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N.J. Nielsen

Introduction

These notes cover a series of lectures given at the University of Kiel in May 2011 in connection
with an Erasmus project and is based on a regular course in stochastic differential equations
given by me at the University of Southern Denmark. Some additional material which there was
no time to cover in the lectures is included at the end. The notes follow the lectures quite closely
since the source file is a slight modification of the file used for the lectures.

The construction of Brownian motion using the Haar system was originally carried out by P.
Lévy in 1948 [2] and Z. Ciesielski in 1961 [1].

General results from functional analysis and probability theory used in the notes can be found in
standard textbooks in these areas of mathematics.

1 Brownian motion

In the following we let (Ω,F , P ) be a fixed probability space.

We start with the following definition:

Definition 1.1 A stochastic process in continuous time is a family (Xt)t≥0 of real random vari-
ables defined on (Ω,F , P ).

Given a stochastic process (Xt)t≥0 we often only consider Xt for t in an interval [0, R].

We shall also need the following definitions:

Definition 1.2 Let(Ft)t≥0 be a family of sub-σ-algebras of F so that Fs ⊆ Ft for all s ≤ t. A
stochastic process (Xt)t≥0 is called adapted if Xt er Ft-measurable for every t ≥ 0.

The following definition is important.
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Definition 1.3 Let (Ft) be as in Definition 1.2 and let (Xt) ⊆ L1(P ) be an (Ft)-adapted pro-
cess. (Xt) is called a submartingale if

Xs ≤ E(Xt|Fs) for all s < t. (1.1)

If there for all s < t is equality in (1.1), then (Xt) is called a martingale. (Xt) is said to be a
supermartingale if (−Xt) is a submartingale.

A process (Xt) on (Ω,F , P ) is called continuous if the function t→ Xt(ω) is continuous for a.a
ω ∈ Ω.

A process (Yt) is said to have a continuous version if there exists a continuous process (Xt)
so that P (Xt = Yt) = 1 for all t ≥ 0. If (Xt) is a process on (Ω,F , P ), then the functions
t→ Xt(ω), ω ∈ Ω are called the paths of the process.

Now it is the time to define the Brownian motion.

Definition 1.4 A real stochastic process (Bt) is called a Brownian motion starting at 0 with
mean value ξ and variance σ2 if the following conditions are satisfied:

(i) P (B0 = 0) = 1

(ii) Bt −Bs is normally distributed N((t− s)ξ, (t− s)σ2) for all 0 ≤ s < t.

(iii) Bt1 , Bt2 − Bt1 , . . . Btn − Btn−1 are (stochastically) independent for alle 0 ≤ t1 < t2 <
t3 < · · · tn.

(Bt) is called a normalized Brownian motion if ξ = 0 and σ2 = 1.

The essential task of this section is of course to prove the existence of the Brownian motion, i.e.
we have to show that there exists a probability space (Ω,F , P ) and a process (Bt) on that space
so that the conditions in Definition 1.4 are satisfied. It is of course enough to show the existence
of a normalized Brownian motion (Bt) for then (ξt + σBt) is a Brownian motion with mean
value ξ and variance σ2. We shall actually show a stronger result, namely that the Brownian
motion has a continuous version. When we in the following talk about a Brownian motion we
will always mean a normalized Brownian motion unless otherwise stated.

We will use Hilbert space theory for the construction so let us recall some of its basic facts.

In the following (·, ·), respectively ‖ · ‖ will denote the inner product, respectively the norm in
an arbitrary Hilbert space H . If we consider several different Hilbert spaces at the same time it
is of course a slight misuse of notation to use the same symbols for the inner products and norms
in these spaces but it is customary and eases the notation.

Let us recall the following elementary theorem from Hilbert space theory:

Theorem 1.5 Let H1 be a Hilbert space with an orthonormal basis (en) and let (fn) be an
orthonormal sequence in a Hilbert space H2. Then the map T : H1 → H2 defined by

Tx =
∞∑
n=1

(x, en)fn for all x ∈ H1 (1.2)
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is an isometry of H1 into H2.

In the following we let (gn) be a sequence of independent standard Gaussian variables on a
probability space (Ω,F , P ). Actually we can put (Ω,F , P ) = ([0, 1],B,m) where m denotes
the Lebesgue measure on [0, 1].

For the matter of convenience we shall in the sequel consider a constant k as normally distributed
with mean k and variance 0.

We can now prove:

Theorem 1.6 Put H = span(gn) ⊆ L2(P ). If T : L2(0,∞) → H is an arbitrary isometry and
we put

Bt = T (1[0,t]) for all t ∈ [0,∞[, (1.3)

then (Bt) is a Brownian motion.

Proof: Note that such isometries exist. Indeed, since L2(0,∞) is a separable Hilbert space, it
has an orthonormal basis (fn) and we can e.g. define T by Tfn = gn for all n ∈ N.

Let us define (Bt) by (1.3). Since 0 = T (0) = B0, it is clear that (i) holds. Next let 0 ≤ s < t.
Since Bt −Bs ∈ H, it is normally distributed with mean value 0 and furthermore we have:∫

Ω

(Bt −Bs)
2dP = ‖Bt −Bs‖2

2 = ‖T (1]s,t])‖2
2 = ‖1]s,t]‖2

2 = (t− s), (1.4)

which shows that Bt −Bs has variance (t− s).

Let now 0 ≤ t1 < t2 < t3 < · · · < tn. Since {1[0,t1], 1]t1,t2], . . . , 1]tn−1,tn]} is an orthogonal set
also {T (1[0,t1]), T (1]t1,t2]), . . . , T (1]tn−1,tn])} = {Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1} is an orthog-
onal set. Since in addition all linear combitions of Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1 are normally
distributed, they are independent. 2

The following corollary put our results so far together but gives also new information.

Corollary 1.7 If (fn) is an arbitrary orthonormal basis for L2(0,∞), then the series

Bt =
∞∑
n=1

∫ t

0

fn(s)ds gn t ≥ 0 (1.5)

converges in L2(P ) and almost surely for all t ≥ 0. (Bt) is a Brownian motion on (Ω,F , P ).

Proof: If we define the isometry T : L2(0,∞)→ L2(P ) by Tfn = gn, it is given by

Tf =
∞∑
n=1

∫ ∞
0

f(s)fn(s)ds gn, (1.6)
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where the series converges in L2(P ). It follows from the above that Bt = T (1[0,t]) is a Brownian
motion and equation (1.6) gives that

Bt = T (1[0,t]) =
∞∑
n=1

∫ t

0

fn(s)ds gn for alle t ≥ 0. (1.7)

Since the terms in this sum are independent, have mean value 0, and

∞∑
n=1

E(

∫ t

0

fn(s)ds gn)2 = ‖Bt‖2
2 = t <∞, (1.8)

it follows from classical results in probability theory that the series (1.7) converges almost surely
for every t ≥ 0. 2

We shall now prove that there is a continuous version of the Brownian motion and then we do
not as so far have a free choice of the orthonormal basis (fn) for L2(0,∞). We construct an
orthonormal basis (fn) with the property that there is an A ∈ F with P (A) = 1 so that if ω ∈ A,
then the series in (1.5) converges to Bt(ω) uniformly in t on every compact subinterval of [0,∞[.
Since every term of the series is continuous in t, this will give that t → Bt(ω) is continuous
for all ω ∈ A. The construction of (fn) is based on the Haar system (an orthonormal basis for
L2(0, 1) explained below) with the aid of the Borel-Cantelli lemma.

In the following we let (h̃m) denote the (non-normalized) be the Haar system, defined as follows
(make a picture!!):

h̃1(t) = 1 for alle t ∈ [0, 1]. (1.9)

For all k = 0, 1, 2, . . . og ` = 1, 2, . . . , 2k we put

h̃2k+`(t) =


1 if t ∈ [(2`− 2)2−k−1, (2`− 1)2−k−1[
−1 if t ∈ [(2`− 1)2−k−1, 2` · 2−k−1[

0 else.

