the map
px)(y) = t(rx).

(Note that N and N°P coincide as Banach spaces.) Then, we have

B ggym = sup D wlymy)
1 * il g, (vory < 1|77
= sup Z T(xijyji) = ||[xij]HLI(Mn®N,ﬂ‘n®T)'
illlyg, oy <1]77

Here tr, denotes the non-normalized trace on M,. The complex interpolation (as
explained in the first section for the finite-dimensional case) defines the natural
operator space structure

My(Ly(N,7)) = [My(Loy (N, 7)), My(L1 (N, f))]%)

on L,(M, ). Following [P5, Corollary 1.4 and Lemma 1.7], we obtain the following
formula:

X gy, vy = sup @@ In)xO N, onmern.  (24)

llallsn <L[[bllsn <1
2p 2p

Note that these formulas slightly differ from [Fi] but are more consistent with [P3].
In particular, for every linear map 7': L,(Ny,t1)— L,(N2,72), we deduce

Tl =lid®T : L,(B({2) @ Ny, tr®7t1) = L,(B({2) @ N, tr@7)||. - (2.5)

This shows, as it should be, that the cb-norm can be obtained by replacing scalars
with matrix-valued coefficients. A corresponding formula also holds for maps
defined on a subspace of L,(Ny,71). Let us note that if N admits a central
decomposition N = N| @ N,, then we have a direct sum

L,(N,t) = L,(N1,7)@,L,(N>, 7). (2.6)

Indeed, every matrix xe L,(B(¢/2) ® N) has two components x| € L,(B(/2) ® N1) and
x2€L, (B(/7) ® N,) satisfying

[l = [l + el
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According to [P5] this can be retranslated in terms of M, (L,(N,t)) and is then
equivalent to the wusual definition of the operator space X @,X; =

X1® X0, X1 @1 X1
»
The definition of non-commutative L, spaces in the non-semifinite case is more

involved. If 4" is o-finite, one can use Kosaki’s approach via interpolation [Ko].
However, the Haagerup (or Connes) L, spaces (see [Ha4] and [C3]) provide the most
general and algebraically striking presentation. For the operator space structure of
Haagerup’s abstract L, spaces including the non-semifinite case, we use as above the
natural operator space structure on L;(N) defined by the map f: L;(N)— NP given
by f(D)(x) = tr(Dx) and then interpolation. We refer to [Ju2,JRX] for more details.
Since the type decomposition N = Ny @ Ny @ Nyjp comes with central projections, we
obtain a direct /,-sum on the level of L, space:

Ly(N) = Ly(N1)®,L,(Nut) ® Ly (Nur).-

However, in this paper we focus on the semifinite case and only mention the more
general situation in passing. The letter # will be reserved for the hyperfinite II,
factor defined as the g-weak closure of the infinite tensor product 74 = ® ,en M In
the GNS-construction with respect to the tracial state 7 = ® ,en’ (see [KR]).

Example 2.15. Let # be the hyperfinite II; factor and 1<p<oo. Then s, is
completely contractively complemented in L,(R,7z). Consequently, L,(Z,t)
contains complemented S;’s far out.

Proof. Since the hyperfinite II; factor is unique (see [KR]) Z ® Z is isomorphic to Z.
On the other hand, # clearly contains L., ({—1,1}") on the diagonal and the trace
induces the Haar measure u on {—1,1}". Let (An),on be a family of disjoint
measurable sets of positive measure in {—1,1}". Then ( 4, ®12),cn 18 a family of
mutually orthogonal non-zero projections of Z®%. Using the isomorphism
between 2 ® £ and %, we deduce that there is a family (e,), of mutually orthogonal
non-zero projections of # such that e,%e,~% and such that the w*-closed -
subalgebra M of # generated by J, e,Ze, is isomorphic to ¢ (#). Then L,(M) is
completely contractively complemented in L,(#) and

Ly(M) = ¢,(Lp(R))-

Then for all ne N, we can find a copy M, = N, = %. Moreover, the restriction of the
trace T to M, is the normalized ’;’ on M, and there is a conditional expectation
En:R—> M, Let us note that in this case the operator space structure of
M,.t<Li(R,7) is given for a matrix [x;];}_; = M.t by

Wil (11, @ Rirm @) = Xl |L1 (Myy ® Myt @)

1 1

= il a0 = 5 il g5

||[xjo|ST§L1<RJ)
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Hence by interpolation u, : S;’—»LP(R, ), Up(x) = nll’x.r is a completely isometry.
Again by interpolation &,:L,(#)—L,(#) provides a completely contractive
projection onto the range of u,. Therefore, s, = (3., ®S)),=(p(L,(%)) is
completely contractively complemented in L,(#,1). O

It is known that every non-type I von Neumann algebra N contains a copy
of the hyperfinite 11, factor together with a nice conditional expectation (see [Ma]).
Hence L,(#) is completely isometrically isomorphic to a completely contractively
complemented subspace of L,(N). Therefore, in combination with Example 2.3,
the ‘far out’ property is never a problem for L, spaces over a von Neumann
algebra.

Lemma 2.16. Let N be a von Neumann algebra and 1 <p < oo with type decomposition
N = Ni@Nu@ N If Niu#{0} or Niu#{0}, then L,(R) is completely isometric to a
completely contractively complemented subspace of L,(N). In particular, s, is
completely isometric to a completely contractively complemented subspace of L,(N)
and L,(N) contains complemented S)’s far out with constant one.

In the formulation of the following theorem we use the abstract Haagerup L,
spaces L,(N) and its natural operator space structure. For most of the applica-
tions in this paper it would be sufficient to consider the semifinite case but the
proof is verbatim the same even if we include the more general setting of type III
algebras.

Theorem 2.17. Let N be a QWEP von Neumann algebra and 1<p< oo. Then the
following are equivalent

(1) L,(N) has the CBAP;
(ii)) L,(N) is a €0Z, space.

Proof. Let N = Ny@® N;; @ Nyjp be the central decomposition of N into types I-II1
summands (see [Ta]). Then L,(N) = L,(N1)®,L,(Niy@® Nu) and L,(Ny) is the /-
sum of L, spaces L,(Q,2, u; L,(B(H))). It is easy to see that L,(Ny) is 0%, (see
e.g. Example 5.4 below). Thus it suffices to consider N = Nyjy @ Nyy. Since N has the
QWEP, we deduce from [Ju2] that L,(N) is completely contractively complemented
in [[, Sp. If L,(N) has the CBAP, then we deduce from Proposition 1.6, that X has
the y,-AP. According to Lemma 2.16 L,(N) contains complemented S,’s far out.
From Proposition 2.4 we infer that L,(N) is a €0.%, space. Conversely, a 602,
space obviously has the CBAP. [

Let us conclude this section with a list of open problems concerning ¢., and
€0, spaces. As mentioned in the introduction, the Kadec—Petczyfiski dichotomy
(see [KP]) provides the equivalence between the usual definition of £, spaces and its
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complemented version. Although some deep work of Arazy [A2] is done in the
discrete case N = B(/>), at the time of this writing it seems unclear how to prove a
suitable substitute of the Kadec—Pelcynski dichotomy in the non-commutative
setting. We refer to [RX] for further discussions and a possible formulation in the
category of Banach spaces. Our main open problem is the equivalence between (.,
and 60%,,.

Problem 2.18. Let 1<p< 0. Is every 0.2, space a €0, space?

The missing link between these notions seems to be the CBAP. In contrast to the
commutative L, space theory, we will see that there are non-commutative L, spaces
without Grothendieck’s approximation property and thus without the CBAP. In
fact, our argument uses a deep result of Szankowski [Sz2] on the uniform
approximation property of S,.

Theorem 2.19. Let p>80. Then there exists a finite von Neumann algebra N with
separable predual such that L,(N,t) does not have Grothendieck’s approximation

property.

Proof. Let 1 <p< oo. We will prove the assertion by contradiction. Let us assume to
the contrary that every finite M with separable predual L,(M,t) has the AP.

Claim 1. For every (semi-) finite von Neumann algebra N, L,(N,t) has the
metric approximation property (MAP). Indeed, for every finite M with separable
predual, L,(M,7) is a separable dual space and thus by a result of Grothendieck (see
[LT, Theorem 1.e.15]) the assumption implies that L,(M, t) even has the MAP. Since
L,(N,7) is a direct limit of completely contractively complemented subspaces
L,(M,7) with M finite and M, separable, claim I is proved.

Claim II. For every von Neumann algebra N with a normal faithful state, L,(N) has
the MAP. Indeed, according to an unpublished result of Haagerup [Hal], L,(N) is
completely contractively complemented in L,(.#) such that .# is the strong closure
of complemented finite von Neumann algebras .#;c.# admitting in addition
normal conditional expectations Ej : .4 — M y. Since .4y is finite, we have the MAP
for all L,(.#}) by claim I. Using the conditional expectation Ej, we see that L,(.4y)
is contained in L,(.#). Then L,(.#) has the MAP because |J, L,(.#) is norm
dense. By complementation L,(N) has the MAP.

Claim III. For every von Neumann algebra N, L,(N) has the MAP. Indeed, let N be
an arbitrary von Neumann algebra. Then N is a strong limit N = lim; N; of ¢-finite
von Neumann subalgebras N; admitting normal conditional expectations, see the
appendix in [GGMS]. Since o-finite von Neumann algebras admit a normal faithful
state, we deduce from claim II that for all #, L,(N;) has the MAP. Thus the direct
limit L,(N) also has the MAP.
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Claim 1V. [], S, has the MAP for all ultrafilters % . Indeed, according to a result of
Raynaud [Ra2] there exists a von Neumann algebra Ny such that L,(Nz) =[], Sp-
Thus [[, S, = L,(N#) has the MAP by Claim III.

