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ABSTRACT 
In this paper we study the positive approximation property (p.a.p.) of  Banach 
lattices. The main results give some characterizations of the p.a.p, and the 
bounded p.a.p. Some perturbation results on positive operators, which are of 
interest in other contexts, too, are proved. 

Introduction 

A Banach lattice X is said to have the positive approximation property 
(p.a.p.) if the identity can be approximated uniformly on compact sets by 
positive, bounded finite rank operators. If these operators in addition can be 
chosen to be uniformly bounded in norm, we say that X has the bounded 
positive approximation property Co.p.a.p.). 

It is an open problem whether every Banach lattice with the usual approxi- 
mation property of Grothendieck also has the p.a.p., and we have not been 
able to solve this problem here, except for a very special case (Theorem 2.1 due 
to L. Tzafriri and the author) which actually covers all known examples of 
Banach lattices with the approximation property. There are some indications 
that the problem has an affirmative answer for super-reflexive spaces, but so far 
Theorem 3.6 of [2] is the only result which in general links the a.p. ofa  Banach 
lattice to the order (it is formulated for the uniform a.p., but a similar result 
holds for b.a.p.). 

In section 1 of this paper we give a few characterizations of  the p.a.p, in 
terms of traces of positive nuclear operators. 

Section 2 contains some of the main results of the paper. Here we give 
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several conditions on a Banach lattice X, equivalent to X having the b.p.a.p. 

Some of these conditions are similar to the ones which are known for the b.a.p. 

for Banach spaces, the proofs, however, normally do not carry over, the 

obstacle being that perturbations of operators often spoil positivity. We solve 

this by proving some perturbation theorems which keep positivity. As a 

corollary, we get that every reflexive Banach lattice with the p.a.p, has the 

metric p.a.p. 
Part of  this work was done during my visit to the Department of Mathe- 

matics, Texas A and M University, in August 1986. I wish to thank W. B. 

Johnson and J. Zinn for many fruitful discussions during that period. 

0. Notation and preliminaries 

Throughout the paper, we shall use the notation and terminology of the 

theory of  Banach spaces and Banach lattices, as it appears in [4] and [5]. 

If X and Y are Banach spaces, we let B(X, Y) (B(X) if X = Y) denote the 

space of all bounded operators from X to Y and K(X, Y) (K(X)) if X = Y) the 

space of all compact operators from Xto  Y. I f X a n d  Y are Banach lattices, and 

~¢(X, Y) is a subspace of B(X, Y)+, we let ~¢(X, Y)+ denote the cone of  all 

positive T U ~¢(X, Y). 

We shall identify the tensor product X* ® Y with the space of all bounded 

finite rank operators from X to Y. X ®~ Y denotes the completed n-tensor 

product of  the Banach spaces Xand  Y, and if~//= Z~l  x* ® Xn ~X* ®~ Xwe 
put Tr ~11 = Z~_l x*(x,,) (that is, Tr is taken in the sense of tensors and not in 

the sense of operators). If X is a Banach lattice, then (X* ®~ X)+ consists of 

those ~//~ X* ®~ Xfor  which ~//x > 0 for all x ~ X ,  x > 0 (that is a//is positive 
considered as an operator). 

If T is a nuclear operator, nt(T) denotes the nuclear norm, and if T is 
integral, we let i~(T) denote the integral norm. Finally, i f E  is a Banach space 

and X a Banach lattice, an operator T~B(E,  X) is called order bounded if 7- 

maps the unit ball of  E into an order bounded subset of  X. The order bounded 

n o r m  

II TII~ =inf{ll z IIz~X,z>O, ITxl ~ IIx Ilzforallx~E}. 

X* ~m X denotes the completion of  X* ® X in the norm [[ • [[m, and it is 
known to be a Banach lattice. For further information on order bounded 
operators we refer to [2], [7], and [8]. 
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1. The positive approximation property of Banach lattices 

We start with the following definition: 

1.1. DEFINITION. A Banach lattice X is said to have the positive approxi- 
mation property (p.a.p.) if for every compact set K __ Xand  every e > 0 there is 
a bounded positive, finite rank operator T on X with [[ x - Tx [I -<- e for all 
x ~ K .  

All known examples of  Banach lattices with the usual approximation 
property (a.p.) also have the p.a.p. 

The next theorem gives some equivalent formulation of  the p.a.p. Some of 
these are very similar to the corresponding ones for the a.p. (see e.g. [4]). 
Before we prove it, we need the following lemma. 