We norm this system in L2(0, 1) and define

h1 = h̃1 h2k+` = 2k/2h̃2k+` for alle k = 0, 1, 2, . . . og ` = 1, 2, 3, . . . , 2k. (1.10)

By direct computation we check that it is an orthonormal system and since it is easy to see that
every indicator function of a dyadic interval belongs to span(hm), it follows that span(hm) is
dense in L2(0, 1). Therefore (hm) is an orthonormal basis for L2(0, 1). It follows from Theorem
1.7 that

Bt =
∞∑
m=1

∫ t

0

hm(s)ds gm 0 ≤ t ≤ 1 (1.11)

is a Brownian motion for t ∈ [0, 1]. The series converges in L2(P ) and almost surely and the
same is the case if we permute the terms. We should however note that the set with measure
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1 on which the series converges pointwise depends on the permutation. In order not to get
into difficulties with zero sets we shall fix the order of the terms in the sum. We define for all
0 ≤ t ≤ 1

Bt =

∫ t

0

h1(s)ds g1 +
∞∑
k=0

2k+1∑
m=2k+1

∫ t

0

hm(s)ds gm
def
=
∑
∗

m

∫ t

0

hm(s)ds gm (1.12)

and can now prove:

Theorem 1.8 (Bt)0≤t≤1 given by (1.12) is a continuous Brownian motion (on [0, 1]).

In the proof of the theorem we need the following lemmas:

Lemma 1.9 For all k ≥ 0 we have 0 ≤
∑2k+1

m=2k+1

∫ t
0
hm(s)ds ≤ 2−k/2−1.

Proof: For every 2k < m ≤ 2k+1 we put Sm(t) =
∫ t

0
hm(s)ds for all 0 ≤ t ≤ 1. If m = 2k + `,

1 ≤ ` ≤ 2k, then it follows directly from the definition of hm, that the graph of Sm is an triangle
centered in (2`− 1)2−k−1 and with highth 2−k/2−1. For different `’s these triangles do not over-
lap. This shows the statement. 2

Lemma 1.10 For all k ≥ 0 we put

Gk(ω) = max{|gm(ω)| | 2k < m ≤ 2k+1} for all ω ∈ Ω. (1.13)

There is a subset Ω̃ ⊆ Ω with P (Ω̃) = 1 so that there to every ω ∈ Ω̃ exists a k(ω) with the
property that Gk(ω) ≤ k for all k ≥ k(ω).

Proof: For every x > 0 we find

P (|gm| > x} =

√
2

π

∫ ∞
x

e−u
2/2du ≤

√
2

π

∫ ∞
x

u

x
e−u

2/2du =

√
2

π
x−1e−x

2/2, (1.14)

which gives:

P (Gk > k) = P (
2k+1⋃

m=2k+1

(|gm| > k) ≤ 2kP (|g1| > k) ≤
√

2

π

1

k
· 2ke−k2/2. (1.15)

Since
∞∑
k=1

P (Gk > k) ≤
√

2

π

∞∑
k=1

k−12ke−k
2/2 <∞,

it follows from the Borel-Cantelli lemma that P (Gk ≤ k from a certain step) = 1. Choosing Ω̃
as this set the statement follows. 2
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Proof of Theorem 1.8: Let Ω̃ be as in Lemma 1.10 and let ω ∈ Ω̃. Then there exists a k(ω) ≥ 1
so that Gk(ω) ≤ k for alle k ≥ k(ω). If k ≥ k(ω) is now fixed, we find

2k+1∑
m=2k+1

|
∫ t

0

hm(s)ds · gm(ω)| ≤
2k+1∑

m=2k+1

∫ t

0

hm(s)ds ·Gk(ω) ≤ k 2−k/2−1. (1.16)

for all 0 ≤ t ≤ 1.

Since
∑∞

k=1 k 2−k/2−1 <∞, it follows from Weierstrass’ M-test that the series∑∞
k=k(ω)

∑2k+1

m=2k+1

∫ t
0
hm(s)dsgm(ω) converges uniformly for t ∈ [0, 1]. This gives that the series

Bt(ω) =
∑
∗

m

∫ t

0

hm(s)dsgm(ω) (1.17)

also converges uniformly for t ∈ [0, 1] and hence t→ Bt(ω) is continuous. 2

In order to find a continuous Brownian motion on [0,∞[ we define the functions hnm ∈ L2(0+,∞)
by

hnm(t) =

{
hm(t− n) for t ∈ [n− 1, n]

0 else n ∈ N,m ∈ N (1.18)

and note that (hnm)∞m=1 is an orthonormal basis for L2(n−1, n) for all n ∈ N which implies that
(hnm) is an orthonormal basis for L2(0,∞).

The following theorem easily follows from the above:

Theorem 1.11 Let (Ω,F , P ) be a probability space on which there exists a sequence ofN(0, 1)-
distributed random variables and let (gnm) be such a sequence. Define:

Bt =
∞∑
n=1

∑
∗

m

∫ t

0

hnm(s)ds gnm for allt ≥ 0. (1.19)

Then (Bt)t≥0 is a continuous Brownian motion.

Let now (Bt) be a Brownian motion and let for every t ≥ 0 Ft denote the σ-algebra generated
by {Bs | 0 ≤ s ≤ t} and the set N of zero–sets.

Theorem 1.12 (Bt,Ft) is a martingale.

Proof: Let 0 ≤ s < t. It follows directly from the definition that Bt − Bs is independent of
{Bu | u ≤ s} and therefore also independent of Fs. Hence we find

E(Bt|Fs) = E(Bs|Fs) + E(Bt −Bs|Fs) = Bs + E(Bt −Bs) = Bs (1.20)

2
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2 The Ito integral

In this section we let (Ω,F , P ) denote a probability space on which we have a Brownian motion
(Bt) and we shall always assume that it is continuous. Further, B denotes the set of Borel subsets
of R, mn denotes the Lebesgue measure on Rn (m1 = m) and (Ft) denotes the family of σ–
algebras defined above. Also we let 0 < T <∞ be a fixed real number. We wish to determine a
subspace of functions f of L2([0, T ]× Ω.m⊗ P ) so that we can define

∫ T
0
fdB as a stochastic

variable. Since it can be proved that for a.a. ω ∈ Ω the function ω → Bt(ω) is not of finite
variation, the Riemann–Stiltjes construction will not work. However, since (Bt) is a martingale,
we have other means which we are now going to explore.

For every n ∈ N we define the sequence (tnk) by

tnk =

{
k2−n if 0 ≤ k2−n ≤ T

T if k2−n > T

If n is fixed we shall often write tk instead of tnk .

We let E ⊆ L2([0, T ]× Ω,m⊗ P ) consist of all functions φ of the form

φ(t, ω) =
∑
k

ek(ω)1[tnk ,t
n
k+1[(t)

where n ∈ N and every ek ∈ L2(P ) and is Ftnk –measurable. The elements of E are called
elementary functions.

If φ ∈ E is of the form above we define the Ito integral by:∫ T

0

φdB =
∑
k

ek(Btk+1
−Btk)

It is straightforward that the map φ→
∫ T

0
φdB is linear.

The following theorem is called the Ito isometry for elementary functions.

Theorem 2.1 If φ ∈ E , then

E(

∫ T

0

φdB)2 = E(

∫ T

0

φ2dm).

Proof: Let φ be written as above. If j < k, then ejek(Btj+1
− Btj) is Ftk–measurable and

therefore independent of (Btk+1
−Btk). Hence

E(ejek(Btj+1
−Btj)(Btk+1

−Btk)) = E(ejek(Btj+1
−Btj)E(Btk+1

−Btk) = 0.

If j = k, ek is independent of Btk+1
−Btk and hence

E[(e2
k(Btk+1

−Btk)2] = E(e2
k)E(Btk+1

−Btk)2 = E(e2
k)(tk+1 − tk)
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This clearly gives that

E(

∫ T

0

φdB)2 = E(

∫ T

0

φ2dm)

2

This means that the map φ →
∫ T

0
φdB is a linear isometry from E → L2(P ) and can therefore

be extended to a linear isometry from E to L2(P ). Hence we can define
∫ T

0
φdB for all f ∈ E

and it is clear that E(
∫ T

0
φdB) = 0.