Conclusion. According to a result of Heinrich [He], [], S, has the bounded
approximation property (BAP) for some non-trivial % if and only if S, has the
uniform approximation property. However, Szankowski [Sz2] proved that this is not
true for p>80, a contradiction to claim IV. Therefore, there exists a finite von
Neumann algebra with separable dual such that L,(M,t) does not has the
approximation property. [l

The following problems are still open.

Problems 2.20. Let |<p< 0.

(i) Do 0%, spaces have the CBAP?

(i) Can the assumption CBAP be dropped in Corollary 2.13(ii)?
(iii) Does X 0%, and X CBAP imply that X is €0.%,?
@) Is [, S, an 0L, space?

We note that a positive answer to (iv) would provide a negative answer to (i) for
p>380.

3. Duality for €0.% ,-spaces

In this section, we follow Johnson et al. [JRZ] in order to find finite-dimensional
decompositions of €0, spaces and duality results. The notion of local
reflexivity will be a crucial tool. Let us recall that an operator space X is locally
reflexive (in the operator space sense) if there exists a constant C>0 such that
for every finite-dimensional operator space F, every finite-dimensional subspace
Lc X* and every linear map u: F— X** there is a map v: F— X such that for all
feF and yelL

Culf ), y> = <o(f),y> and o], < Cllul]-

Then ler(X) = inf C, where the infimum is taken over all constants above. In the
operator space category this notion goes back to [AB]. In Banach space theory, every
Banach space is locally reflexive (see [LR]). However, B(Z>) is not locally reflexive in
the operator space sense. We will start with an adaptation of a well-known
application of local reflexivity in the category of operator spaces.

Lemma 3.1. Let X be a locally reflexive operator space, T : X*— X* a finite rank
map, F < X* a finite-dimensional subspace and ¢>0. Then there exists a finite rank
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map S: X - X such that
Im(S™) = Im(T), ISl < (X +e)ler(X)T |l and  S*(f) =T(f)

for all feF. Moreover, if T is a projection, we can find a projection S with these
properties.

Proof. Let L = T(X™*) and F'OF a finite-dimensional subspace of X* such that
T(F')=L.Consider T: X*—Land T*: L*—> X**. Applying the local reflexivity, we
can find S} : L* — X such that

for all /e L* and f € F’, and satisfying the corresponding ch-norm estimate. Since S}
takes its values in the finite-dimensional subspace L < X*, this implies S}|p = T'|p
and in particular, S7(X*) = T(X*) = L. Let

¢:X—->X/L,=X"/L*=L*

be the natural quotient map. Then ¢*: L— X* is the natural inclusion map and
S = S,q satisfies the assertion. If 7 is in addition a projection onto L, then Sjq* =
Tq* = id; implies

S*S* =¢q"S{q* S} = ¢4*S;.
Hence (S?)" = S* and therefore $> =S. O

The following Lemmas 3.2, 3.3 and Corollary 3.4 are the operator space analogues
of Lemmas 4.2, 4.3 and the corresponding Corollaries in [JRZ]. They provide the
main technical tools for constructing bases in €02, spaces.

Lemma 3.2. Let X be a locally reflexive operator space, Y < X* a subspace and (F;) a
Sfamily of finite-dimensional operator spaces such that there are linear maps r;: F;—> X
and s;: X — F; with s;r; = idg,, s(F) < Y, (ris;) converging to the identity on X in the
point-norm topology and

Sup HriH(,'b||siH(fb<C1'
I

If Tj: X* =Y is a net of finite rank maps such that T;|, converges in the point-norm
topology to idy and
sup || Tjllp < G,
j

then for every finite-dimensional subspace Ec X, every finite-dimensional subspace
LcY and 0<e<1, there exist an index i€l, r:F;—>X and s: X — F; such that
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sr = idg, and the projection Q =rs : X - X satisfies

(i) O(x) =x and Q*(y) =y for all xeE, yeL;
(i) O"(X*)=Y;
(iii) [|Ql]ep <llrllepllsllep < (1 +2)CL(Cr + Coler(X) + Ci Goler(X)).

Proof. Letn =dim(L) and yy, ..., y, be part of a biorthogonal system for L. Since 7T;
converges to idy in the point norm topology, we can find j such that

€
T. — <
175 0) = well <5,
for all k=1, ...,n. According to Lemma 1.2, we can find W : Y — Y such that the
finite rank map T = WT;: X*->Y satisfies T|, =id, and [|T]|,<(1+¢)C>.
Applying Lemma 3.1, we can find a finite rank map S: X — X such that S*(X*) =
T(X*)cY, S*(y) =T(p) for all ye T(X*) and
1Sl < (1 + &)*ler(X) Ca.

In particular, S*(y) =y for all ye L. We now put G = span(Eu S(X)) and apply
Corollary 1.3 to find an index iel and r: F;—» X, s: X > F; such that sr = idp,
s (Fy)cY,

[l Isllep < (1 +2) €
and rs(x) = x for xe G. Then, we obtain a projection P = rs with
||PHch<||s||ch‘|r||(?b<(l + S)Cl'

Define Q = S(idy — P) + P. Let us check that Q is a projection. Since Im(S)c G, we
have PS = S and thus

Q* = P(S(idy — P) + P) = S(idy — P) + P = Q.

Clearly, Q(X)< P(X). Moreover, for xe P(X) we have Q(x) = x. This shows that
P(X) = Q(X) and hence Qr = r. Let us define § = sQ. Then we get

Sr = sQr = sr = idp,.
Moreover, from P(X) = Q(X) we deduce

r§=rsQ = PQ = Q.
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For the norm estimate (iii), we observe
Irlleol181en < (14 &)[7lcp 8115 |1S (idx — P) + Pl

< (L) CilllSen (T + 11Pllep) + [1Pl]p)

< (1+e)*Ciler(X) G (1 + C) + Cy).
To show (i), we consider xe E, then

O(x) = S(idy — P)(x) + P(x) = P(x) = x.
Let ye L, then S*(y) = y implies
QW) =SW+POy)-PSOH)=y+PQy-PO) =y

Since P* = s*r* has its image in Y, we also obtain 0*(X*)< Y. This shows (ii) and
the assertion is proved. [

The following analogue of [JRZ, Lemma 4.3] will be proved similarly.

Lemma 3.3. Let X be a locally reflexive operator space and let Y = X* be a subspace.
Assume that there exist a net of finite-dimensional operator spaces (F;) and nets of
maps ri: F;—> Y and s;: X*— F; such that s;r; = idp, and r;s;|y converges in the point-
norm topology to idy and

supHSichHerchCl'
i

If T;: X —» X is a net of finite rank maps converging in the point-norm topology to idy
such that T;(X*)<= Y and

Sllp ||T}||cb<c27
J

then for every finite-dimensional subspace Ec X, every finite-dimensional subspace
L<Y and 0<e<] there exist an index i€l, r: F; - X and s: X — F; with sr = idp-

such that the projection Q =rs: X — X satisfies

(1) O(x) =x and Q*(y) =y for all xeE, yeL;
(ii) O"(X")=Y;
(i) [|Q]ep < IrlleplIsllep < (1 + &) Coler(X)(Crler(X) + Gy + CiGoler(X)).

Proof. For a finite-dimensional subspace EcX, we apply Lemma 1.2 and the
assumption to obtain a finite rank map T:X—->X with ||T|,<(1+¢)C,,
T*(X*)< Y and T|; = idg. Let G = span(Lu T*(X*))= Y and apply Corollary 1.3
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to find r: F;—> Y, s: X* - F; such that sr = idp,, rs|; = idg,
lIsllep <1 and ||r]], <(1+&)C.

Let us denote G’ =span(Gur(F)) and apply the local reflexivity of X to find
v: Ff— X such that v*(x*) = s(x*) for all x*€ G and

[[ollp < (1 + &)ler(X).

In particular, v*r = idp,. We define P = vr*|, : X -> X and observe that P* = rv* is a
projection on X*. Thus P is a projection on X. Let us note that

Pl =1 =rs|g = idg.
We define Q = T + P — PT and deduce from 7*(X*)cG
Q) = P*T*(idy- — P*) + P'P" = Q".
Hence Q is a projection on X. Let x€ E, then
O(x)=T(x)+ P(x) — P(T(x)) = T(x) = x.

As above in the proof of Lemma 3.2, we obtain Q*(x*) = x* for all x*€ G and (i) is
proved. In particular, we deduce Q*r = r and hence

v Q' = v'r = idp,.
By duality we get r*Qu = idr:. We put w = Qu and observe from 77 (X*) =G
(wr|y) =r*Q =P T+ P — TP = Q"

and hence wr*|y = Q. Since Q*(X*)cP*(X*) =r(F;)cY, we have proved (ii).
Finally, we deduce the norm estimate

* 2 .
1 epllwllp < (1 + )" Culer(X)(||(idx — P)T || +1|Pl].5)
< (14e)*Ciler(X)(Cy(1 + ler(X)Cy) + ler(X)Cy). O

Corollary 3.4. Let X be an operator space which satisfies the assumptions of Lemma
3.2 (respectively, Lemma 3.3). Then for every finite rank map T:X —X with
T(X*)<Y and >0 there exist a projection Q:X - X such that QT =TQ =T,
O (X*)<Y, and an index i with r:F,—>X, s: X—F;, (respectively, r: F/—>X,
s: X > F}) such that Q = rs and

1Qllep <[lrllepllsl]ep < (1 + &) CL(Cr + Coler(X) + CrGaler(X))
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(respectively,
Qllep <IIlleplIsl]ep < (1 + &) Crler(X) (Cr Goler(X) + G + G Goler(X))).