1.2. LEMMA. Let ~ ~ (3(* ®, X) +. Then Tr(S~//) > 0 for all S ~ (X* ® X) +. 

PROOF. By considering X** instead of X, if necessary, we can without loss 
of  generality assume that X is order complete. 

Let ql = Z,~_ 1 x *  ® Xm E (X* ®, X)+. If  S = Xjkffil y* ® yj ~ X* ® X with the 
yj's mutually disjoint and positive, then y* > 0 for all 1 < j < k, and we get 

k 
(1) Tr(S~//) = Y~ y*(°llyj) >= O. 

j = l  

If  S E ( X *  ®X)+ is arbitrary, then by e.g. [6], theorem 2.9, there is a 
sequence (S,) c (X* @ X)+ of  the form considered in (1) so that II s - & II --" 
0. From this we obtain 

(2) [Tr((S - S.)~U)I _-< II S - S.  II ~ II x,.* II II xm II --" 0 
m~l 

f o r  n ---~ oo. 

(1) and (2) now give that Tr(Sq/) > 0. 

1.3. TrIEOREM. Let X be a Banach lattice. The following statements are 

equivalent: 

(i) X has the p.a.p.  

(ii) For every Banach lattice Y, (Y* ® X)+ is dense in B(Y,  X)+ for the 

topology ~ o f  uniform convergence on compact sets. 
(iii) For every Banach lattice Y, (X* ® Y)+ is dense in B(X, Y)+for the 

topology z o f  uniform convergence on compact sets. 
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(iv) For every oil ~ (X* O. X)  + Trqt >-_ O. 

PROOF. (i) ,~, (iv): Since every r-continuous linear functional on B ( X )  is 
given by a ~ X *  ®,X, Lemma 1.2 shows that (iv) holds if and only if 
every r-continuous functional on B(X) ,  which is non-positive on (X* @ X)+, 
is also non-positive on the identity. By the bipolar theorem this is equivalent 

to (i). 
The other equivalences are obvious. • 

It seems to be an open problem whether the statements in the above theorem 
are equivalent to that for all Banach lattices Y, (Y* @ X)+ is dense in 
K ( Y ,  X)+ in the operator norm. We have not been able to settle this. 

2. The bounded positive approximation property 

In this section we turn our attention to the investigation of the bounded 
positive approximation property (b.p.a.p.), which is defined as follows: 

2.1. DEFXNmON. Let 2 > 1. A Banach lattice X is said to have the 2- 
b.p.a.p., if  it has the p.a.p, and the operator T in Definition 1.1 can be chosen 

to have norm less than or equal to 2. 

The next theorem which gives a method to perturb positive finite rank 
operators on a Banach lattice, preserving positivity, shall be very useful for us 

in the sequel. 

2.2. TrtEOREM. Let  X be an order complete Banach lattice, {z j ] l  _-<j < k} 
and {xi I 1 < i <= n } be finite sets o f  mutually disjoint, positive elements in X ,  so 

that there are p~ E N, p~ < p~ + ~ for  1 < i <= n - 1, and (tj) c_ R, so that 

P/+I 

(i) x~ = Y. tjzj for l < i < n. 
j- p~.4-1 

I f  e > 0 and T E X *  0 [zj] with l] Tx~ - x~ II < e for  all 1 < i < n, then ther~ 

is an operator S ~ X *  ® [xj], so that 

II Sxi  - x,  II -<__e, I Sx~ l <= x~ 

for  all 1 ~ i _~ n and II I SI II =< II I T I II. 

l f  T is positive, then S can be chosen positive as well. 
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PROOF. Without  loss of  generality, we may  assume that II x, II = II zj II = 

1 for all 1 < i < n and all 1 < j < k. Let, for all 1 < i < n, P~ denote  the band 

project ion o f  X onto the band  generated by xi and define 

(1) Tt -- ~ PITY,. 
i--I 

For every x E X ,  x ->_ 0 and every y ~ X ,  l Y I < x,  we obtain  

i~ l  
(2) 

~/ I P T P y l  n < V  
iffil i= l  

ITPiYl <= I T I ( I y l ) _  -< ITl (x) ,  

which gives that II [ T~ I II < II I T I II and for i =< n 

(3) II T,x, - xi 11 -- ~ PjTPjx, - x, = II PiTx, - x, II ---- U Tx, - x, II =< e. 
j--I  

I f  (z*) __ X* so that T = Y.~_ ~ z* ® z~, we get the following formula for Tt in 

terms of  the x :s :  

(4) T l X  ~ P'+' = Y, z*(P~x)z: for all x E X .  
i~l  jffipi+l 

For  every 1 < i < n and every p~ + 1 < j < Pi + ~ we define 

(5) {~, tj when IzT(xi)l > t j  
~ij = (x,) 

else 

and put  

(6) S =  ~ P~' aijP*z~ ® zj. 
i--I jmpl+l 

Since I a;y I < 1, we get for all x ~ X,  x > O, that I S I x _-< [ T~ I x and hence 

(7) II ISI II --< 11171111 --< IIITI II. 