Theorem 2.2 If f ∈ E , then (
∫ T

0
fdB)0≤t≤T is a martingale.

Proof: Let first φ ∈ E be written as above. Then∫ T

0

φdB =
∑
k

ek(Btk+1
−Btk)

and if 0 ≤ t < T , say tm ≤ t < tm+1, then for k > m we get

E(ek(Btk+1
−Btk) | Ftk) = ekE(Btk+1

−Btk | Ftk) = 0

and hence also

E(ek(Btk+1
−Btk) | Ft) = E(E(ek(Btk+1

−Btk) | Ftk) | Ft) = 0.

If k < m
E(ek(Btk+1

−Btk) | Ft) = ek(Btk+1
−Btk).

Finally we get:
E(em(Btm+1 −Btm) | Ft) = em(Bt −Btm).

Summing up we get that E(
∫ T

0
φdB | Ft) =

∫ t
0
φdB. Since E(· | Ft) is an orthogonal projection

on L2(P ), it follows that E(
∫ T

0
fdB | Ft) =

∫ t
0
fdB for all f ∈ E . 2

Using Doob’s martingale inequality and the Borel–Cantelli lemma, the following can be proved:

Theorem 2.3 The Ito integral has a continuous version, meaning that we can achieve that for
every f ∈ E that map t→

∫ t
0
fdB is continuous almost surely.

Our next task is to determine E . A B⊗F–measurable function f is called progressively measur-
able if for all 0 ≤ t ≤ T f : [0, t] × Ω → R is B ⊗ Ft–measurable. We let P2(0, T ) denote the
closed subspace of L2([0, T ]× Ω,m⊗ P ) which are progressively measurable.

We can now prove:

Theorem 2.4 E = P2(0, T ).
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Proof: Let first g ∈ P2(0, T ) be bounded so that g(·, ω) is continuous for almost all ω ∈ Ω and
define φn by

φn(t, ω) =
∑
k

g(tnk , ω)1[tnk ,t
n
k+1[(t)

Clearly φn ∈ E for all n ∈ N. Let now ε > 0 and let ω ∈ Ω be fixed. By uniform continuity we
can find a δ > 0 so that |t − s| < δ ⇒ |g(t, ω) − g(s, ω)| < ε. Determine n0 so that 2−n0 < δ
and let n ≥ n0. Then |g(t, ω)− g(tk, ω)| < ε for all tk ≤ t ≤ tk+1 and therefore∫ T

0

(g(t, ω)− φn(t, ω))2dt < ε2T

so that
∫ T

0
(g(t, ω) − φn(t, ω))2dt → 0. Since g is bounded, majorized convergence gives that

also E(
∫ T

0
(g − φn)2dm)→ 0 as well. Hence g ∈ E .

The next step is the tricky one where progressive measurability is used. Let h ∈ P2(0, T ) be a
bounded function, say |h| ≤ M a.s. We wish to show that there is a sequence (gn) ⊆ P2(0, T )
so that for evey n and a.a. ω the function t → gn(t, ω) is continuous and so that gn → h in
L2(m ⊗ P ). Together with the above this will give that h ∈ E . Let for each n ψn be the non–
negative continuous function which is zero on the intervals ] − ∞,− 1

n
] and ]0,∞[ and so that∫∞

−∞ ψn(x)dx = 1. We can e.q choose ψn so that its graph is a triangle. (gn) is now defined by:

gn(t, ω) =

∫ t

0

ψn(s− t)h(s, ω)ds for all ω and all 0 ≤ t ≤ T .

The properties of the sequence (ψn) readily give that each gn is continuous in t and |gn| ≤ M
a.s. For fixed t the function (s, u, ω)→ ψn(s−u)h(s, ω) is integrable over [0, t]× [0, t]×Ω and
since h ∈ P2(0, T ), it is B ⊗B ⊗Ft–measurable. An application of Fubini’s theorem now gives
that gn is progressively measurable for every n.

Since (ψn) constitutes an approximative identity with respect to convolution, it follows that∫ T
0

(h− gn)2dm→ 0 and an application of majorized convergence gives gn → h in L2(m⊗P ).

Let now f ∈ P2(0, T ) be arbitrary. For every n ∈ N we define

hn(t, ω) =


−n if f(t, ω) < −n

f(t, ω) if −n ≤ f(t, ω) ≤ n
n if f(t, ω) > n

By the above (hn) ⊆ E and it clearly converges to f in L2(m⊗ P ). 2

It is worthwhile to note that if h ∈ L2([0, T ]), then
∫ t

0
hdB is normally distributed with mean 0

and variance
∫ T

0
h2dm.

We say that a measurable function f ; [0, T × Ω→ R is adapted to the filtration(Ft), if for fixed
0 ≤ t ≤ T the function ω → f(t, ω) is Ft–measurable. A lengthy and quite demanding proof
gives the following result.
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Theorem 2.5 (Meyer) If f is adapted to a filtration (Ft), then it has a progressively measurable
modification g, that is for every 0 ≤ t ≤ T f(t, ·) = g(t, ·) a.s.

We let A2(0, T ) consist of those functions in L2(m ⊗ P ) which are adapted to (Ft). Using
Meyer’s theorem we can now define the Ito integral of an f ∈ A2. We choose namly a progres-
sively measurable modification g of f and simply define

∫ T
0
fdB =

∫ T
0
gdB. We shall not go

into details.

The Ito integral can be defined for a larger class of integrants. If f ∈ L2([0, T ]×Ω) so that there
is an increasing family (Ht) of σ–algebras so that

(i) Ft ⊆ Ht for all 0 ≤ t ≤ T .

(ii) For all 0 ≤ s < t ≤ T Bt −Bs is independent ofHs.

(iii) f is (Ht)–adapted.

The arguments are similar to the ones given above. Note that (ii) implies that (Bt) is a martingale
with respect to (Ht). It also follows (

∫ t
0
fdB) is a martingale.

Let f : [0, T ]× Ω→ R be a function satisfying (i)–(iii) and so that

P ({ω ∈ Ω |
∫ T

0

f(t, ω)2dt <∞}) = 1. (2.1)

In that case it can be proved that there is a sequence (fn) of elementary functions so that∫ T
0

(f − fn)2dm → 0 in probability. It turns out that then also (
∫ T

0
fndB) will converge in

probability and we can therefore define∫ T

0

fdB = lim
n

∫ T

0

fndB in probability.

Note however that since conditional expectations are not continuous in probability, this extended
Ito integral will in general not be a martingale.

Let n ∈ N and let (Ω,F , P ) be a probability space on which we can find n independent Brownian
motions, B1(t), B2(t), · · · , Bn(t)). We can then put B(t) = (Bj(t) to get an n–dimensional
Brownian motion. As before we let for every t ≥ 0 Ft denote the σ–algebra generated by
{B(s) | 0 ≤ s ≤ t} and the zero sets N .

If A(t, ω) is an m× n stochastic matrix which is (Ft)–adapted and so that all entries satisfy the
equation (2.1) above, we can define the m–dimensional Ito integral

∫ T
0
AdB by writing the dB

as a column “vector” and perform matrix multiplication, e.g. the kth coordinate of
∫ T

0
AdB will

be
n∑
j=1

∫ T

0

AkjdBj.

It follows that if each entry of A is square integrable in both variables, this Ito integral will be an
m–dimensional martingale.
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3 Ito’s formula

We consider the one dimensional case and let (Bt) be an one dimensional Brownian motion.

Definition 3.1 An Ito process is a stochastic process of the form

Xt = X0 +

∫ t

0

u(s, ω)dt+

∫ t

0

v(s, ω)dBt(ω) t ≥ 0,

where u and v are so that the integrals make sense for all t ≥ 0.