If in addition X is separable, we can find a sequence (Q,) of projections converging in
the point-norm topology to idy satisfying the same norm estimates and

01Ot = On1OQn = On
for all neN. If in addition Y is separable, (Q,) can be chosen to satisfy also
lim Q,(y) =y
forall yeY.

Proof. Let E=T(X) and L = T*(X*)< Y. According to Lemma 3.2 (respectively,
Lemma 3.3), we can find a projection Q: X —» X with Q| = idg and Q*|; = id, and
the corresponding factorization properties. Then we have

QT =T and Q'T"=T".

Hence TQ = (Q*T*)" = T. If X is separable, we may consider a dense sequence (x;,)
in X and use Lemma 3.2 (respectively Lemma 3.3) in order to obtain an increasing
sequence of finite-dimensional spaces E, =X, L,< Y and Q, = r,s, such that x, € E,
and

Qn|E,, = idg,, QZ|L,, =idr,, Ou(X)<=E, and QZH(X*) <Ly
Then, we deduce

Qn+1Qn = Qn and QnQn+1 = Qw

If in addition Y is separable, we may choose a dense sequence (y,) = Y and achieve
O (¥n) = yu for all n. The norm estimates follow from Lemma 3.2 (respectively
Lemma 3.3). O

Theorem 3.5. Let 1 <p,p’'< o0 with% +1% =land X a 0%, space. For p = oo assume
in addition that X is locally reflexive. If X* has the CBAP, then X* is a €0.% ,y space and

COLy(X*)<SCOL(X)(COLH(X) + AX)ler(X) + COLH(X) AX)ler(X)).

Proof. Let X be a 0%, space. Note that for 1 <p < oo, we deduce from Lemma 1.5
that X is reflexive. For p = 1, we note that a ¥0.%; space is completely isomorphic
to a subspace of an ultraproduct [[, Si (see the proof of Proposition 1.6). Since
(IT, S1)" is a von Neumann algebra [Gr], we deduce from [EJR] that [],, S; and thus
X are both locally reflexive. Therefore, we can assume that X is locally reflexive for
all 1<p< oo. If X* has the CBAP, we can apply Lemma 3.2 to ¥ = X™ and find for
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every finite-dimensional subspace L < X™* a finite-dimensional C*-algebra 4 and r =
rp:Ly(A)—>X, s=s1:X—>Ly(A) such that sr=idy 4) and s*r*|, =idy. Hence
we get r*s* =idy,4). The net ((rz),(sr)), of such maps indexed by the finite-
dimensional subspaces of X* yields the assertion. The estimate on €02, (X*)
follows from Lemma 3.2. [

The next lemma is well-known in Banach space theory.

Lemma 3.6. Let X be a locally reflexive operator space, Y = X* a subspace and (T}) a
net of finite rank maps T;: X* — Y such that T;|y converges in the point-norm topology
to idy, T; converges in the point-weak™ topology to idy-, and

Sup |‘Ti||(,'b <C.
1
Then there exists a net of finite rank maps S;: X - X such that S; converges in the

point-norm topology to idy, Si|y converges in the point-norm topology to idy,
SHX*)< Y foralliel, and

sup ||Sil |, < ler(X) C.

Proof. Given ¢>0 and finite-dimensional subspaces LcY, FcX*, EcX, we
can apply Lemma 3.1 to find S=SpLrg.: X—>X such that ||S]|.,</ler(X)C,
S*(X*)< Y and

18" (v) = ylI<ellyll and  [<x", S(x) — x)[<ellx]] ||x"]]
forall ye L, x*€ F and x€ E. Then the new net (Sy r ) converges in the point-weak
topology to idy and (S} rp,ly) converges in the point-norm topology to idy.
A net (S,) of convex combinations of these maps converges in the point-norm
topology to idy and the dual net (S}|,) still converges in the point-norm topology

toidy. O

Corollary 3.7. Let X be a locally reflexive operator space such that X* has the CBAP,
then X has the CBAP.

Proof. Apply Lemma 3.6to ¥ = X* and C = A(X*). O
The case p =1 in the following theorem seems to be particularly interesting.

Theorem 3.8. Let 1<p,p' < 0 with % —i—# =land X* a €02, space. If p = 1 assume
in addition that X is locally reflexive. Then X is a 0% space and

COL Y X)<SCOLy(X*Vler(X)* (2 + 0L y(XY)).
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Proof. Let us consider 1<p< oo first. Then every 402, is an 0%, space and
hence reflexive according to Lemma 1.5. If p = o0 and X™* is a ¥0.¥ ,, space, we
see that the identity on X* factors through an ultraproduct [[, 4,, where 4, are
finite-dimensional C*-algebras. Then the inclusion map i: X — X** factors through
(IT, A»)" which is the predual of a von Neumann algebra. Since preduals of
von Neumann algebras are locally reflexive [EJR], we deduce that X is locally
reflexive. Thus either by the argument above or by assumption, we may assume
that X is locally reflexive. Obviously, X™* has the CBAP. Then X has the CBAP
according to Corollary 3.7. Hence, Lemma 3.3 applies for ¥ = X* and yields the
assertion. [

Let us continue with immediate applications of Theorem 3.8.

Corollary 3.9. Let 1 <p,p’ < oo with }) —5—]% =1 and X an operator space. Then X is a
C€0L, space if and only if X* is a €0% space.

Proof. According to Lemma 1.5 every 0., and in particular every 40.%, space is
reflexive (and thus locally reflexive). Since X has the CBAP, we deduce that X = X**
has the CBAP and therefore Corollary 3.7 implies that X* has the CBAP. According
to Theorem 3.5 X* is a ¥0.%, space. Conversely, if X* is a 40%, space, we can
apply what we just proved to deduce that X* is reflexive and X = X** is a 402,
space. [J

Proposition 3.10. Let N be a hyperfinite von Neumann algebra. Then N, is a €0.%
space with €0 (N,) = 1.

Proof. First let us assume that M is a hyperfinite von Neumann algebra that acts on
a separable Hilbert space. By the result in [ER1], we see that M, is a rigid 0 % space,
i.e. there exists a dense family of complete isometric copies of finite-dimensional non-
commutative L; spaces. Now, we consider an arbitrary N. In the Appendix of
[GGMS] Haagerup showed that for every separable subspace F<N,, there is a
countably generated von Neumann subalgebra M <N with a normal conditional
expectation E: N — N onto M such that the pre-adjoint map E, : N, — N, satisfies
E.(x) = x for all xeF. In particular, for every finite-dimensional subspace F< N,,
we find M as above such that F < E,(M,) = N, and E, is completely isometric. By the
first part M, is a rigid 0% space and therefore F is arbitrarily close to a complete
isometric copy of L;(A4) < E.(M,) with A finite dimensional. Since F is arbitrary, we
deduce that N, is a rigid 0%, space. Finally, we apply the results from Ng and
Ozawa (see [NO]) and obtain that completely isometric copies of L;(A4) are
automatically completely contractively complemented in N,. Hence N, is €0.%
space with ¥0.%(N,)=1. O

We will now improve the estimate 0.% , (A4) <6 (which improved former results of
Kirchberg [Ki2]) for nuclear C*-algebras in [JOR].
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Theorem 3.11. Let A be a nuclear C*-algebra, then

0L, (4)=60Z, (4)<3.

Proof. By the results in [EL, Theorem 6.4] A** is hyperfinite and thus by Proposition
3.10 A* satisfies €0.%(A*) = 1. According to [AB,EH] 4 is locally reflexive and thus
we can apply Theorem 3.8 and deduce

0L (A)<I’1’Q2+1)=3. O

Let us conclude this section by showing that the local reflexivity assumption in
Theorem 3.8 and Corollary 3.7 is necessary.

Proposition 3.12. For every neN there exist an operator space Y, and a sequence m
such that Y, is completely isometric to £ @ 1£(s1(m)) but

A=Y
2
In particular, the (operator space) dual Y* of the co sum Y = (3, @ Yy),, is a €0,

space, but Y does not have the CBAP and thus is not an 0% 4 space.

Proof. The idea of this ‘pull-back’ construction Y, goes back to Kirchberg [Ki2]. We
will use the form presented in [OR, Lemma 4.5]. By [OR, Lemma 4.8], there exist a

constant ¢, € [‘/'7

¥, v/n] and a sequence of hyperfinite maps u : /", — M,y such that

| ®@idy,, | |I<1,

k+1
[ :uk(/';)a/*;ns%@,
k-1 ,
k Cn<||uk®ld]v[mk | = Huk||ch<c,,.

Let us recall that for m = (m;) we use the notations s., (m) for the ¢o-sum and b(m)
for /., -product. Then, we consider the map u = (ux), : £, —»b(m) and the image
F =u(/",). We denote by 7:b(m)—b(m)/s., (m) the quotient homomorphism. The
interesting pull-back space is

Y, =1 (/7)) = u(/%) + 5. (m) = F + 5, (m).

Let us state some known facts. The quotient space Y, /s, (m) is completely isometric
to /", [OR, Theorem 4.7]. Using the orthogonal decomposition of

b(m)™ = b(m) P [b(m) /s (m)]™

o0
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it turns out that

Y, =/1 P s1(m) (3.1)
1

holds completely isometrically. We refer to [ER2, Theorem 14.5.6] for related details.
Now, we want to show that Y, has a bad CBAP constant. We will need a ‘nice’
projection onto F with a bad norm. Indeed, we can extend the maps
u ! u (")) > 4", to maps vk : My, —/" of norm less than 2. Then, we define
v:b(m)—/" by

Co((500).¢> = lim Crilse). €

where % is a free ultrafilter on N. Clearly, vu(x) = x for every xe/", and v vanishes
for elements x€s,, (m). Hence P = uv|y : Y, —F is a projection onto F (of ch-norm

<24/n and Pl (m) = 0). Furthermore, we will need the projections Qy, : b(m) —b(m)
defined by

xi if k>m,

(ut)e = {

0 else.