Further, for 1 < i < n, 

P~+~ P~+~ 

(8) lax, l =  Y~ la~jl Iz*(x,)lzj<- Y~ t : j = x ,  
j-- pi+ l j-- pt+ l 
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and 

Pi+l 

II S x ,  - x ,  II = Z ( ,~oz*(x3  - tj)z~ 
j=p~+ l 

P~+t 

(9) < Y~ (z*(x,) - tj)zj 
j =  p~+ 1 

-- II r lx~ - xi  II =< ~. 

We note that if T is positive, then both T~ and S are positive, too. • 

We shall also need the following two lemmas, which reduce a more general 

situation to that of  Theorem 2.2. 

2.3. LEMMA. Let  X be an order continuous Banach lattice, 

{x~, x 2 , . . . ,  x ,  } c_ X a set o f  mutually disjoint positive vectors, and E c_ X a 

f ini te  dimensional subspace. For every e > 0 there are mutually disjoint positive 

elements z~, z 2 , . . . ,  z k E X  and an operator T: E ~ [ z j ]  so that xi ~[zj] for 

1 < i <-_ n and [I r x  - x II --< e II x II for all x E E.  

PROOF. Let e > 0 and put x0 = Z , = ~ x~. x0 is a weak order unit in the band 

Y generated by x0. Put 

(~) = r l 0  <= e < Xo, e o A ( X o  - -  e )  = 0}. 

Since Y is order continuous, ~ / i s  a complete Boolean algebra, and therefore 

every x E Y can be approximated by linear combinations of  mutually disjoint 

elements of ~/, see [5], 1.a. 13. Hence letting P denote the band projection of  X 

onto Y, we can find mutually disjoint elements Zl, Z2 . . . .  , z ,  E s t  and a 

bounded operator Tx : P(E)---, [zi] f_ 1, so that II T~x - x II <-- e II x II for all 
x ~ P ( E ) .  Using the Boolean algebra structure of  ~¢ and that xi E ~¢ for 

1 < i < n, we can without loss of  generality assume that x~E[zj]f=~ for all 

l < i < n .  

It follows from [5] that we can find positive mutually disjoint elements 

Zr+~, Zr+2, . . . , Zk ~ X  and a bounded operator T2 : (I - P ) ( E ) ~  [zj]~=r+l so 

that U T ~ x - x l l  <=~ I l x l l  for all x E ( I - P ) ( E ) .  If  we let T = T t P l e +  

T2(I - P)IE then for all x E E ,  

II T x  - x II --< II T i P x  -- e x  II + II Zz( I  - e ) x  - -  ( I  - e ) x  II ~ 2e II x II. • 

2.4. LEMMA. Let  X be an order continuous Banach lattice. Let  T ~ X* ® 

and {x~, x2, . . . , x ,  } mutually disjoint, positive elements. I f  e > O, then there is 
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an S E X* ® X o f  the form S = Z k_ 1 z* ® zj, where the z/s  are mutually disjoint 

and positive, so that 

(i) II T - S II m --< e, 

(ii) xi 6 [zj] for all 1 < i < n. 

I f  T is positive, S can be chosen positive. 

PROOF. Using Lemma 2.3 and the ideas of Lemma 2.15 in [2], we can find 

a sequence (S,) of  operators of  the required form with (ii) satisfied and so that 

n , ( T - S . ) ~ O  for n ~ o o .  Hence also II T - S ,  IIm-~0 for n ~ o o  so that 

(i) can be achieved. If T > 0, then since X* ®m X is a Banach lattice, 

II T - S ,  + lira---0 for n--" ~ .  • 

Combining the two last lemmas with Theorem 2.2, we can prove the 

following perturbation theorem, where the ideas of  the proof go back to 

Johnson, Rosenthal and Zippin [3]. 