If X is an Ito process of the form above, we shall often write

dXt = udt+ vdBt

Theorem 3.2 Let dXt = udt + vdBt be an Ito process and let g ∈ C2([0,∞[×R). Then
Yt = g(t,Xt) is again an Ito process and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2.

The “multiplication rules” here are

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt.

We shall not prove it here. It is based on Taylor expansions and the difficult part is to show that
that the remainer tends to zero in L2.

There is also an Ito formula in higher dimensions.

As an example of the use of Ito’s formular let us compute
∫ t

0
BsdBs.

Ito’s formular used with the function x2 gives

d(Bt)
2 = 2BtdBt + (Bt)

2 = 2BtdBt + t,

so that ∫ t

0

BsdBs =
1

2
(B2

t − t)

In particular it follows that (B2
t − t) is a martingale, a fact we shall prove directly later. The next

theorem is called the Ito representation theorem

Theorem 3.3 Let 0 < T < ∞ and let F ∈ L2(Ω,FT , P ). Then there is a unique f ∈ A2(0, T )
so that

F = E(F ) +

∫ T

0

fdB.

We shall only prove it in the one–dimensional case. We need however two lemmas.
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Lemma 3.4 The set

{φ(Bt1 , Bt2 , · · · , Btn) | n ∈ N, φ ∈ C∞0 (Rn), (ti) ⊆ [0, T ]}

is dense in L2(Ω,FT , P )

Proof: Let (ti) be a dense sequence in [0, T ] and let for each n Hn be the σ–algebra generated
by {Bti | 0 ≤ i ≤ n} and the zero sets. Clearly FT is the smallest σ–algebra containing all of
the Hn’s. Let now g ∈ L2(Ω,FT , P ) be arbitrary. By the martingale convergence theorem we
get that g = E(g | FT ) = limnE(g | Hn), where the limit is in L2 and a.s.

A result of Doob and Dynkin gives the existence of a Borel function gn : Rn → R so that for
every n:

E(g | Hn) = gn(Bt1 , Bt2 , · · · , Btn).

Let µ denote the distribution Borel measure on Rn of (Bt1 , Bt2 , · · · , Btn), i.e µ = (Bt1 , Bt2 , · · · , Btn)(P ).
Note that µ has a normal density which implies that C∞0 (Rn) is dense in L2(µ).

From the above we get:∫
Rn

g2
ndµ =

∫
Ω

gn(Bt1 , Bt2 , · · · , Btn)2dP ≤
∫

Ω

g2dP

so that gn ∈ L2(µ). Hence gn can be approximated well in L2(µ) by a function φn ∈ C∞0 (Rn)
and hence gn(Bt1 , Bt2 , · · · , Btn can be approximated well in L2(P ) by φn(Bt1 , Bt2 , · · · , Btn),
Combining this with the above we get the result. 2

Lemma 3.5 PutM = {exp(
∫ T

0
hdB− 1

2

∫ T
0
h(s)2ds) | h ∈ L2(0, T )}. Then span(M) is dense

in L2(Ω,FT , P ).

Proof: Note that
∫ T

0
hdB is normally distributed and therefore exp(

∫ T
0
hdB) ∈ L2(P ). Note

also that the term 1
2

∫ T
0
h(s)2ds is actually not needed since we take the span.

Let now g ∈ L2(Ω,FT , P ) be orthogonal toM. We have to prove that g = 0 a.s.

Let n ∈ N and let {tj | 1 ≤ j ≤ n} For all λ = (λ1, λ2, · · · , λn) ∈ Rn we get that∫
Ω

exp(
n∑
j=1

λjBtj)gdP = 0

For every z = (z1, z2, · · · , zn) ∈ Cn we define

G(z) =

∫
Ω

exp(
n∑
j=1

zkBtk)gdP

G is seen be be a holomorphic function of n variables (use majorized convergence). SinceG = 0
on Rn, we must have G(z) = 0 for all z ∈ Cn. In particular

G(iy) = 0 for all y ∈ Rn

12



We wish to show that g is orthogonal to the set from the previous lemma, so let φ ∈ C∞0 (Rn).
By the inverse Fourier transform theorem we have

φ(x) = (2π)−
n
2

∫
Rn

φ̂(y) exp(i < x, y >)dmn

for all x ∈ Rn. We have:∫
Ω

φ(Bt1 ,t2 , · · · , Btn)gdP = (2π)−
n
2

∫
Ω

g

∫
Rn

φ̂(y) exp(
n∑
k=1

ykBtk)dmn(y)dP =

2π)−
n
2

∫
Rn

φ̂(y)G(iy)dmn(y) = 0

By the previous lemma we get that g = 0 a.s. 2

Proof of the Ito representation theorem:

By the above lemma and the Ito isometry it follows that it is enough to prove it for F ∈ M.
Hence we assume that F has the form

F = exp(

∫ T

0

hdB − 1

2

∫ T

0

h(s)2ds)

where h ∈ L2(0, T )

Let Yt = exp(
∫ t

0
hdB − 1

2

∫ t
0
h(s)2ds) for all 0 ≤ t ≤ T

Ito’s formula gives

dYt = Yt(h(t)dBt −
1

2
h(t)2dt) +

1

2
Yt(h(t)dBt)

2 = Yth(t)dBt.

Hence written in integral form:

Yt = 1 +

∫ t

0

Ysh(s)dBs

In particular

F = 1 +

∫ T

0

Ysh(s)dBs

Clearly the function (t, ω) → Yt(ω)h(t) is (Ft)–adapted so we need to verify that it belongs to
L2(m⊗ P ) .

We note that for fixed t
∫ t

0
hdB is normally distributed with mean 0 and variance σ2

t =
∫ t

0
h(s)2ds

and hence

E(Y 2
t ) = 1

σt
√

2π

∫∞
−∞ exp(2x− σ2

t − x2

2σ2
t
)dx =

exp(σ2
t )

1
σt
√

2π

∫∞
−∞ exp(− (x−2σ2

t )2

2σ2
t

)dx = exp(σ2
t ) .

13



Therefore ∫ T

0

h(t)2E(Y 2
t )dt =

∫ T

0

h(t)2 exp(

∫ t

0

h(s)2ds)dt <∞.

Hence (Yt) is a martingale and in particular E(F ) = 1

The uniqueness follows from Ito isometry. 2

We can now prove the martingale representation theorem

Theorem 3.6 Let (Bt) be an n–dimensional Brownian motion. If (Mt) ⊆ L2(P ) is an (Ft)–
martingale, then there is a unique stochastic process g so that f ∈ A2(0, t) for all t ≥ 0 so
that

Mt = E(M0) +

∫ t

0

fdB for all t ≥ 0.

Proof: We shall only prove it for n = 1. Let 0 ≤ t < ∞. The representation theorem give us a
unique f t ∈ A2(0, t) so that

Mt = E(M0) +

∫ t

0

f tdB.

If 0 ≤ t1 < t2, then

Mt1 = E(Mt2 | Ft1) = E(M0) +

∫ t1

0

ft2dB.

But

Mt1 = E(M0) +

∫ t1

0

f t1dB

so by uniqueness f t1(t, ω) = f t2(t, ω) for almost all (t, ω) ∈ [0, t1] × Ω. If we now put
f(t, ω) = fN(t, ω) for almost all 0 ≤ t ≤ N and almost all ω, then f is well–defined and
is clearly the one we need. 2

4 Stochastic differential equations

Let (Xt) be an (Ft)–adapted process. We say that (Xt) satisfies the stochastic integral equation

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

or in differential form
dXt = b(t,Xt)dt+ σ(t,Xt)dBt

where b and σ are so that the integrals make sense.
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As an example we can consider the equation

dXt = rXtdt+ αXtdBt

where r and α are constants.

Assume that (Xt) is a solution so that Xt > 0 a.s for all t ≥ 0. An application of Ito’s formula
then gives

d log(Xt) =
1

Xt

dXt −
1

2X2
t

(dXt)
2 =

1

Xt

(rXtdt+ αXtdBt)−
1

2X2
t

α2X2
t dt = (r − 1

2
α2)dt+ αdBt.