Note that Q,,(s,, (m))<=s., (m) and vQ,, = v. Let now T:Y,— Y, be a finite rank
map such that T'|p = idp. We consider the map V' =T/, (,,:%,(m)—b(m) and

claim that for every ¢>0 there exists an / such that |[VQ], ||(b\b Indeed, let

G =1Im(V) be the finite-dimensional range and cons1der the restriction
Vs, (m)—>G. Then V*(G*)=s;(m) is contained in a finite-dimensional subspace.
Thus, we can find an / such that for the projection P; onto the / first coordinates
we have

1PV (g) =V (9)ll< llgll-

EHT
Using (2.3), we deduce ||P;V* — V*||,, <¢ and therefore
VOIls, mlles =V = VP)OUls ) + VP1Olls, mylles

SV =VPilly = [V = PV || <e.
Let us consider the subspace

Yoy =F+ Qs (m)) =Y,
Using

(idy, — T) = [(idy, — T)P + (idy, — T)(idy, — P)] = (idy, — T)(idy, — P)

= (idy, — P) — T(idy, — P).



M. Junge et al. | Advances in Mathematics 187 (2004) 257-319 295
We deduce from (idy, — P)( Y1) < Qi(54 (m)) s, (m) that
|(idy, = P)ly, |l =|(idy, = T)ly,, + T(idy, = P)ly, [l
< |(idy, = Dly, ey + (T, ) Qilidy, = P)ly, Il
< [y, = Dlley + 1VQils,, 1o
S |lidy, = Ty +e<t+ e+ [T

Let us note that (idy, — P)|y, , leaves Y, (and Q;(F) + Qi(s.. (m))) invariant and is a
projection onto Q;(s.,(m)). However, the space Y,; =F + Qi(s,(m)) (more
precisely O;(F) + Qi(s+(m))) also satisfies the conditions from [OR, Lemma 4.5]
and therefore

NG
LRI = Py, lly <1+ 2+ Tl

Since £>0 is arbitrary this implies
Vn
- I<ITlle-

In view of the perturbation Lemma 1.4, we obtain A(Y,,))@— 1. Using (3.1)

and m,, for the sequence obtained at the n-step, we deduce that the dual space of
(22, ® Ya),, is completely isometric to

(Z ('B(/}f@lsl(mn))) >~/ @3 ().

1

Here m is obtained as the union of the m,’s. Hence (3 ,®Y,),, is completely

isometric to the predual of an hyperfinite, semifinite von Neumann algebra. Since Y,
is completely contractively complemented in (3, ® Y,,)C07 the second assertion is

obvious. [

Problems 3.13. (i) Let 1 <p<oo. Does X*O%, imply that X is 0L ,?
(i1) Is the constant 3 in Theorem 3.11 best possible?
(iii) Is every 0% o, space locally reflexive?

4. Basis for 0%, spaces

Let us outline how a basis for %, spaces is obtained in the commutative case.
Following the work of Johnson et al. [JRZ], Nielsen and Wojtaszczyk showed
in [NW] that for every %, space X there is an increasing sequence of integers ()
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such that

X@P<Z @/;k)
p

k

has a ‘nice’ FDD and therefore has a basis (see Proposition 4.2 below for the non-
commutative counterpart). However, since every %, space contains ¢/, complemen-
ted, Petczynski’s decomposition trick can be used to prove that X is isomorphic to
X®,(>_,®7)) and thus X itself has a basis.

Using the results from Raynaud and Xu [RX], we could apply similar techniques
for arbitrary separable (%), spaces containing complemented S;’s. However, the
results of [RX] do not hold for p = oo and this corresponds to the separate treatment
of the case p = oo in the commutative case (see [JRZ,NW]). Moreover, in the
commutative case the Pelczynski decomposition trick was used for p< oo only as a
matter of convenience, because a complemented version of /7, has anyway been
available. Following a suggestion of W. B. Johnson, we will prove the existence of a
nice FDD and a basis entirely relying on local properties of the underlying 402,
space, see Lemma 4.5 below, and not relying on the results in [RX]. Even for Banach
spaces this approach is new, although certainly known to specialists. This also covers
the case p = oo and therefore provides bases for nuclear C*-algebras. Moreover,
using Lemma 4.5 unifies the approach to the basis problem for %, spaces
(I<p< o).

In analogy with theory of Banach spaces, we will need operator space FDDs. An
operator space X has a completely bounded finite-dimensional decomposition (in short
cb-FDD) if there exist a constant K and a sequence (F,) of finite-dimensional
subspaces such that every element x€ X has a unique decomposition x = >, x,, with
x,eF, and

<K
My (X)

> a,®x,

n<N

> a@x,

neN

M, (X)

for all N;meN and (a,) = M,,. If this holds for a particular K, we say that X has a
K-cb-FDD. Equivalently, the projections Py : X -3, _\F, satisfy |[Py]|,<K.

Proposition 4.1. Let 1<p< o0 and X a separable €0, space (and locally reflexive
for p = o) such that X* has the CBAP, then X has a cb-FDD.

Proof. Since a 40, space is locally reflexive for 1<p< oo (see Lemma 1.5 and
the proof of Theorem 3.8 for p=1), we can apply Corollary 3.4 and obtain
an increasing sequence (Q,),. The c¢b-FDD is then given by X = Qi(X)+

ZI:C:I(QnJrI - Qn)(X) U
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The next Lemma provides the ¢h-FDD for a suitable enlargement of a 402,
space following the work of Nielsen and Wojtaszczyk [NW]. This approach provides
better constants than the purely local techniques in Lemma 4.5 and is algebraically

simpler.

Proposition 4.2. Let 1 <p< oo and X a separable operator space such that there exists
an increasing sequence (Q,) of projections Q,: X — X satisfying

000n11 = 0p10, =0, and 11£n O.(x)=x

for all xe X . If moreover, for all neN there exist finite-dimensional operator spaces F,
and maps ry,: F, > X, s, : X > F, satisfying Q, = rns, and s,r, = idp, with

||S11| ‘(,’b”r”' ‘(,’b < C’

then the space Z = X @ (3,2 @ F,), (Z=X® (3,2, ® Fy),, for p = o) admits
a ¢b-FDD Z = %" | Z, with projections Py :Zasz:lzn such that

||PNHC/7<C7 (41)

dcb(Zn;Fn)<4C2a (42)

n=1 n=

N N
dey | > Zo, <Zj @Fn> <C. (4.3)
P

Proof. Motivated by Q,(X) = 0,1 (X) + (@ — Qu_1)(X), we define
Yo = (0= Qu)(X)cX and Z,=Y,®,F, .

Here we use Qyp = {0} and Fy, = {0}. By scaling, we may assume that for every ne N
we have ||r,|| , <1 and ||s,|| , < C. For any fixed ne N, we consider 7, : Z, — F, given

by T,(y +x) = su(y) + spFu_1(x) and T,Zl(f) =(OQn = On-1)ru(f) +su1ra(f ).
Then

- , L 1
TN T 1 op < (lsal 2 + Hsuraa )7 (1@ = @ut)rallly + surral 27

1 1
< C2((2CY 4 CPyr)<4C.
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This proves (4.2). Let # = (3.2 @ Fy-1),. For p = oo we use the ¢p-sum. We want
to show the ch-FDD of

©
Z=X®,7 = Z Z,.
n=1
By density we can assume that z = x + f and there exists an N €N such that

N
QN(X) =x and f= anfl with f, 1€ F,_,.
n=1

By definition Qy = 0, hence we deduce

N N
=X+ =0n(X) = 0+/ =) [(Qu—=Cu)(X) +fuil€ Y Zn.

n=1 n=1

Clearly, we have Y, < Qn(X) for all n<N. Therefore, this argument shows for all
NeN

N N
QN(X) @p(Z @Fnl> :Zzn
n=1 P n=1

On the other hand, we deduce

n=1

N N N—1 N-1
dcb sz <Z @Fn> :dcb QN(X)®1)<Z @Fn> 7FN®p<Z @Fn>
n=1 n=1 P n=1 p p
< doy(On(X), Fy) <|[rullpllsnllep < C-

Moreover, we have a projection Py : Z —>Z,11V:12n defined by

N
PN<x7f> = QN(X) +Zf;1f11
n=1

where / has components f = Y, f,—1. It is obvious that ||Py||,<||On||,<C. O

Remark 4.3. In the proof above, the /,-sum of the F,’s can be replaced by a space
with a ¢b-FDD 7 = )" @ F,. This is interesting for rectangular versions of €0.%,
spaces.

The following elementary distance estimate is useful when dealing with orthogonal
decompositions.
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Lemma 4.4. Let P and Q be projections on operator spaces X and Y, respectively. Then
den(X, Y) < ([Pl ey + [lidx = Pllp)([1Qllop + [lidy — QOll.5)

X max{dcb(P(X)7 Q( Y))vdcb((idz\’ - P)(X)7 (ldY - Q)(Y))}

Proof. Let u:P(X)—>Q(Y) be an isomorphism with [[u||,<1, and v: (idy —
P)(X)—(idy — Q)(Y) be an isomorphism with |[v]|,<1. (By convention, the
right-hand side is oo if either P(X), O(Y) or (idy — P)(X), idy — Q(Y) are not
completely isomorphic.) We define w = uP + v(idy — P) and observe that w is
invertible with w™! = u='Q + v~!(idy — Q). The triangle inequality yields the norm
estimate. [

The following rather technical lemma allows us to construct nice FDD by using
entirely local techniques suggested by W.B. Johnson. The idea of the proof is an
application of the well-known principle “robbing Peter to pay Paul”.

