python

powered

DM502
Programming A

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM502/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

PROJECT PART |

Organizational Details

2 possible projects, each consisting of 2 parts
= for It part, you have to pick ONE

= for 2"d part, you can stay or you may switch

= projects must be done individually, so no co-operation

= you may talk about the problem and ideas how to solve them

= deliverables:
= written 4 page report as specified in project description
* handed in BOTH electronically and as paper
* deadline: September 30, 12:00

= ENOUGH - now for the FUN part ...

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Fractals and the Beauty of Nature

= geometric objects similar to themselves at different scales

" many structures in nature are fractals:

= snowflakes
= lightning

= ferns

= Goal: generate fractals using Swampy

= Challenges: Recursion,Tuning, Library Use

’%’UNIVERSITY OF SOUTHERN DENMARK.DK

Fractals and the Beauty of Nature

,,"z,, Eﬂ‘v_g

= Task O: Preparation I

= understand implementation
of Koch snowflake

= Task |:Sierpinski Triangle

" draw fractal triangle of
fixed depth

Task 2: Binary Tree

= draw binary trees of fixed
depth

Task 3 (optional): Fern Time

* draw beautiful fern leaves W
with fixed detail M

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

From DNA to Proteins

= proteins encoded by DNA base sequence using A, C, G,and T

= Background:
= proteins are sequences of amino acids
= amino acids encoded using three bases

= chromosomes given as base sequences

Goal: assemble and analyze sequences from files

Challenges: File Handling, String and List Methods, lteration

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

From DNA to Proteins

= Task O: Preparation
* download human DNA sequence and take a look at it

= Task |:Assembling the Sequence

= clean up the sequence and assemble it into one string

= Task 2: Finding Starting Points
= find positions in string where ATG closely follows TATAAA

= Task 3: Finding End Points
= find one of the potential end markers (TAG, TAA, TGA)

= Task 4 (optional): Potential Proteins without TATA Boxes

= analysis of overlaps in encoded proteins

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

LIST PROCESSING

Lists as Sequences

= lists are sequences of values

= lists can be constructed using “[”" and “]”
= Example: 42, 23]

"Hello", "World", "!"]

"strings and", int, "mix", 2]

]
= |ists can be nested, i.e., a list can contain other lists
= Example: [[I,2,3],[4,5,6],[7,8, 9]]

= lists are normal values, i.e., they can be printed, assigned etc.
= Example: x =[1,2,3]

print X, [x, x], [[X, X], X]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Mutable Lists

= lists can be accessed using indices
= lists are mutable, i.e., they can be changed destructively
= Example:

x =11,2,3]

print x[1]

x[1] =4

print x, x[1]
* len(object) and negative values work like for strings
= Example:

x[2] == x[-1]

x[1] == x[len(x)-2]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagrams with Lists

= lists can be viewed as mappings from indices to elements
= Example I: x = ["Hello", "World", "!"]
list
X —> 0 —> "Hello"
| —> "World"

2 ﬁ "!"
= Example 2: x = [[23,42,-3.0], "Bye!"]
list list
X—>0 - >0—> 23
| —> "Bye!" | —> 42

2—> -3.0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Traversing Lists

= for loop consecutively assigns variable to elements of list
= Example: print squares of numbers from | to 10

for xin [1,2,3,4,5,6,7,8,9, 10]:

print x**2

= arithmetic sequences can be generated using range function:

" range([start,] stop/[, step])
= Example:
range(4) == [0, |, 2, 3]
range(l, 1) ==11,2,3,4,5,6,7,8,9, 10]
range(9, |,-2) ==19,7,5, 3]
range(1,10,2) ==[I,3,5,7,9]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Traversing Lists

= for loop consecutively assigns variable to elements of list

= general form
for element in my_list:
print element
= iteration through list with indices:
for index in range(len(my _list)):
element = my_list[index]
print element
= Example: in-situ update of list
x = [8388608,4398046511104,0.125]
for i in range(len(x)):
x[i] = math.log(x[i], 2)

List Operations

like for strings,“+” concatenates two lists

= Example:

[I,2,3] +[4,5, 6] == range(l, 7)

[[23,42] + [-3.0]] + ["'Bye!"] == [[23, 42,-3.0], "Bye!"]

like for strings,“* n” with integer n produces n copies

= Example:

len(["I", "love", "penguins!"] * 100) == 300

(range(l, 3) + range(3, I,-1)) *2==11,2,3,2, 1,2, 3, 2]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List Slices

= slices work just like for strings
= Example: x=["Hello",2,"u" 2,""]

x[2:4] == ["u", 2]

x[2:] == x[-3:len(x)]

y = x][:] # make a copy (lists are mutable!)
= BUT: we can also assign to slices!