. Hence
log(Xt) = log(X0) + (r − 1

2
α2)t+ αBt

or
Xt = X0 exp((r − 1

2
α2)t+ αBt).

A test shows that (Xt) is actually a solution. We shall later see that given X0 it is the only one.
(Xt) is called a geometric Brownian motion. It can be shown that:

• If r > 1
2
α2, then Xt →∞ for t→∞.

• If r < 1
2
α2, then Xt → 0 for t→∞.

• If r = 1
2
, then Xt fluctuates between arbitrary large and arbitrary small values

when t→∞.

The law of iterated logarithm is used to prove these statements. It says that

lim sup
t→∞

Bt√
2t log(log t)

= 1 a.s.

Let n,m ∈ N and let Mnm denote the space of all n×m–matrices. Further let b : [0, T ]×Rn →
Rn and σ : [0, T ]× Rn → Mnm be measurable functions so that there exists constants C and D
with

• ‖b(t, x)‖+ ‖σ(t, x)‖ ≤ C(1 + ‖x‖)

• ‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ D‖x− y‖

for all x, y ∈ Rn and all t ∈ [0, T ]. Here ‖ · ‖ denotes the norm in the Euclidian space (we
identify here Mnm with Rnm. Further we let B be an m–dimensional Brownian motion.

We have the following existence and uniqueness theorem:
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Theorem 4.1 Let Z ∈ L2(P ) so that Z is independent of {Ft | 0 ≤ t ≤ T . The equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt 0 ≤ t ≤ T X0 = Z

has a unique solution with X ∈ L2(m⊗P ) so thatX is adapted to the σ–algebra FZt generated
by Z and Ft.

We shall not prove the theorem here. The uniqueness is based on the assumptions above and Ito
isometry. The existence is based on Picard iteration.

In fact, we put Y (0)
t = Z and define Y (k)

t inductively by

Y
(k+1)
t = Z +

∫ t

0

B(s, Y (k)
s )ds+

∫ t

0

σ(s, Y (k)
s )dBs.

We then use our assumptions to prove that the sequence (Y (k)) has a limit in L2(m ⊗ P ). This
limit is our solution. The uniqueness involves Ito isometry.

Definition 4.2 A time homogeneous Ito diffusion (Xt) is a process that satisfies an equation of
the form

dXt = b(Xt)dt+ σ(Xt)dBt 0 ≤ s ≤ t Xs = x ∈ Rn

where b : Rn → Rn and σ : Rn →Mnm satisfy

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ D‖x− y‖ for all x, y ∈ Rn.

5 Lévy’s characterization of Brownian motion

For every n ∈ N Bn denotes the Borel algebra on Rn and if X : Ω→ Rn a random variable, then
we let X(P ) denote the distribution measure (the image measure) on Rn of X , e.g.

X(P )(A) = P (X−1(A)) for all A ∈ Bn. (5.1)

If n ∈ N, we let 〈·, ·〉 denote the canonical inner product on Rn. Hence for all x = (x1, x2, . . . , xn) ∈
Rn og alle y = (y1, y2, . . . , yn) ∈ Rn we have

〈x, y〉 =
n∑
j=1

xjyj. (5.2)

Let (Ft)t≥0 be an increasing family of sub-σ-algebras so that Ft contains all sets of measure 0
for all t ≥ 0 (it need not be generated by any Brownian motion). We start with the following
easy result.

Theorem 5.1 Let (Bt) be a one–dimensional normalized Brownian motion, adapted to (F) and
so that Bt − Bs is independent of Fs for all 0 ≤ s < t (this ensures that (Bt) is a martingale
with respect to (Ft)). Then (B2

t − t) is a martingale with respect to (Ft).
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Proof: If 0 ≤ s < t, then B2
t = (Bt −Bs)

2 +B2
s + 2Bs(Bt −Bs) and hence

E(B2
t | Fs) = E((Bt −Bs)

2 | Fs) +B2
s + 2BsE((Bt −Bs) | Fs) = (t− s) +B2

s

where we have used that Bt −Bs and hence also (Bt −Bs)
2 are independent of Fs. 2

The main result of this section is to prove that the converse is also true for continuous processes,
namely:

Theorem 5.2 Let (Xt) be a continous process adapted to (Ft) so that X0 = 0 and

(i) (Xt) is a martingale with respect to (Ft).

(ii) (X2
t − t) is a martingale with respect to (Ft).

Then (Xt) is a (normalized) Brownian motion.

Before we can prove it, we need yet another theorem which is a bit like Ito’s formula and a
lemma.

Theorem 5.3 Let (Xt) be as in Theorem 5.2 and let f ∈ C2(R) so that f , f ′ and f ′′ are bounded.
For all 0 ≤ s < t we have

E(f(Xt) | Fs) = Xs +
1

2

∫ t

s

E(f ′′(Xu) | Fs)du. (5.3)

Proof: Let Π = (tk)
n
k=0 be a partition of the interval [s, t] so that s = t0, t1 < t2 < · · · , < tn = t.

By Taylor’s formula we get

f(Xt) = f(Xs) +
n∑
k=1

(f(Xtk)− f(Xtk−1
)) (5.4)

= f(Xs) +
n∑
k=1

f ′(Xtk−1
)(Xtk −Xtk−1

) +
1

2

n∑
k=1

f ′′(Xtk−1
)(Xtk −Xtk−1

)2 +RΠ

Taking conditional expectations on each side we obtain:

E(f(Xt) | Fs) = f(Xs) +
n∑
k=1

E(E(f ′(Xtk−1
)(Xtk −Xtk−1

) | Fk−1) | Fs) +

1

2

n∑
k=1

E(E(f ′′(Xtk−1
)(Xtk −Xtk−1

)2 | Ftk−1
) | Fs) + E(RΠ | Fs) = f(Xs) +

1

2

n∑
k=1

E(f ′′(Xtk−1
) | Fs)(tk − tk−1) + E(RΠ | Fs). (5.5)
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Using the continuity of the (Xt) it can be shown that RΠ → 0 in L2(P ), when the length
|Π| of Π tends to 0. Hence also E(RΠ | Fs) → 0 in L2(P )as |Π| → 0. Since the function
u→ E(f ′′(Xu) | Fs)) is continuous a.s., we get that

n∑
k=1

E(f ′′(Xtk−1
) | Fs)(tk − tk−1)→

∫ t

s

E(f ′′(Xu) | Fs)du a.s. (5.6)

when |Π| → 0 and since f ′′ is bounded, the bounded convergence theorem gives that the conver-
gence in (5.6) is also in L2(P ). Combining the above we get formula (5.3). 2

Let us recall the following defintion:

Definition 5.4 If X : Ω→ Rn, then its characteristic function φ : Rn → R is defined by

φ(y) =

∫
Ω

exp(i < y,X >)dP =

∫
Rn

exp(i < y, x >)dX(P ).

Lemma 5.5 Let n ∈ N, let Yj : Ω → R, 1 ≤ j ≤ n be stochastic variables, and put Y =
(Y1, Y2, · · · , Yn) : Ω→ Rn. Further, let φYj denote the characteristic function of Yj for 1 ≤ j ≤
n and φY the characteristic function of Y . Then Y1, Y2, . . . , Yn are independent if and only if

φY (x1, x2, . . . , xn) =
n∏
j=1

φYj(xj) (5.7)

for all (x1, x2, . . . , xn) ∈ Rn.