Lemma 4.5. Let 1 <p< oo and X a separable operator space together with a subspace
Y < X* satisfying the assumptions of Lemma 3.2 (respectively Lemma 3.3). We assume
in addition that for every finite rank map T : X > X, every ¢>0, and every space
F=(F,®, ®,F,) (respectively F = (F; @, @,F}")) there exist «: F—>X, f:
X - F such that fo. = idp, *(F*)< Y and

ledlepl1Blley < C3 - and [|Tel| <.

Then X admits a cb-FDD
xX=> 2z
"
such that for every ne N, there exists an index i, with
dep(Zy, F;)) < C  (respect. dcb(Z,,,Fi’:) <C)

and for NeN

N N N N
d E%»(E @&) < [respect. do [ 2, (}j@F,:> <c
n=1 n=1 P n=1 n=1 p

Here the constant C depends only on Irc(X), Cy, Cy in Lemma 3.2 (respectively Lemma
3.3) and C5 above.

Proof. We will give the proof under the assumptions of Lemma 3.2. The
modifications for the assumptions of Lemma 3.3 will then be obvious. Let (x,) be
a dense sequence in X . By induction we will construct a sequence (i,) of indices in I,
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two sequences (Q,) and (P,) of projections on X such that for all ne N

D) [1Oullp <
(2) QnQn+l Qn+lQn = Qn;
(3) xn€0n(X);
(4) dep(On(X), F,) <5
(5) Im(Q;) = Y;
©6) [|Pnll<d;
(7) PuQn = QuP, =0;
(8) Im(P;)=Y;
) PnOni1 = Ony1 P = Py;
(10) dy(P(X), (T2} @ Fy),) <d.

Here the constants ¢ and d only depend on Irc¢(X), C;, C; in Lemma 3.2 and C;
above.

In the first step of the induction, we apply Corollary 3.4 in order to obtain i; €/
and a projection Q; on X such that (1), (3)—(5) above hold for n = 1. We simply set
Py =0and Q) = 0. Now we assume that i, ..., i, in I and projections Qy, ..., Q,, Py,

..,P, on X are found satisfying the required properties for all k =1, ...,n. Then
according to Corollary 3.4, we can find an index i,,; €/ and a projection Q,; such
that (1), (3)—~(5) hold and such that

Qn+1(Qn + Pn) = (Qn + Pn)Qn+1 = Qn + P,

Thus from (7) we deduce that (2) and (9) hold, too. In order to construct P,.;, we
consider

F:Fil @p"'@pFi,,

By assumption there exist « : F— X, f: X > F such that fo = idr, f*(F*)< Y and

1
C/,<C3; Hﬁ“cb\ and ||Qn+1a||cb\

la e

Then we see that

\lidp — Blidx = Qni1)ollp = [1BQni1adl] o <1/2.

Thus B(idy — Qn+1)e is invertible and its inverse w : F — F satisfies ||[w™!||., <2. Let
us define

&= (idy — Qi) B =wh(idy — Qui1)-
Then & = idr and we obtain the norm estimates

||O?||cb<(1+c>c3a ||:BHCb\ ( C)'
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Therefore, P,y = o?ﬁ is a projection on X with P, 10,1 = Qur1Pyr1 = 0. This
proves (7). Using Im(P; ) =Im(Q;, ) + Im(B")= Y, we obtain conditions (6)—(10)
at (n+ 1)th step with d = 2(1 + ¢)>C;. This concludes the inductive construction.

With the help of the two sequences (Q,) and (P,), we can easily construct the
desired cb-FDD for X. Indeed, for ne N we let (with Qy = Py = 0)

Zy = (Qn - anl - Pnfl)(X) JrPn(X)~

Then, we deduce for R, = Q, — Q,—1 — P,—1 and by elementary calculation with
@ that

dep(Fiy, Zn) < dep(Fiy, On(X))den(On(X), Ru(X) + Pu(X))
< c(|[Rullep + [1@n-1 + Pu-tl]cp)
X dep(Ry(X) @ 1(Qn-1 + Pu—1)(X), Ro(X) + Pu(X))
< ¢3¢+ 2d)dep(Ru(X) @ 1Pu(X), Ru(X) + Pu(X))
X dep(Pu(X), (On-1 + Pp1)(X))
< ¢(3e+2d)(|[Rullp + [ Pall )
X dep((On—1 + Pu1)(X), Fi @ pFy @) @ pF), )
X dep(Pp(X), Fiy @+ @pFi, )

< ¢3¢+ 2d)(2¢ + 2d)4(max{c,d})d.

In the last line we used Lemma 4.4 for X = F; @ ,(F;, @,--- ®,F;_,). Moreover,
we have

N
Z Z, = On(X) + Pn(X).

n=1

By (7) On + Py is a projection on X. Therefore, by the density of (x,) in X and by
(1), (3), (6), we deduce that )" Z, is a cb-FDD of X with constant <c¢+d.
Moreover, by Lemma 4.4 we deduce

N
dcb( vaFil @p G_)pEw)

=1
<201+ 2{|On1ls)
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x max{dus(On(X), Fyy), des (P (X), Fyy @ po- @, F,y )}
<2(1 4+ 2¢) max{c, d}.
The assertion is proved. [

Let us indicate a natural cb-basis for the spaces s,(m). The following proposition
is well-known. We add a proof for the convenience of the reader.

Proposition 4.6. Let 1<p<oo. Then S, has a 2-cb-basis given by the enumeration
e, €12, en, €1, e13, €23, €33, €32, €31, ... of the matrix units obtained by counting down
the nth column and then returning on the nth row from the right to the left.

Proof. Let us denote by (x,) the natural basis of S, indicated above. More precisely,

for every NeN the first N basis elements are the matrix units (e;) y- In

ij=1,...,

particular, x; = ej;. The next (N + 1)2 — N2 = 2N + 1 basis elements are obtained
by counting down the (N + 1)th column

XN241 = CL(N41)y XN242 = €2(N+1)y +++ s XN24N4+1 = E(N+1)(N+1)-
Then, we return on the (N + 1)th row from the right to the left
XN24N+2 = (NN XN24N43 = E(NH+1)(N=1)y -+ X(ya1)? = EN+D)1-

For ie N, we denote by p; be the projection onto the i-dimensional subspace /5 =/5.
Let Ey(x) = pyxpy be the projection onto the matrices in the upper left N x N
corner. Then 4y :S,—S, defined by 4y = Eny1 —Ex is a projection. For

convenience, we set Ay = Ej. Given N2<n<(N + 1)*, we define i =n— N2 If
i< N, the projection onto span{x; | k<n} can be described by

Py(x) = En(x) + pidn(x).

This can be written as a sum of two projections onto rectangular boxes. Hence
[|Pnl|,, <2. Similarly, if N<i<2N + 1, we have

Py(x) = En(x) + An(x)(id, — pan+1-i),
again the projection onto a large and very small rectangular box. For i = (N + 1)2
we use E(y,1). Since in any case P, is the sum of two projections onto rectangular
blocks, we obtain II1P,ll,>=2. O

In the following we call this the natural basis of S,,.

Corollary 4.7. Let 1<p< oo and m = (m(n)) a sequence of natural numbers, then
s,(m) has a (natural) cb-basis (x,) with constant 2.
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Proof. Let m = (m(n)), . For each n, we use the natural basis for S constructed
above and join them together in the /,-sum. [

Definition 4.8. Let (b;) be a ch-basis of an operator space X and m a sequence of
natural numbers. We say that the basis (by) is initially equivalent to s,(m) if there
exists a constant C >0 such that

dep(span{by | k<n}, span{x; |k<n})<C
for all ne N. Note that the basis depends on the ordering of m.

The following observation is contained in [JRZ] in the context of Banach spaces.

Lemma 4.9. Let X be an operator space with a FDD
X=>" 2z,

Assume each Z, has a cb-basis {b], ..., b}Z} with constant ¢\ independent of n, then X
has a cb-basis (b,). Moreover, for every n there exist N and j such that

k<N

d.y(span{by, ..., b,}, (Z Zj + span{b) T, ...,ij“}> <ec,

where ¢ only depends on ¢\ and the cb-FDD-constant in X =, Zj.

Proof. Let us denote by Oy : X =3 _\ Z, the projection onto the first N blocks.
The ch-basis is simply given by bi,....b; b7, ...,b; ... . We define m(N)=
Zszl kj. Let m(N)<n<m(N + 1) and choose j such that n=m(N) +,. Let P;:
ZN+1 —>span{b}l\'+17 ...,b_}v“}. Then the projection P, onto the span of the first n
elements is given by P, = Oy + ﬁj(QN+1 — Q). It is easily checked that Qy P, =

Oy and Qy. 1P, = P, and thus we have found a cb-basis. The second statement is
obvious in view of Lemma 4.4. [

Let us state our main result on bases for ¥0.%, spaces (see the beginning of
Section 2 for the technical notion ‘with respect to Y7).

Theorem 4.10. Let 1 <p< oo and X a separable operator space such that one of the
following conditions is satisfied:

(i) l1<p<oo,and X is a 60%, space;
1) p=1, X is a 0%, space and there is a subspace Y < X* with the CBAP such
that X is a €0% space with respect to Y
(iii) p = o0, X is a locally reflexive €0.F ., space and there is a subspace Y < X* with
the CBAP such that X is a 0% ., space with respect to Y.
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Then X has a cb-basis initially equivalent to some s,(m). Moreover, the basis constant
can be estimated by a function depending only on €0 ,(X), A(Y*) and lcr(X).