2.5. THEOREM. Let X be an order continuous Banach lattice, 

{xt, x 2 , . . . ,  x ,  } c_ X a set consisting o f  mutually disjoint, positive norm one 

vectors. I f  e > 0 and T E X* ® X with II Tx,  - x ,  II --< e for all 1 < i < n, then 

there is a U 6 X* ® X so that Ux~ = xifor 1 < i < n and II I u I U =<- III T I II + 
(2n 2 + 1)e. 

I f  T is positive, then U can be chosen positive, as well. 

PROOF. By Lemma 2.4 we can find an operator T , = Z k _ ~ z * ® z j E  

X* ®X, where the z/s  are positive and mutually disjoint, so that 

II T, - T II m ~ e and (xi) CC_. [Zj]. Hence II Tlxi -- xi II =< 2e for all i < n and 

l i lT ,  Ill =< I l ITI  II + l i l T , -  T I II --< I I ITI  II + II I " , -  T I1~ 
(1) 

--< II ITI II + e .  

Using Theorem 2.2, we can now find an S E X *  ® Xso that S(X)  cc_ [zj]k ~, 

II I s  I II --- II i T, I II --< II I T t II + e, I s x ,  I <= x,  and II S x ,  - x ,  II =<- 2e for 
i < n  = • 

Let now Q be a positive projection o fXon to  [x;] with II Q II ---< n, and define 
U E X *  ® X b y  

(2) U = a + S - SQ. 

I fx  EX,  x > 0, then SQx < Qxby  the above, so that Q - SQ > O. For every 
i = < n we get 
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(3) Uxi = Qxi + Sxi - SQxi = xt. 

Finally (2) gives 

(4) IUI ~ ISI + ( Q - S Q )  

and hence 

(5) 
II 1 u I II ~ II IS I II + II Q - SQ II ---< II 1 T I II + ~ + 2en II Q II 

= II I TI II + ( 2n2 + 1)e. 

It follows immediately that if  T is positive, then S and hence U are positive 

as well. 

We are now able to prove one of  our main results on the b.p.a.p. 

2.6. THEOREM. Let X be an order continuous Banach lattice and 2 > 1. The 

following statements are equivalent: 
(i) Xhas  the2-b.p .a .p .  

(ii) For every e > 0 and every compact set K c_ X,  there is a T ~ X* ® X s6 

that I I x - T x l l  <e fora l l xEKand  II ITI II _-<2. 

PROOf. (i)==,(ii) is trivial, SO let us prove (ii)=*(i). Let e > 0 and 
{Xl, x2 . . . . .  xn} ___ X a finite set consisting of positive, mutually disjoinl 

elements. By assumption there is a T E X *  ® X ,  II I TI II __<A and 
II Tx, - x, II =< e for 1 _-< i =< n. By Lemma 2.4, we may assume that there are 

mutually disjoint, positive elements Zl, z2 . . . . .  Zk ~ X  so that T(X)  c_ [zj]~=l 

and that there are Pi ~ N, pi < p,.+ l and tj > 0 so that 

P~+t 

(1) x , =  E tjzj. 
j - p ~ +  l 

By the proof of Theorem 2.2 (the construction of the operator T~), we mat 

further assume that there are z * E X * ,  1 < j  < k so that 

/I Pl+l 

(2) T = E E P'z? ® zj. 
i--I j - -p i+l  

For every 1 < i < n and every j ,  p~ + 1 < j  < P~+t we put 

(3) a o 

{ Iz?(x,)l if Iz*l(x,) ~ o 
= I z * l ( x 3  

1 else 
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and define 

n P~+l 
(4) S =  Y. Y~ a ~ * l z * l  ®zj. 

i--I j - -p i+l  

Clearly S > 0, and since a o < 1 we get that S < Z~_l Zf,..÷~,+~ P* Iz*l ® zj = 

I T I, so that II s II --< 2. Further 

Pi+I 

(5) aN, = Y, I z*(x~)lz j  -~ I rx~ I 
j -  p~+ 1 

and therefore 

(6) II S x ,  - x ,  II 

for all 1 < i < n .  
By Proposition 2.9 of [6], which is a weaker version of Lemma 2.3, it now 

follows that X has the 2-b.p.a.p. • 

Using the perturbation Theorem 2.5, we are now able to show the following 
theorem which gives some equivalent formulations of the b.p.a.p. 

2.7. THEOREM. Let X be an order continuous Banach lattice and 2 > 1. The 

following statements are equivalent: 

(i) X has the (2 + e)-b.p.a.p, for all e > O. 