= Example: x[1:4] = ["to", "you", "too"]
x == ["Hello", "to", "you", "too", "!"]
x[1:3] = ["to me"]
x == ["Hello", "to me", "too", "!"]
x[2:3] =[]

X —_—— ["He”o"’ "to me"’ "!"]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List Methods

= appending elements to the end of the list (destructive)
* Example: x=]5,3,1]

y =[2,4,6]

for einy: x.append(e)
* Note: x += [e] would create new list in each step!

= also available as method: x.extend(y)

= sorting elements in ascending order (destructive)
= Example: x.sort()
x == range(l, 7)

= careful with destructive updates: x = x.sort()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (map)

= Example |: new list with squares of all elements of a list
def square_all(x):

res =[]

for e in x: res.append(e**2)

return res

= Example 2: new list with all elements increased by one
def increment_all(x):

res =[]

for ein x: res.append(e+l)

return res

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (map)

= these map operations have an identical structure:

res =[] res = []
for e in x: res.append(e**2) for e in x: res.append(e+l)
return res return res

= Python has generic function map(function, sequence)
* Implementation idea:
def map(function, sequence):
res =[]
for e in sequence:
res.append(function(e))

return res

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (map)

= these map operations have an identical structure:

res =[] res = []
for e in x: res.append(e**2) for e in x: res.append(e+l)
return res return res

= Python has generic function map(function, sequence)

= Example:
def square(x): return x**2
def increment(x): return x+|

def square_all(x):
return map(square, X)
def increment_all(x):

return map(increment, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (filter)

= Example |: new list with elements greater than 42
def filter _greater42(x):
res =[]
for e in x:
if e >42: res.append(e)
return res
= Example 2: new list with elements whose length is smaller 3
def filter _len_smaller3(x):
res =[]
for e in x:
if len(e) < 3: res.append(e)

return res

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (filter)

= these filter operations have an identical structure:

res =[] res = []
for e in x: for e in x:

if e > 42: res.append(e) if len(e) < 3: res.append(e)
return res return res

" Python has generic function filter(function, iterable)
* |Implementation idea:
def filter(function, iterable):
res =[]
for e in iterable:
if function(e): res.append(e)

return res

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (filter)

= these filter operations have an identical structure:

res =[] res = []
for e in x: for e in x:

if e > 42: res.append(e) if len(e) < 3: res.append(e)
return res return res

" Python has generic function filter(function, iterable)

= Example:

def greater42(x): return x > 42

def len_smaller3(x): return len(x) < 3

def filter _greater42(x): return filter(greater42, x)

def filter_len_smaller3(x): return filter(len_smaller3, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (reduce)

= Example |: computing factorial using range
def mul_all(x):
prod = |
for ein x: prod *=e # prod = prod * e
return prod
def factorial(n):
return mul_all(range(l,n+1))
= Example 2: summing all elements in a list
def add_all(x):
sum =0
foreinx: sum+=e # sum = sum + e

return sum

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (reduce)

= these reduce operations have an identical structure:

prod = | sum =0
for ein x: prod *=e for e in x: sum += e
return prod return sum

= Python has generic function reduce(function, sequence, initial)
* Implementation idea:
def reduce(function, sequence, initial):
result = initial
for e in sequence:
result = function(result, e)
return result

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Higher-Order Functions (reduce)

= these reduce operations have an identical structure:

prod = | sum =0
for ein x: prod *=e for e in x: sum += e
return prod return sum

= Python has generic function reduce(function, sequence, initial)
= Example:
def add(x,y): return x+y
def mul(x,y): return x*y
def add_all(x):
return reduce(add, x, 0)
def mul_all(x):

return reduce(mul, x, I)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Deleting Elements

= there are three different ways to delete elements from list

= if you know index and want the element, use pop(index)
* Example: my list =[23,42,-3.0,4711]
my_list.pop(l) == 42
my _list == [23,-3.0,4711]
= if you do not know index, but the element, use remove(value)
* Example: my_list.remove(-3.0)
my_list ==[23,4711]
= if you know the index, you can use the del statement
= Example: del my_list[0]
my_list == [471 |]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Deleting Elements