Proof. Let X be a ¥0.%, space (with respect to Y for p =1 or p = o0 and being in
addition locally reflexive). For 1 <p< oo, we can apply Corollary 3.9 to deduce that
X*isa 0L, space and in particular has the CBAP. We put Y = X in this case
and note that the assumptions of Lemma 3.2 are satisfied. Let

r s O(SH) @, @0, " (S10) - X
and

51 s X0 (SH @, @0, (S1)

be such that Im(s})< Y, s,r, =id, r,s, tends to the identity in the point-norm
topology and sup,|[rall.||sull ., < c. We define

km = sup k,(n).

n

Let us consider two cases.
(a) There exists a strictly increasing sequence of natural numbers m; such that

k=1 for all jeN. Then X contains complemented S,”’s and thus complemented
S,"s for all meN. Using Lemma 2.9, we deduce that the additional assumption in
Lemma 4.5 is satisfied for the family

{L,(A4) | 4 finite-dimensional C*-algebra}.

Therefore X admits an FDD

X:ZZn

n

and there exists a sequence A, such that
dep(Zy, Ly(An)) <

and

dch <Z ZmLp<Al) @p @pr(AN)> <Cl~

n<N
Using Lemma 4.9, we deduce that X has a cb-basis which is initially equivalent to
s,(m) with respect to suitable m formed using L,(4,) =/} (S)) @ ,--- @,,/1;'(”) (SK).

(b) There exists my such that for all m>my k,, = 0. Equivalently, /(n) <m; for all
neN. If k(m) is finite for all m<my, then rk(r,) <>/, k(m)m? and hence X is finite

m=1
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dimensional. Therefore, X is ch-isomorphic to L,(A) for some finite dimensional 4.
In the following, we assume X is infinite dimensional and denote by m; be the biggest
m such that k(m) is infinite. Unfortunately, we do not know that m; =m,. We
consider ky(n) =) kn(n) and fix a free ultrafilter . Modifying r, and s,, we

obtain a factorization

mgm/
Iy Xﬂ) H /k/(n)(Sm,») ﬂ) Y

nau
Since [[, 4 /I;”(") is an abstract %, space, we may assume

H fﬁf (Vl) = LP(Q7 'Jja /J)

n,U

for some measure space (2,4, 1). Then, we obtain completely bounded factoriza-
tions

hx Xi)Lp(Qw@»#;S;”)iX** and  idy- ZX*ﬁLp'(Q,%’,u;S;V)zX*.

In particular, X* has the CBAP. Passing to a subsequence, we may assume that
(kim, (n)) is increasing and that r, and s, can be written as follows:

Tn : /1]?(”)(51&) Dp @1/11;’”1(”)(“9;1] )®,Lp(4) - X
and
50t X (S @ oo @, (ST @, L, (4).
Here A is a fixed finite-dimensional von Neumann algebra. Let us define
= r”'z,f‘(")(s',)ca,,--@,/,’?"” Vs’ = ultya)

Similarly, we introduce s) and s2. Now, we can pass to a further subsequence and
assume that s2: X — L,(A4) converges in the point-norm topology to a completely
bounded map s*: X—L,(4). Let us denote by E = (s*)"(Ly(A)) the finite-
dimensional image. According to Lemma 3.2, we may find a projection Q =rs :
X — X factorizing through L,(B) for some finite-dimensional C*-algebra B such that

This implies
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Let us define k(n) = Zm@” km(n). Using a free ultrafilter %, we define the maps
X ] s,
%

and
ka' (Sp)=>X* by <(r'((ba), x> :1i57r/1<r,g(bn),x*>
" L,(4)—>X" by (), x*) :liril <rﬁ(b),x*>.

Then, we deduce for xe X and x*e X™* that

X (x) = lim x*(r,5,(x)) = lim x* (r2s2(x)) + lim x* (rls! (x))
n na n,u

= (P2 (x), X"y 4+ {rlst(x), x).
Hence, the inclusion map 1y satisfies
ly = s + rlst.
Using s°Q = s> and Z = (I — Q)(X), we deduce
1z=(1-0)"1x(I - Q)= (I - Q)" (s’ +r's")(I - Q)
—(1—Q)"r's'(I - ).
As above, we observe that

[T sy =Ly(@. % uts Sp)

nau

for some measure space (€', %', i/'). Using conditional expectations onto subalgebras
with finitely many atoms, we see that the space L,(Q',%';1/;S)") has the y& -
approximation property, i.e. the 77 with respect to family of spaces /k (S””) (see
Remark 2.6). Since, Z is locally reflexive, we deduce that Z also has the 7, -

approximation property. On the other hand, Z contains complemented /;(Sl'j“) s far

out. Indeed, since this is true for X, by Lemma 2.10, there is a ch-complemented
subspace F'= X such that F is ch-isomorphic to /;(S)") and such that P vanishes on

F. Thus FcZ. Therefore, by Theorem 2.2, Z is ¥0%, with respect to the
family (/;;(SZ”))keN- Finally, putting together this basis with that of Q(X), we

obtain a basis of X where the basis constant is controlled in terms of
f(60ZL,(X),lcr(X), A(Y)). O

Remark 4.11. Submitting this paper, we were only able to show in the case (b) that X
has a basis without a control of the basis constant in terms of ¢0.%,(X), A(Y) and
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ler(X). We are indebted to E. Ricard for his improvement in Lemma 2.9 and for
pointing out a proof in case (b) for 1 <p< co. His arguments lead to the complete
answer given above.

5. Applications

We want to show the existence of a ch-bases for L, spaces over a hyperfinite von
Neumann algebra with a separable predual. The argument in Theorem 4.10 provides
such a ch-basis, but the estimate of the basis constant is rather involved. Indeed, the
proof yields a bad constant for type I von Neumann algebras and type I C*-algebras.
Since these examples are very important, we prefer to add a more direct argument.
We will start with the most natural examples of L, spaces over a hyperfinite
semifinite von Neumann algebra and then establish the CBAP for L, spaces of
hyperfinite type III algebras (using modular theory). We refer to [Ha5,C1,C2] for
general information on hyperfinite von Neumann algebra and to [JRX] for more
details on the structure of the non-commutative L, spaces associated to hyperfinite
von Neumann algebras. Let us start with a simple remark. (The second assertion is
certainly well-known and is stated in order to have a concrete estimate for the
constant.)

Lemma 5.1. Let N and M be von Neumann algebras with the QWEP. Let 1<p< o0
and assume that L,(N) and L,(M) have cb-bases. Then L,(N @ M) has a cb-basis. In
particular, L,([0,1];S,)(= L,(L[0,1]® B(/2))) has a C-cb-basis (with C<14).

Proof. Let (x,) and (y,) be cb-bases of L,(N) and L,(M) with constants C; and C,,
respectively. Let us denote by P, :L,(N)—span{x;|1<i<n} respectively O, :
L,(M)—span{y;| 1 <j<n} the corresponding basis projections. As in Proposition
4.6, we may obtain a basis for L,(N® M) by using the rectangular enumeration
21 =X1@y1, 2 =X1Q)2, 23 =XQ )2, 24 = X2 @Y1, z5 = X1 @3, etc. Indeed for
n = N2, the projection on span{z | k<N?} = span{x;®y;| 1<i,j<N} is given by
Ey = Py ® Qn which satisfies (see [Ju2])

ENleo < 1P| | QN ] -

Let N’<n<(N+1)? and i=n—N2> If i<N+1, the projection R,:
L,(N® M) —span{z; | k<n} is given by

Ry, =En + Pi®(Ont1 — On)
and for i> (N + 1) is given by

R, =En + Pni1®(Oni1 — On) + (Prny1 — Py)® (On — Ooni1-i)-
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In both cases, we have [|R,||,<7C1C,. Combining the Haar basis (h;),.n of
L,([0,1]) and the natural basis (x,) of S,, we obtain a basis for the space
Ly([0,1];Sp). O

If N is a type I von Neumann algebra, we can decompose L,(N) as follows

L,(N) = (Z ®Lp(9n,«%,un;5,'§)> : (5.1)

P

Here for a given n, (Q,,%,, 1,) is a standard measure space or the empty set. (We
might have some infinite cardinals » in the non-separable case.) Let us say that N is
subhomogeneous (as a von Neumann algebra) if N =73, Lo (Q2u, By, py; M,,) for
some keN. Due to the following remark, we will simply say that N is
subhomogeneous.

Remark 5.2. N is subhomogeneous as a von Neumann algebra if and only if N is
subhomogeneous as a C*-algebra, and if and only if there exist a compact Hausdorff
space K and neN such that N is a subalgebra of (or equivalently completely
isomorphic to a subspace of) C(K, M,,).

Proof. If N is subhomogeneous as a von Neumann algebra, then there exists an
neN such that Nc C(K; M,). This is also true if N is subhomogeneous as a C*-
algebra. On the other hand, if N is not subhomogeneous as a von Neumann algebra,
N contains matrix algebras M, for all meN. Using Huruya’s results [Hu], we see
that a non-subhomogeneous C*-algebra also contains a sequence (X;,) of subspaces
such that d.(X,,, M,,) <2. Therefore it suffices to prove that no subspace Y of
C(K, M,) can contain a sequence (X,,) with sup,, dep(Xim, M) < 00. Indeed, given
any subspace Y < C(K, M,), we deduce from a result of Smith [Sm] that for every
operator space E and v : E— Y, we have ||v]| , <#||v||. By Tomiyama’s result (see e.g.
[ER2]) the transposition map 7,,(x) = x' on M, satisfies ||T,,|| = 1 and ||T|,, = m.
Hence Y cannot contain such a sequence (X,,). O

For lack of a reference, we will give a proof of the following well-known
observation.