Proof: It follows from the definition of independence that Y1, Y2, . . . , Yn are independent if and
only if Y (P ) = ⊗nj=1Yj(P ) Noting that the right hand side of (5.7) is the characteristic function
of ⊗nk=1Yj(P ), the statement of the lemma follows from the above and the uniqueness theorem
for characteristic functions. 2

Proof of Theorem 5.2: The main part of the proof will be to prove that for all 0 ≤ s ≤ t we
have the formula

E(exp(iu(Xt −Xs)) | Fs) = exp(−1

2
u2(t− s)) for all u ∈ R. (5.8)

To prove (5.8) fix an s with 0 ≤ s < ∞, a u ∈ R, and apply Theorem 5.3 to the function
f(x) = exp(iux) for all x ∈ R. For all s ≤ t we then obtain:

E(exp(iuXt) | Fs) = exp(iuXs)−
1

2
u2

∫ t

s

E(exp(iuXv) | Fs)dv

or

E(exp(iu(Xt −Xs)) | Fs) = 1− 1

2
u2

∫ t

s

E(exp(iu(Xv −Xs)) | Fs)dv. (5.9)
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Since the integrand on the right side of (5.9) is continuous in v, the left hand side is differentiable
with respect to t and

d

dt
E(exp(iu(Xt −Xs)) | Fs) = −1

2
u2E(exp(iu(Xt −Xs) | Fs).

This shows that on [s,∞[ E(exp(iu(Xt −Xs)) | Fs) is the solution to the differential equation

g′(t) = −1

2
u2g(t)

with the initial condition g(s) = 1. Hence

E(exp(iu(Xt −Xs)) | Fs) = exp(−1

2
u2(t− s)) for all 0 ≤ s ≤ t

and equation (5.8) is established.

Let now 0 ≤ s < t. By (5.8) the characteristic function of Xt −Xs is given by:

E(exp(iu(Xt −Xs)) = E(E(exp(iu(Xt −Xs)) | Fs)) = exp(−1

2
u2(t− s))

and hence Xt −Xs is normally distributed with mean 0 and variance t− s.

Let now 0 = t0 < t1 < t2 < · · · < tn <∞ and put Y = (Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1). If
φY denotes the characteristic function of Y , then we get for all u = (u1, u2, . . . , un) ∈ R:

φY (u) = exp(i < u, Y >) = E(
n∏
k=1

exp(iuk(Xtk −Xtk−1
)) =

E(E(
n∏
k=1

exp(iuk(Xtk −Xtk−1)) | Ftn−1) =

exp(−1

2
u2
n(tn − tn−1))E(

n−1∏
k=1

exp(iuk(Xtk −Xtk−1
))

Continuing in this way we obtain:

φY (u) =
n∏
k=1

exp(−1

2
u2
k(tk − tk−1) =

n∏
k=1

E(exp(iuk(Xtk −Xtk−1
))

which together with Lemma 5.5 shows that Xt1 , Xt2 −Xt1 , · · · , Xtn −Xtn−1 are independent.

Thus we have proved that (Xt) is a normalized Brownian motion. 2

In many cases where Theorem 5.2 is used, Ft is for each t the σ–algebra generated by {Xs | 0 ≤
s ≤ t} and the sets of measure 0. However, the theorem is often applied to cases where the Ft’s
are bigger.

We end this note by showing that the continuity assumption in Theorem 5.2 can not be omitted.
Let us give the following definition:
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Definition 5.6 An (Ft)–adapted process (Nt) is called a Poisson process with intensity 1 ifN0 =
0 a.s. and for 0 ≤ s < t, Nt −Ns is independent of Fs and Poisson distributed with parameter
t− s.

Hence if (Nt) is a Poisson process with intensity 1, then Nt −Ns takes values in N ∪ {0} for all
0 ≤ s < t and

P (Nt −Ns = k) =
(t− s)k

k!
exp(−(t− s)) for all k ∈ N ∪ {0}

It can be proved that such processes exist.

Easy calculations show that E(Nt − Ns) = t − s = V (Nt − Ns). The process (Mt), where
Mt = Nt − t for all t ∈ [0,∞[, is called the compensated Poisson process with intensity 1. Note
that (Mt) is not continuous. We have however:

Theorem 5.7 If (Mt) is a compensated Poisson process with intensity 1, then it satisfies the
conditions (i) and (ii) in Theorem 5.2.

Proof: Let 0 ≤ s < t. Since Mt −Ms is independent of Fs, we get

E(Mt | Fs) = Ms + E(Mt −Ms) = Ms.

Since M2
t = M2

s + (Mt −Ms)
2 + 2Ms(Mt −Ms), we also get

E(M2
t | Fs) = M2

s + E((Mt −Ms) | Fs) + 2MsE(Mt −Ms | Fs) = (t− s) +M2
s .

2

6 Girsanov’s theorem

In this section we let again (Bt) denote a one–dimensional Brownian motion, let 0 < T < ∞,
and let (Ft) be defined as before. Before we can formulate the main theorem of this section we
need a little preparation. Let us recall that ifQ is another probability measure on (Ω,F), thenQ is
said to be absolutely continuous with respect to P , written Q << P , if P (A) = 0⇒ Q(A) = 0
for all A ∈ F . A famous result of Radon and Nikodym says that in that case there is a unique
h ∈ L1(P ) so that

Q(A) =

∫
A

hdP for all A ∈ F .

We often write this as dQ = hdP . In this situation we have:

Theorem 6.1 If f ∈ L1(Q) andH is a sub–σ–algebra of F , then

EQ(f | H)EP (h | H) = EP (fh | H)

20



Proof: Let A ∈ H be arbitrary. On one hand we have:∫
A

EQ(f | H)hdP =

∫
A

EQ(f | H)dQ =

∫
A

fdQ =∫
A

fhdP =

∫
A

EP (fh | H)dP .

On the other hand we have∫
A

EQ(f | H)hdP =

∫
A

EP (EQ(f | H)h | H)dP =∫
A

EQ(f | H)EP (h | H)dP.

which gives the formula. 2

P and Q are called equivalent if both Q << P and P << Q.

In the rest of this section we let a : [0,∞] × Ω → R be a measurable, (Ft)–adapted function
which satisfies

P ({ω ∈ Ω |
∫ t

0

a(s, ω)2ds <∞}) = 1 for all 0 ≤ t <∞ (6.1)

Since in particular (6.1) holds for all n ∈ N, we have also

P ({ω ∈ Ω |
∫ t

0

a(s, ω)2ds <∞ for all 0 ≤ t}) = 1.

We recall that a function τ : Ω→ [0,∞] is called a stopping time if {ω ∈ Ω | τ(ω) ≤ t} ∈ Ft for
all 0 ≤ t <∞. It is not difficult to prove that if (Xt) is a continuous (Ft)–adapted n–dimensional
process, G ⊆ Rn is open, and

τG(ω) = inf{t > 0 | τ(ω) /∈ G} inf ∅ =∞,

then τG is a stopping time.

We can now formulate the one–dimensional Girsanov theorem.

Theorem 6.2 Let Yt be the Ito process given by

Yt =

∫ t

0

a(s, ·)ds+Bt for all 0 ≤ t ≤ T

and put

Mt = exp(−
∫ t

0

adB − 1

2

∫ t

0

a(s, ·)2ds) for all 0 ≤ t ≤ T . (6.2)

Assume that (Mt)0≤t≤T is a martingale. If we define the measure Q on FT by dQ = MTdP , then
Q is a probability measure and (Yt) i a Brownian motion with respect to Q.
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Before we can prove the theorem in a special case, we will investigate when expressions like the
ones in (6.2) form a martingale. Hence let us look on

Mt = exp(

∫ t

0

adB − 1

2

∫ t

0

a(s, ω)2ds) for all 0 ≤ t. (6.3)

(we write a instead of −a, since the sign does not matter for our investigation)

Ito’s formula gives that

dMt = Mt(a(t, ·)dBt −
1

2
a(t, ·)2dt) +

1

2
Mta(t, ·)2dt =

Mta(t, ·)dBt,

so that

Mt = 1 +

∫ t

0

aMdB for alle t ≥ 0. (6.4)

Our first result states:

Theorem 6.3 (i) (Mt) is a supermartingale with EMt ≤ 1 for all t ≥ 0.

(ii) (Mt) is a martingale if and only if EMt = 1 for all t ≥ 0.

Proof: For every n ∈ N we put

τn = inf{t > 0 |
∫ t

0

M2
s a(s, ·)2 ≥ n}

(remember that inf ∅ =∞).