(ii) For every e > 0 and every finite set {xt, x2 . . . . .  xn } c_ X consisting oJ 
positive, mutually disjoint elements, there is a positive T E X* ® X, so 

that Txi = xifor all I < i < n and II T II --< 2 + e. 
(iii) For every e > 0 and every finite set {xl, x 2 , . . . ,  xn } c_ X consisting oJ 

positive, mutually disjoint elements, there is a T E X *  ® X, so that 

T x ~ = x J  o r a l l l < i < n a n d  II [TI II _-<2+e.  

PROOF. ( i ) ~  (ii) follows from Theorem 2.5, ( i i )~  (iii) is trivial and (iii)=, 
(i) follows from Theorem 2.6. • 

As a corollary to Theorem 2.6 we get the following 

2.8. COROLLARY. Let X be an order continuous Banach lattice with the 

Radon-Nikodym property (RNP), so that there is a positive contractive projec- 

tion o f  X** onto X (e.g. let X be reflexive). I f  X has the p.a.p.,  then X has the 1- 
b.p.a.p.  
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PROOF. Assume that Xhas  the p.a.p., let z denote the topology on B(X) ot 
uniform convergence on compact sets. Since X has the a.p., (B(X), T)* = 
N~(X), the space of nuclear operators (see e.g. [4]), so by the bipolar theorem 

and Theorem 2.6 we have to show that if T~N~(X) with ITr(ST) I _-< I[ I SI II 
for all S E X *  ® Xthe n  ITr(T)l =< 1. 

If  TEN~(X) satisfies the left-hand side of  this implication and S = 
~,k=~ ejz* ® zj ~ X* ® X with ej = +_ 1 for 1 < j < k, then 

Y, tjz*Tzj = ITr(ST) I < II I SI II 
j = l  

(1) <---- ~ Iz*l ® Izjl 
j = l  

= sup x*(I zj I)x**(Iz* I) I x ,  x** 
1 

where 

K = {x**~X**  Ix** ~ 0, II x** II ~ 1}, 
(2) 

K* = {x* e X* [ x* >= 0, II x* II =<- 1 }. 

By choosing the signs, we obtain for all finite sets (zj)k= I C X, (z*)k= 1 C_ X*: 

(3) Y~ Iz*Tzj[ _-<sup x*(lzyl)x**(lz*l)lx**EK, x * ~ K  . 
j=l l 

Equipped with the respective oJ*-topologies, K and K* are compact sets. We 
now consider the following two sets: 

V~ = {UE C(K X K*)[ sup{f  (x**, x*) Ix** E K, x* E K*} < 1}, 

F2 = conv{f~  C(K X K*) [ 3 z* ~ X*, z* >" O, 3 z E X, z >= 0 

(5) with I z*Tzl = 1 andf(x**,  x*) = x**(z*)x*(z) 

for all x** EK,  x ~K*}.  

It follows from (3) that F~ n F2 = ~ .  
By the first separation theorem and the Riesz representation theorem, there 

is a A ~ R and a # E M(K × K*), so that 

(4) 

and 
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P 
(6) [ fd# < 2 for a l l f~F~ 

and 

f fdp >= ;t for a l l f E F v  (7) 

Since the negative cone o fC(K  × K*) is a subset ofF1, we get that 2 _>-- 0 and 
/z > 0, and we can then assume that / t (K X K*) = 1. Since the open unit ball of 

C(K X K*) is contained in F~, we get with this normalization that 2 =>_ 1, and 
the definition of FI and F: now gives: for all z* ~X*,  z* >= 0 and all z ~ X ,  

z > 0  

(8) I z*Tzl < f x**(z*)x*(z)dlt(x**, x*). 

It is easy to see that there is a positive operator UEB(X, X**), so that for all 
z _>--0 and z* > O, (Uz)(z*) is equal to the right-hand side of (8). If  S ~  

B ( X , L ~ ) )  is defined by (Sz)(x**,x*)=x*(z) for x**EK, x*~K* and 
z ~ X ,  and R ~B(X*, L®~)) is defined by (Rz*)(x**, x*) = x**(z*) for x** E 
K, x*~K and z*~X*, we get that U =R*IS, where I denotes the formal 
identity map from L~o~) to L l~) .  Hence Uis integral with i~(U) < 1 (note also 

that both S and R are positive), and (8) gives 

(9) I TI < U. 

If  P denotes a positive, contractive projection of X** onto X and we put 
V = PU, then by (9), I T I < V. V is integral from X to X, and since X has the 
RNP, Vis nuclear as well with n~(V) = i~(V) < 1. 