Lemma 5.3. Let 1<p<oo and N a type I von Neumann algebra with separable
predual, then L,(N) has a C-cb-basis (with C<14).

Proof. If N is of type I, we have

Lp(N) = ( Z @Lp(angm,un;S;)> .
ne )4

NuU oo
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Since (Q,, %, 1,,) is a standard measure space and therefore admits a decomposition
in atomic and non-atomic part

Lp(angjnmun) = LP([O’ IDC—BPKP(A”)?

where 4, is a discrete, countable index set. Using the Haar basis for L,([0,1])
and the unit vector basis in /,(4,), we obtain a cb-basis of L,(Q,%,,u,) (with
constant 1). According to Lemma 5.1, we get a 14-cb Dbasis for
(Xnen ooy Lp([0,1]58p) @l p (445 Sp)),- Using the special form of the basis, we
easily obtain a 14-cb-basis for

S @L(QBupsS)| . O

neNu{ow}

Example 5.4. Let N be a semifinite hyperfinite von Neumann algebra with a n.s.f.
trace 7 and 1<p<co. Then L,(N,7) is a 40%, space with constant 1.

Proof. According to [P5, Theorem 3.4.], there is an increasing net (E,) of conditional
expectations onto finite-dimensional subalgebras N, of N such that a<f implies
E, = E,Ep = EgFE, for all < f. By interpolation E, extends to complete contrac-
tions on L,(N, ). For p< oo, we have that | J, L,(N,,) is norm dense in L,(N,1).
Hence L,(N,1) is a 40.%, space with constant 1. [

Applying our abstract approach to this particular case, we obtain a basis in the
separable hyperfinite case.

Theorem 5.5. There exists a constant C>1 with the following property. Let N be a
semifinite hyperfinite von Neumann with a normal semifinite faithful trace t and with
separable predual. For 1<p<oo L,(N,t) has a C-cb-basis initially equivalent to
some s,(m).

Proof. We use the type decomposition N = Ni@ Ny. The assertion for L,(Ny)
follows from Lemma 5.3. We note that by Example 5.4 L,(N11) is a 40.% ), space with
constant 1. By Lemma 2.16, we see that L,(Ny) contains s, completely
complemented and therefore we are in the position to apply Theorem 4.10 and
obtain a universal estimate for the ch-basis constant of L,(Nr). It is easy to combine
the two bases for L,(Ny) and L,(Ny) and the assertion is proved. [

In view of Theorem 2.17, the same proof applies to every QWEP von Neumann
algebra with a separable predual and the CBAP. We are ready for the proof
Theorem 0.4.
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Proof of Theorem 0.4. Implication (i) = (ii) is proved in [JR]. Equivalence (ii)) <
(iii) is Theorem 2.17. By Theorem 4.10, we have (iii) = (iv). (Note that as in the
proof of Theorem 5.5 the cb-basis constant can be estimated as a function of the
CBAP-constant. Moreover, by the results in [JR], the CBAP constant drops to 1 for
1 <p< 0.) Since an operator space with a cb-basis has the CBAP, it also has the
OAP. Hence, we have (iv) = (i) and the proof is completed. [

Remark 5.6. In the category of Banach spaces the same result is true. Indeed, the
equivalence (i) = (ii) is due to Grothendieck because L,(N) is a separable dual space
(see e.g [LT, Theorem 1.e.15]). We refer to Remark 1.7 and the Banach space version
of Proposition 2.4. The basis techniques can be directly deduced from the results in
[JRZ].

Corollary 5.7. Let F, be the free group with n generators, VN(F,) the von Neumann
algebra generated by the left reqular representation on /,(F,) with its canonical tracial
state ©. If 1 <p< oo, then L,(F,) = L,(VN(F,),t) is a €05, space with constant <9
and has a cb-basis initially equivalent to some s,(m).

Proof. According to Wassermann’s construction [Wa], we see that VN(F,) is
completely contractively complemented in [[ M, /Js, where % is an ultrafilter
on N and

Jy = {(xk) 1/:1‘}/1 T (X Xk) = O}.

Here 1, is the normalized trace on M,, . This implies that VN(F,) has the QWEP.
This construction can also be used to prove directly that the space L,(VN(F,),t) is
completely contractively complemented in [], Sy, By results of Haagerup (see
[Ha3,DH]) it is known that C; ,(F,) has the CBAP with constant 1. Since the
approximating finite rank maps are multipliers, we can use interpolation to show
that L,(VN(F,), ) has the CBAP with constant 1. We refer to [JR] for more details.

Hence the result follows from Theorem 4.10. [O

We will now discuss bases for preduals of hyperfinite non-semifinite von Neumann
algebras.

Theorem 5.8. Let N be a hyperfinite von Neumann algebra with Ny = {0} and N.
separable. Then N, has a cb-basis initially equivalent to some s (m).

Proof. In view of Theorem 5.5 and the orthogonal decomposition N, =
(Nn),®1(Nm),, we can assume Ny = 0. In particular, we can and will assume
that N is properly infinite. According to Lemma 2.16, L, (N) contains complemented
S7’s. Then the result follows from Theorem 4.10 provided we can show that N, is a
€0, space with respect to some Y <N and Y has the CBAP. According to
Proposition 2.4, it suffices to show that .47, has the y,;-AP with respect to Y and
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contains complemented S} with respect to Y. (Note that we know by Proposition
3.10 that N, is 0%, but we need Y here!) Since N, is separable, we can assume
that N acts on a separable Hilbert space. According to [EIW, Theorem 3], we
can find an increasing sequence N of I« subalgebras of N such that N = (|, Nk)”.
Let Y be the norm closure of | J, N. Then Y is a nuclear, weak™ dense subalgebra.
In particular, Y has the CBAP. Since N, =~ M, is a matrix algebra, it is hyperfinite
and hence there exists a completely (positive) contraction Ej : N - N; onto Nj.
Let Fc N be a finite-dimensional subspace containing Nj. According to [EJR],
we can apply local reflexivity and find a map Typ:L;(Ni)—>N,. such that
1 Terllp < (1 + ) and

1
[T (x), 37 = <x Ee(0) ) [ < g lx [l
for all xe L;(N), yeF. Let 1 : Ny — N be the inclusion map. In particular,
1
[Tk (ei)s enp > = dindyp| Sz e

holds for all the matrix units e;, ey, i,7,j,j//€{l,...,2¢}. As in Lemma 1.2, this
implies that there is an isomorphism wy : Ny — Ny such that T} N KWk = idy, and

Wil < (1 —¢)~". Hence wi T N, = idp, (v, and from 1wy (Ni) = Ny < Y, we deduce
that N, contains S’s with respect to Y. Moreover, the net (Ti r); oy pey CONverges
to the identity on N, in the point-weak topology. Passing to a convex combination,
we deduce that N, has the y,-AP with respect to Y with constant 1. The proof is
completed. O

The next result involves modular theory and relies on the results in [EL]. This will
be treated in more details in the subsequent paper [JRX]. In particular, we will
improve on the constants.

Theorem 5.9. Let N be a hyperfinite von Neumann algebra with a separable predual
and 1 <p<o. Then L,(N) has the CBAP with A(L,(N)) =1 and is a €0%, space
with a cb-basis initially equivalent to some s,(m).

Proof. First we note that a hyperfinite von Neumann algebra is injective and thus
has the WEP, in particular is QWEP. Hence, we can apply Theorems 4.10 and 2.17.
Thus it suffices to show that L,(N) has the CBAP with A(L,(N)) = 1. Since N, is
separable, N admits a faithful normal state ¢. We consider N as a von Neumann
algebra on Ly(N, ¢), where L,(N, ¢) is the Hilbert space obtained as the completion
of N with respect to the norm

1
X[ (v g) = ¢ (x7)2.
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We denote by ¢ = ¢, the image of 1 under the natural inclusion N = L(N, ¢). Let
L =JA'? be the polar decomposition of the densely defined conjugation map
L(x) = x" on Ly(N, ¢), i.e. J is an antilinear isometry and 4 is a positive selfadjoint
(unbounded) operator. The automorphism group o? is defined by a?b(x) = AltxA~1
and leaves N invariant (see [KR]). We follow Kosaki [Ko] and consider for a fixed
x € N the uniquely determined analytic function f; : C - N, such that for all re R and
yeN

F0)) = ¢(rof(x)) and  fi(t = i)(y) = $(o7 (x)).

Using the density of the analytic elements of N (see [KR]) it turns out that
the maps I.: N> N,, I.(x) =fi(z) are injective and therefore the interpolation
space

EP(N’ ¢, 0) = [I—m(N)v N*]l

P

is well-defined for all 0<0<1. Kosaki [Ko] showed that the space E,(N,¢,0) is
isometrically isomorphic to the Haagerup L, space L,(/N) and thus is independent of
6. Let us recall that the natural operator space structure on E; (N, ¢) = E| (N, ¢, %) is
given by the map f: E;(N,¢)—> N, B()(x) = (x). Then the natural operator
space structure on E,(N,¢) = E,(N,¢,1) is obtained by complex interpolation.
Using Kosaki’s isometric isomorphism between L,(N) and E,(N, ¢) we obtain the
natural operator space structure on L,(N). We refer to [JRX] for a more detailed
discussion. Therefore, it suffices to show that E,(N,¢) has the CBAP. Let = :
N°P — N’ be the *-isomorphism given by n(x) = Jx*J. Then n' : E{(N,¢)—> N isa
complete isometry. Following [EL] there is a canonical embedding ¥ : N —» N given
by P(x)(n(y)) = (& xJyJE) such that the map ¥ is a complete order isomorphism
between N and the image W(N)<=N/. Let us show that

¥ =n'BI ;. (5.2)
2
Indeed, let xe N be an analytic element and ye N =~ N°P. Then, we have

1

() = Blro_y(x)) = (&, 7434 738) = ("¢, T A25)

= (V"¢ IxJE) = (& pIxTIE) = (&, Ix7Jy¢) = ¥ (y)(n(x)).