τn is a stopping time for all n ∈ N and let us show that τn → ∞ a.s. for n → ∞. To see this
let t > 0 and let ω ∈ Ω so that s → Ms(ω) is continuous. Hence there is a constant K(ω) with
|Ms(ω)| ≤ K(ω) for all 0 ≤ s ≤ t. (6.1) gives that except for ω in a zero–set we can find an n0

so that

K(ω)2

∫ t

0

a(s, ω)2ds < n0.

If n ≥ n0, we get for all 0 ≤ u ≤ t that∫ u

0

M2
s a(s, ω)2ds < n,

which shows that τn(ω) > t for all n ≥ n0. Hence τn(ω)→∞.

If 0 < T < ∞ and we only consider the situation on [0, T ], a similar argument shows that for
almost all ω ∈ Ω we have τn(ω) =∞ for n sufficiently large.

If n ∈ N and t ≥ 0, then

Mt∧τn = 1 +

∫ t

0

1[0,τn](s)Msa(s, ·)dBs. (6.5)
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Since τn is a stopping time, 1[0,τn]aM ∈ A2(0, t) and hence (Mt∧τn) is a martingale with
EMt∧τn = 1 for all n ∈ N. Since Mt∧τn ≥ 0 the Fatou lemma gives that

EMt ≤ lim inf EMt∧τn = 1 for all t ≥ 0.

If we apply Fatou’s lemma for conditional expectations we get for all 0 ≤ s < t that

E(Mt | Fs) ≤ lim inf E(Mt∧τn | Fs) = limMs∧τn = Ms,

which shows that (Mt) is a supermartingale.

Let us now show (ii). If (Mt) is a martingale, then EMt = EM0 = 1.

Assume next that EMt = 1 for all t ≥ 0 and let 0 ≤ s < t. If we put

A = {ω ∈ Ω | E(Mt | Fs)(ω) < Ms(ω)},

then we need to show that P (A) = 0. The assumption P (A) > 0 gives that

1 = EMt =

∫
Ω

E(Mt | Fs)dP =∫
A

E(Mt | Fs) +

∫
Ω\A

E(Mt | Fs)dP <

∫
A

MsdP +

∫
Ω\A

MsdP =

EMs = 1

which is a contradiction. Hence P (A) = 0 and (Mt) is a martingale. 2

In connection with applications of the Girsanov theorem it is of course important to find suffi-
cient conditions for (Mt) being a martingale, often only in the interval [0, T ]. One of the most
important sufficient conditions is the Novikov condition:

E exp(
1

2

∫ T

0

a(s, ·)2ds) <∞ where 0 < T <∞. (6.6)

If (6.6) holds for a fixed T , then {Mt | 0 ≤ t ≤ T} is a martingale and if (6.6) holds for all
0 ≤ T <∞, then {Mt | 0 ≤ t} is a martingale. It lies outside the scope of these lectures to show
this and we shall therefore do something simpler which covers most cases that appear in practice:
Since aM is adapted, it follows from (6.4) that if aM ∈ L2([0, t] × Ω) for every 0 ≤ t < ∞
(respectively for every 0 ≤ t ≤ T < ∞), then {Mt | 0 ≤ t} is a martingale (respectively
{Mt | 0 ≤ t ≤ T} is a martingale). The next theorem gives a sufficient condition for this:

Theorem 6.4 Let f : [0,∞[→ [0,∞[ be a measurable function and 0 < T <∞. If

f ∈ L2[0, T ] (6.7)

and
|a(t, w)| ≤ f(t) for all 0 ≤ t ≤ T and a.a. s ∈ Ω, (6.8)

then:
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(i) For all 1 ≤ p <∞ and all 0 ≤ t ≤ T we have Mt ∈ Lp(P ) with

EMp
t ≤ exp

(p2 − p
2

∫ t

0

f(s)2ds
)
. (6.9)

(ii) {Mt | 0 ≤ t ≤ T} is a martingale.

(iii) . If (6.7) og (6.8) holds for every 0 ≤ T <∞, then {Mt | 0 ≤ t} is a martingale.

Proof: To show (i) we let 1 ≤ p <∞ and let 0 ≤ t ≤ T . We find:

Mp
t = exp

(
p

∫ t

0

adB − p

2

∫ t

0

a(s, ·)2ds
)

= (6.10)

exp
( ∫ t

0

padB − 1

2

∫ t

0

(pa(s, ·))2ds
)

exp
(p2 − p

2

∫ t

0

a(s, ·)2ds
)
≤

exp
( ∫ t

0

padB − 1

2

∫ t

0

(pa(s, ·))2ds
)

exp
(p2 − p

2

∫ t

0

f(s)2ds
)
.

Since pa satisfies (6.1), Theorem 6.3 (i) gives that

EMp
t ≤ exp

(p2 − p
2

∫ t

0

f(s)2ds
)
,

which shows (i).

To prove (ii) we show that aM ∈ L2([0, T ]× Ω). From (6.9) with p = 2 we get:∫ T

0

E(a(t, ·)2M2
t )dt ≤

∫ T

0

f(t)2 exp
( ∫ t

0

f(s)2ds
)
dt ≤

exp
( ∫ T

0

f(t)2dt
) ∫ T

0

f(s)2ds <∞ ,

which shows that aM ∈ L2([0, T ]× Ω).

(iii) follows directly from (ii) 2

Note that in particular Theorem 6.4 is applicable in the important case where a is bounded.

Before we go on, we wish to make a small detour and apply the above to geometric Brownian
motions. Hence let (Xt) be a geometric Brownian motion starting in a point x ∈ R, say

Xt = x exp
(
(r − 1

2
α2)t+ αBt

)
= x exp(rt) exp(αBt −

1

2
α2t) for all t ≥ 0,

where r, α ∈ R. By the above (exp(αBt − 1
2
α2t)) is a martingale and therefore E(Xt) =

x exp(rt) for all t ≥ 0. This can of course also be obtained using that Bt is normally distributed.

We also need:
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Lemma 6.5 Let 0 ≤ T < ∞ and assume that {Mt | 0 ≤ t ≤ T} is a martingale.Let Q be
the measure on FT defined by dQ = MTdP . If (Xt) ⊆ L1(Q) is (Ft)–adapted, then (Xt) is a
Q–martingale if and only if (XtMt) er en P–martingale.

Proof:

This is an immediate consequence of the following formula which follows directly from Theorem
6.1 together with our assumptions. For all 0 ≤ s < t we have:

EP (XtMt | Fs) = EQ(Xt | Fs))EP (MtFs) = EQ(Xt | Fs)Ms.

2

Proof of Girsanov’s Theorem in a special case:

We will show Theorem 6.2 under the assumption that a satisfies the conditions of Theorem 6.4.
According to Lévy’s Theorem we have to show that (Yt) and (Y 2

t − t) are Q–martingales. Note
that from (6.4) we get that dMt = −aMdBt. To see that (Yt) is a Q–martingale we need to show
that (MtYt) is a P–martingale and get by Ito’s formula:

d(MtYt) = MtdYt + YtdMt + dMtdYt =

Mt(a(t)dt+ dBt)− Yta(t)MtdBt − a(t)Mtdt =

Mt(1− Yta)dBt ,

or

MtYt =

∫ t

0

Ms(1− Yta(s, ·))dBs for all 0 ≤ t ≤ T .

Hence we can finish by proving that the integrand belongs to L2([0, T ]× Ω). We note that

Mt|1− Yta(t)| ≤Mt +Mt|Yt|f(t)

and since E(Mt) = 1 for all 0 ≤ t ≤ T , M ∈ L2([0, T ]× Ω). Further

|Yt| ≤
∫ t

0

f(s)ds+ |Bt|

so that

Mt|Yt|f(t) ≤ f(t)Mt

∫ T

0

f(s)ds+ f(t)Mt|Bt| (6.11)

For p = 2 Theorem 6.4 gives: ∫ T

0

f(t)2E(M2
t )dt ≤∫ T

0

f(t)2 exp(

∫ t

0

f(s)2ds)dt ≤

exp(

∫ T

0

f(s)2ds)

∫ T

0

f(t)2dt < ∞
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which takes care of the first term in (6.11).