Since Xhas  the p.a.p, and V + T > 0, Theorem 1.3 gives that 

(10) ITr(T)I < Tr(V) < 1. • 

REMARK. It follows from Lemma 0.1 in [7] that if X satisfies the assump- 
tions above, then X is a band in X**. 

We end this section by proving a theorem and a corollary due to L. Tzafriri 
and the author, which show that in a special case the a.p. implies the p.a.p. See 

also C. Schf~tt [9]. 

2.9. TrIEORSM. Let X be an order continuous Banach lattice and 
{x~, x2 . . . . .  x, } c_ X a finite set of positive, mutually disjoint elements. IfP is a 
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projection of  X onto [xd, then there is a positive projection Q of  X onto [xi] with 

II a II --< II P II. 

PROOF. Let F = {Yl, Y2, . . . ,  Yk} be a set of mutually disjoint positive 
elements, so that there are finite subsets tri c_ N, 1 < i < n, tr~ N ~ = ~ for 
i # j  and a sequence (tj) c_C_ R, tj > O, so that 

(1) x, = Y. tyj. 
jEtr~ 

Further, let yj* E X* be mutually disjoint, positive biorthogonals to (vj) and le| 
{% I 1 < i < n, 1 < j  < k} be the matrix for P with respect to (yj) and (x~). 

Since Px~ = x~, we get 

(2) 1~ aJ j  = 1 for all 1 < i < n. 
jEo~ 

If  QI : [.vii ~ [xd is defined by 

tl 

(3) Q, = 2 2 ~,y? ® x, 
i -  1 jEo~ 

then it follows from [4], proposition le 8, that Q~ is bounded with ][ Q~ ]l --< 

II e II. 
By (2), Qtxi = x~ for all 1 < i < n. For every choice (ej) of signs we get 

n k 

2 Y. ej~,y?O,)x, ~ II QI II 2 ey,.*(.v)yj 
i - I jEo~ j -  I 

-- II Q, II II y II for all y ~ [yj]. 
(4) 

(4) shows that the operator Q2" LFj] ~ [xi] defined by 

(5) Q2= ~ Y. Io~oly* ® x, 
i - 1 jEo~ 

is bounded with II Q2 II < U Q~ II--< IIP {I. 
For 1 =< i < n we let 

(6) 

and define QF: [YA - [x~] by 

(7) 

,,)-' 
st = laol 

QF=  ~ si 2 I~oly?®x, .  
i - 1 j E # t  
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Since [s~ [ < 1, Qr is bounded with II OF II ---< II 02 II II P II. 
It is readily seen that QFxi = xi for all 1 < i < n, so that OF is a positive 

projection of [yj] onto [xd. 
Let now 

~t = {F  _ X ] [xi] __C_ span F,  
(8) 

F finite set of mutually disjoint, positive elements}. 

By Lemma 2.3 we get that span ~¢ = X, and we can order ~¢ partially by 

(9) /71 _-< F2 if span F~ _ span F2. 

For each F E d we define 

RFEI-I= I'I {Y~[xil[ IlYll --< I le l l  I lx l l}  
x~.X 

by 

R e ( x ) = {  Q ~  else. if ~span F, 

Since II is compact, (RF) has a convergent subnet with limit R ~ II. It is 
readily verified that R i,p~ d is a bounded linear map with norm less than or 
equal to II P II, and it can therefore he extended to a Q EB(X)  by continuity. 
Clearly Qx = x for all x E[xd, so that Q is a projection, and from the 
construction it follows that Q =>- 0. • 

As a corollary we obtain 

2.10. THEOREM. Let X be an order continuous Banach lattice. I f  there is a 
2 > 1 and a net (Pt)tel ofprojections convergingpointwise to the identity, so that 
II P, II < 2 and Pt(X) is the span offinitely many mutually disjoint elements for 

all t EI ,  then X has the 2-b.p.a.p. with projections. 

3. Some concluding remarks 

Theorem 2.10 explains in a way why it is difficult to find an example (if there 
is one) of a Banach with the a.p. and without the p.a.p. Indeed, in all Banach 
lattices known to have the a.p., this is proved by constructing a net of 
projections as in Theorem 2.10. 

It is also clear that an example has to be extremely non-symmetric, since e.g. 
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every r.i. space with non-trivial Boyd indices has the p.a.p, due to the fact that 
conditional expectations are bounded in such a space. 
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