I~

This is not exactly what we claimed. However, I ; : N> E|(N,¢) = N, is formally
2

symmetric, i.e.
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It is easy to show that (h, Jk) = (k,Jh) implies (&, yAx&) = (&, xy&) for any analytic
elements x and y in N. Since Ai%§ = ¢, we deduce
(¥)0) = (&,p42x8) = (472, 42p424x¢)
=(&0_i()4x) = (¢, xo_;i()S)

2
=¢(xo_i(y) =1_i(»)(x)

i _i
2 2

17

I~

for all analytic elements. Therefore the symmetry of I ; follows by density of the
2

analytic elements. Hence, we have
¥ (x)(n(r)) = () (n(x))

for all x,yeN and (5.2) is proved. For a normal map T : N— N., we denote by
T': N— N. the map

We say that T is symmetric of 7" = T. Now, we want to apply the results in [EL] to
show that we can approximate ¥ by a net R, of completely positive symmetric finite
rank maps. We will closely follow [EL] and indicate the modifications needed for this
extra task. By the proof of [EL, Theorem 4.1], we see that ¥ can be approximated in
the point-weak topology by an net (7,) of completely positive normal finite rank
contractions. Then the net 7/ also approximates ¥ =¥ in the point-weak*
topology. Passing to a convex combination, we can assume that (7)) is a net of finite
rank completely positive contractions such that (7,) and (77) converge in the point-
norm topology to ¥. Let us denote the state = 7, ' B(¢p) and observe Y (n(x)) =
f(¢)(x) = ¢(x). Following [EL, Lemma 4.3], we can find for given sy, ...,s, and
0>0 an index v such that the perturbed map

Ss=T,+¢Qf +9®Y

is again completely positive. Here fe N, ge N, are suitable positive functionals
satisfying || /]| <2, ||g||<$ such that

I1Syl|<1+49d, S,(1)=¢ and S.(1)=>y,
and still

[1Sv(si) = P(si)[|<d and [|S,(s;) — P(si)l[ <.

Let us consider the symmetric map R, = S";S‘,‘ and p=R,(1) =R/(1). Let 6+

1 1
202(1 + 0)2) <e. According to [EL, Lemma 4.4], we can find 0<s<1 in N such that
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p(n(txt)) = ¢p(x) = P(1)(n(x)). Let us define R,(x)(n(y)) = Ry(x)(n(tyt)) and
M,(x) = txt. We consider V, = R,M,, i.c.

V,(x)() = Roltxt) (x(iy0))

for all x, ye N. Then we have again V] = V, and using the argument in [EL, Lemma

4.4], we deduce for [|r|| <1 and [|s;]| <1
[Va(si)(m(r)) = Ry(si) (ne(r))]
<[Ry(1si1)(m(ert)) — Ry(tsit) (m(r))| + [(Ry(tsit) — Ry(s:)) (e (r))]
= |Ry(trt — r)(m(tsit))| + [Ry(tsit — 5:)(m(r))]|

<2531 + (14 0)2)) <& — .

Hence ||V, (s;)(r) — P (s;)||<eforalli = 1, ..., n asin [EL, Proof Lemma 4.4]. This shows
that, we can obtain a net (V) (indexed by finite subsets of N and positive real numbers)
such that for every v, we have V! = V,, there exists a 0< ¢, <1 with V, = R,M,,, R,(1) =
¥(1) and (V,) converges in the point-norm topology to ¥. Let us consider

W,=¥'V, =¥ 'RM,.

Since R,(1)= ¥(1), we deduce that W,: N—N is a completely positive normal
contraction. Clearly, W, also acts on N°° as a normal completely positive map with
preadjoint (W, ),. Let us denote by W/ : N’ N’ the map defined by W/ = nW,n~! and
denote by (W), : N.— N, the preadjoint map. Let x, ye N, then we have

(W).P(X)(n(y)) =¥ () (W (7(3))) = V() (=(W:(»))

This implies

W) o= (W) BT = (W), P =YW, =n,"pI ; W

v/ %k I
2

N|~

Since 7! is an isomorphism, we deduce

(W) I i=1 W,
2 2

This shows that U, = ((W,),, W,) defines one operator on I ;(N)+ N* and
)

* 7

I ;(N)nN* and hence is compatible with the interpolation. In particular,
2

Uy Ep(N, ¢) = Ep(N, §)| <1,
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Passing to another convex combination if necessary, we can ensure that for every xe N, the
net (U,(x)) converges in the strong* topology to x. This implies that (I ; U,(x)) converges
)

in the norm topology to I ;(x), see for example [Jul, Lemma 2.3]. By density of I ;(N) in
3 -3

E,(N,¢), we deduce that U, converges to identity on E,(N,¢) in the point-norm
topology. Hence, L,(N) = E,(N, ¢) has the CBAP (with constant 1). By Theorem 2.17 is a
€0, space. Theorem 4.10 yields the assertion for a universal constant. []

In our last application, we provide (a second proof for the existence of) a universal
constant for the (¢h-) basis constant of a nuclear C*-algebra.

Theorem 5.10. Let A be an infinite-dimensional, separable C*-algebra. Then A is
nuclear if and only if A has a cb-basis initially equivalent to some s, (m). Moreover,
there exists an absolute constant C such that every separable nuclear C*-algebra A has
a C-cb-basis.

Proof. If A4 has a cb-basis initially equivalent to some s., (m), we can find a constant
C>0 and an increasing sequence (X,) of subspaces of A such that
dep (X, Myp()) @ - @ M) <C  and | J, X, =4. By the injectivity of
M,y ® - @ M,y(n), we deduce that A has the y -AP and hence 4 is nuclear by
Pisier’s result [P4, Remark after Theorem 2.9.]. Conversely, we assume that A4 is
nuclear. Then A4 is locally reflexive. According to Theorem 3.11, 4 isa ¢0.% , space
with €0.% ., (A) <3. Since A* is a hyperfinite von Neumann algebra and it is known
that A* has the CBAP with A(A4*) = 1. According to Theorem 4.10, A4 has a ch-basis.
However, the estimates from Theorem 4.10 would give an estimate of the basis
constant of the form f'(n) for subalgebras of C(K, M,,) where lim, f(n) = oo. We will
now improve this estimate by proving the ‘moreover part’ of the assertion.

Let us first consider the case where 4 has an infinite-dimensional representation or
a sequence 7y : A — M, of finite-dimensional irreducible representations such that
limj my = co. Then there is a projection pi € A™* such that p, 4™ pr =~ M,,, . Using the
finite-dimensional spaces 7; (M, ) = A*, we deduce from the locally reflexivity of 4,
see [AB], that A contains complemented M, ’s. According to Theorem 4.10, we
deduce that 4 has a cb-basis initially equivalent to some s, (m) and this holds for a
universal constant.

In the second case, we have to consider a C*-algebra which has only finite-
dimensional irreducible representations with a maximal degree d. In this case A4 is a
type I C*-algebra (see [Pe]) and the primitive spectrum A coincides with the spectrum
A of 4 (see [Pe, Theorem 6.1.5]). Moreover, the spectrum is locally compact [Pe,
Theorem 6.1.11]. Let d; <d be the largest integer such that 4 has infinitely many
irreducible representations. We can remove the finite subset X = 4 of representations
of dimension bigger than d;. Indeed, using that for all m the set A,, of m-dimensional
representations is Hausdorff [Pe, 4.4.10] and that the set of representations
>m are open, we deduce that X carries the discrete topology. According to the
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Dauns-Hoffman Theorem [Pe, 4.4.8], we deduce
A= AX @ C@Ba

where Ay is a finite-dimensional C*-algebra and B has infinitely many irreducible
representations of dimension d; and all the other irreducible dimensions are of
degree <d,. Let us consider the countable open subset {w, : ne N} = X, cA of di
dimensional representations. Whether the sequence (w,) converges or not, we can
find for every neN, n disjoint open, non-empty sets Uy, ..., U, < Xy,. Thus we can
find n points wy, ..., w,, functions f, ..., f, with support of f; in Uj, f; : A- [0,1] and
fi(w;) = 1. According to the Dauns-Hoffman Theorem [Pe, 4.4.8], we deduce that
the subalgebra B, generated by (J;,_, , f;B; contains /7 (Mg ). Thus B contains

complemented /7 (My)’s and by Lemma 2.10 it contains /7 (Mg )’s far out.
According to Remark 2.6, we obtain that B is a ¥0.% ,, space where the building
blocks are /" (Mg )’s. Lemma 2.9 shows that the second assertion in Proposition 4.5
is satisfied for B and the family (/" (My,)) Adding the Ay part, we obtain a
FDD 4 =), Z, such that

neN*

dep (Z Zy, (Ax ® w/r;l+...+m,l(Mdl))> <,
k<n

and
dcb(Zl7AX)< 1 and dcb(Zm/’;ICn(Mdl))Sc'

Thus Lemma 4.9 yields the assertion. [

Remark 5.11. As in the commutative theory, we can show that if X is locally
reflexive and X* has a cb-basis, then X has a cb-basis. This means we can
alternatively deduce Theorem 5.10 from Theorem 5.8 by using the concept of e-close
finite-dimensional subspaces.
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