To take care of the second term we use Theorem 6.4 and the Cauchy–Schwartz’s inequality to
get:

E(M2
t B

2
t ) ≤ E(M4

t )
1
2E(B4

t )
1
2 ≤
√

3T exp(3

∫ T

0

f(s)2ds)

where we have used that E(B4
t ) = 3t2. Finally∫ T

0

f(t)2E(M2
t B

2
t )dt ≤

√
3T exp(3

∫ T

0

f(s)2ds)

∫ T

0

f(t)2dt <∞,

which shows what we wanted. Hence (Xt) is a Q–martingale.

Similar arguments and estimates will show that ((Y 2
t − t)Mt) is a P–martingale and hence that

(Y 2
t − t) is a Q– martingale. 2

Girsanov’s Theorem has the following corollary

Corollary 6.6 Let 0 < T <∞ and let (Xt) be an Ito process of the form

Xt = X0 +

∫ t

0

udm +

∫ t

0

vdB,

where u and v are such that the integrals make sense.

Assume further that v 6= 0 a.s and put a = u
v

and that a satisfies (6.1) and define (Mt) and Q as
in Theorem 6.2. If (Mt) is a martingale, then the process

B̃t =

∫ t

0

adm +Bt 0 ≤ t ≤ T ,

is a Q– Brownian motion and

Xt = X0 +

∫ t

0

vdB̃.

Proof: It follows from Theorem 6.2 that Q is a probability measure on FT and that B̃ is a
Q–Brownian motion. Further we get:

dXt = u(t)dt+ v(t)(dB̃t − a(t)dt) = v(t)dB̃t.

2

Theorem 6.2 and its corollary can be generalized to higher dimensions. In that case the a in
Theorem 6.2 will take values in Rn and if we interpret a2 as ‖a‖2, then (Mt) and Q are defined
as before and the result carries over using a multi–dimensional form of Lévy’s result. In the
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corollary (Bt) will be an m–dimensional Brownian motion, u will take values in Rn and v will
take values in the space of n×mmatrices. The requirement is then that the matrix equation va =
u has a solution satisfying the requirements of the corollary. If our process (Xt) there represents
a financial market, then the mathematical conditions reflex to some extend the behaviour in
practice of the financial market. In other words, Theorem 6.2 and Corollary 6.6 has a lot of
applications in practice.

At the end we will discuss under which conditions Theorem 6.2 can extended to the case where
T =∞. Hence we let a : [0,∞[×Ω→ R satisfy (6.1) and define Mt as in (6.3), that is

Mt = exp(

∫ t

0

adB − 1

2

∫ t

0

a2dm) t ≥ 0.

For convenience we shall assume that F is equal to the σ–algebra generated by {Ft | 0 ≤ t}.

If (Mt) is a martingale, we can for every t ≥ 0 define a probability measure Qt on Ft by
dQt = MtdP and the question is now whether there is a probability measure Q on F so that
Q|Ft = Qt for all 0 ≤ t < ∞. The next theorem gives a necessary and sufficient condition for
this to happen.

Theorem 6.7 Assume that {Mt | 0 ≤ t} is a martingale. Then M∞ = limt→∞Mt exists a.s.

The following statements are equivalent:

(i) There exists a probability measure Q on F with Q << P og Q | Ft = Qt for all t ≥ 0.

(ii) (Mt) is uniformly integrable.

If (i) (or equivalently (ii)) holds, then dQ = M∞dP .

Proof: Since EMt = 1 for alle 0 ≤ t, the martingale convergence theorem gives us the existence
of M∞ a.e.

Assume first that (i) and determine f ∈ L1(P ) so that dQ = fdP . Since Q | Ft = Qt, it clearly
follows that E(f | Ft) = Mt for alle 0 ≤ t. Let us show that this implies that {Mt | t ≥ 0} is
uniformly integrable. Since (Mt(ω)) is convergent for a.a ω, supt≥0Mt(ω) < ∞ for a.a ω. If
0 ≤ t <∞ and x > 0, then∫

(Mt>x)

MtdP =

∫
(Mt>x)

E(f | Ft)dP =∫
(Mt>x)

fdP ≤
∫

(supMs>x)

fdP,

where we have used that (Mt > x) ∈ Ft
Hence

lim
x→∞

sup
t≥0

∫
(Mt>0)

MtdP ≤ lim
x→∞

∫
(supMt>x)

fdP =∫
(supMt=∞)

fdP = 0,
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which shows that (Mt) is uniformly integrable.

Assume next that (ii) holds. Then Mt → M∞ in L1(P ) which implies that EM∞ = limEMt =
1, and that E(M∞ | Ft) = lims E(Ms | Ft) = Mt for all t ≥ 0. If we put dQ = M∞dP , then Q
is a probability measure and if t ≥ 0 and A ∈ Ft, then:

Q(A) =

∫
A

M∞dP =

∫
A

E(M∞ | Ft)dP =∫
A

MtdP = Qt(A),

which shows that Q | Ft = Qt so that (i) holds.

Hence we have proved that (i) and (ii) are equivalent.

Let again (i) hold. From the proof of (ii) ⇒ (i) we get that if we put dQ1 = M∞dP , then
Q1(A) = Q(A) for all A ∈

⋃
0≤tFt and since this class constitutes a ∩-stable generator system

for F , Q1(A) = Q(A) for alle A ∈ F ; hence dQ = dQ1 = M∞dP . 2

If we combine Theorem 6.3 with Theorem 6.7 we get the following corollary.

Corollary 6.8 Let f : [0,∞[→ [0,∞[ be a measurable function so that

f ∈ L2([0,∞[) (6.12)

|a(t, ω)| ≤ f(t) for all 0 ≤ t og n.a. ω ∈ Ω. (6.13)

Then (Mt) is a uniformly integrable martingale and hence Theorem 6.7 can be applied

Proof: It is immediate that (6.7) og (6.8) of Theorem 6.4 are satisfied so that (Mt) is a martingale.
If we apply (6.9) med p = 2, we get:

EM2
t ≤ exp

( ∫ t

0

f(s)2ds
)
≤ exp

( ∫ ∞
0

f(s)2ds
)
,

which shows that (Mt) is bounded in L2(P ) and therefore uniformly integrable. This proves the
corollary. 2

Girsanov’s Theorem 6.2 holds on the interval [0,∞[, if we assume that the (Mt) there is a uni-
formly integrable martingale. If a satisfies the conditions in Corollary 6.8 small modifications of
our proof of Theorem 6.2 will give a proof of this.

Let us end this section with the following example-

Example Lad a være konstant, a 6= 0. (6.7)) and (6.8) are clearly satisfied so that (Mt) is a
martingale. In fact, Mt = exp(aBt − 1

2
a2t) for all t ≥ 0. The martingale convergence theorem

shows that M∞ = limt→∞Mt exists a.e. Since however M∞ = 0 a.e. (see below) and EMt = 1
for all 0 ≤ t, (Mt) cannot be uniformly integrable.
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That M∞ = 0 can be seen as follows: It is sufficient to show that Mt → 0 in probability because
then there is a subsequence (tn) with Mtn → 0 a.s.

Hence let ε > 0 and determine t0 so that 1
2
a2t0 + log ε > 0 and put bt = a−1(1

2
a2t + log ε). If

a > 0, then for all t ≥ t0 we get:

P (Mt ≥ ε) = P (Bt ≥ bt) =
1√
2tπ

∫ ∞
bt

exp(− 1

2t
x2)dx ≤

1√
2tπ

1

bt

∫ ∞
bt

x exp(
1

2t
x2)dx =

√
t

1√
2π

[
− exp(− 1

2t
x2)
]∞
x=bt

=

√
t

1√
2π

exp(− 1

2t
b2
t ) → 0 for t→∞

Similar calculations show that also P (Mt ≥ ε)→ 0 for t→∞ in case a < 0.
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