= there are three different ways to delete elements from list

= as we have seen, you can also use slices to delete elements
* Example: my list =[23,42,-3.0,4711]

my_list[2:] =[]
my _list == [23, 42]

= alternatively, you can use del together with slices
= Example: my_list = my_list * 3

del my_list[:3]

my_list == [42, 23, 42]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Lists vs Strings

= string = sequence of letters

= list = sequence of values

= convert a string into a list using the built-in list() function
- Example: |ist("Hej hOP") —_—— ||H||’ "e"’ "j"’ " "’ "h"’ "O", "P"]

= split up a string into a list using the split(sep) method
= Example: "Slartibartfast".split("a") == ["SI", "rtib", "rtf", "st"]

" reverse operation is the join(sequence) method
= Example: "and "join(["'A","B","C"]) == "A and B and C"
"".jOin(["H"’ "e"’ "j", " "’ "h"’ "O"’ "P"]) — "Hej HOP"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Objects and Values

two possible stack diagrams for a = "mango”; b = "mango”

a " - a imango”
b> mango b%ango"

we can check identity of objects using the is operator
Example: ais b ==True
two possible stack diagrams for x =[23,42]; y = [23,42]

list list
X ?{-_}* 23 X —> 0 —> 23
V4 42 Y | —> 42
\ list
00— 23

Example: xisy == False
| —> 42

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Aliasing

= when assigning y = x, both variables refer to same object

= Example: x =1[23,42,-3.0] list
y =X X 0—> 23
x is y ==True y | 42
2—>-3.0

" here, there are two references to one (aliased) object

= fine for immutable objects (like strings)
= problematic for mutable objects (like lists)
= Example: y[2] =471l

x == [23,42,4711]

= HINT: when unsure, always copy list using y = x|[:]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List Arguments

= lists passed as arguments to functions can be changed
= Example: tripling the first element
def triple_head(x):
x[: 1] = [x[0]]*3
my _list = [23,42,-3.0]
triple_head(x)

list

main my_list — 0—> 23
- 1 —>42
2—>-3.0

triple_head X

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List Arguments

= lists passed as arguments to functions can be changed
= Example: tripling the first element
def triple_head(x):
x[: 1] = [x[0]]*3
my _list = [23,42,-3.0]
triple_head(x)
my _list == [23,23, 23,42, -3.0]

list

main my_list — 0—> 23
T | — 23
2—> 23

triple _head X 3 —> 42
3—>-3.0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

List Arguments

= lists passed as arguments to functions can be changed
" some operations change object
= assignment using indices
= append(object) method
= extend(iterable) method
= sort() method
= del statement
" some operations return a new object
= access using slices
= strip() method
= “+” on strings and lists

= ““*n” on strings and lists

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Lists

= working with mutable objects like lists requires attention!
|. many list methods return None and modify destructively
= word = word.strip() makes sense

= t=tsort() does NOT!

2. there are many ways to do something — stick with one!
" tappend(x) or t =t + [X]

= use either pop, remove, del or slice assighment for deletion
3. make copies when you are unsure!
= Example:

sorted list = my_list[:]

sorted_list.sort()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

DICTIONARIES

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalized Mappings

= list = mapping from integer indices to values
= dictionary = mapping from (almost) any type to values

" indices are called keys and pairs of keys and values items

= empty dictionaries created using curly braces “{}”
= Example: en2da = {}

= keys are assigned to values using same syntax as for sequences
= Example: en2da['queen"] = "dronning"
print en2da

= curly braces “{” and “}” can be used to create dictionary

= Example: en2da = {"queen" : "dronning", "king" : "konge"}

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Dictionary Operations

= printing order can be different: print en2da
= access using indices: en2da["king"] == "konge"
= KeyError when key not mapped: print en2da["prince"]
= length is number of items: len(en2da) ==
= in operator tests if key mapped: "king" in en2da == True
"prince" in en2da == False
= keys() metod gives list of keys:
en2da.keys() == ["king", "queen"]
= values() method gives list of values:
en2da.values() == ["konge", "dronning"]
= useful e.g. for test if value is used:

"prins" in en2da.values() == False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

