
DM502
Programming A

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM502/!

PROJECT PART 1

June 2009 2

Organizational Details

§  2 possible projects, each consisting of 2 parts
§  for 1st part, you have to pick ONE
§  for 2nd part, you can stay or you may switch

§  projects must be done individually, so no co-operation
§  you may talk about the problem and ideas how to solve them

§  deliverables:
§  written 4 page report as specified in project description
§  handed in BOTH electronically and as paper
§  deadline: September 30, 12:00

§  ENOUGH - now for the FUN part …

June 2009 3

Fractals and the Beauty of Nature

§  geometric objects similar to themselves at different scales

§  many structures in nature are fractals:

§  snowflakes
§  lightning
§  ferns

§  Goal: generate fractals using Swampy

§  Challenges: Recursion, Tuning, Library Use

June 2009 4

Fractals and the Beauty of Nature
§  Task 0: Preparation

§  understand implementation
of Koch snowflake

§  Task 1: Sierpinski Triangle
§  draw fractal triangle of

fixed depth

§  Task 2: Binary Tree
§  draw binary trees of fixed

depth

§  Task 3 (optional): Fern Time
§  draw beautiful fern leaves

with fixed detail
June 2009 5

From DNA to Proteins

§  proteins encoded by DNA base sequence using A, C, G, and T

§  Background:
§  proteins are sequences of amino acids
§  amino acids encoded using three bases
§  chromosomes given as base sequences

§  Goal: assemble and analyze sequences from files

§  Challenges: File Handling, String and List Methods, Iteration

June 2009 6

From DNA to Proteins

§  Task 0: Preparation
§  download human DNA sequence and take a look at it

§  Task 1: Assembling the Sequence
§  clean up the sequence and assemble it into one string

§  Task 2: Finding Starting Points
§  find positions in string where ATG closely follows TATAAA

§  Task 3: Finding End Points
§  find one of the potential end markers (TAG, TAA, TGA)

§  Task 4 (optional): Potential Proteins without TATA Boxes
§  analysis of overlaps in encoded proteins

June 2009 7

LIST PROCESSING

June 2009 8

Lists as Sequences

§  lists are sequences of values
§  lists can be constructed using “[” and “]”
§  Example: [42, 23]

 ["Hello", "World", "!"]
 ["strings and", int, "mix", 2]
 []

§  lists can be nested, i.e., a list can contain other lists
§  Example: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
§  lists are normal values, i.e., they can be printed, assigned etc.
§  Example: x = [1, 2, 3]

 print x, [x, x], [[x, x], x]

June 2009 9

Mutable Lists

§  lists can be accessed using indices
§  lists are mutable, i.e., they can be changed destructively
§  Example:

 x = [1, 2, 3]
 print x[1]
 x[1] = 4
 print x, x[1]

§  len(object) and negative values work like for strings
§  Example:

 x[2] == x[-1]
 x[1] == x[len(x)-2]

June 2009 10

§  lists can be viewed as mappings from indices to elements
§  Example 1: x = ["Hello", "World", "!"]

§  Example 2: x = [[23, 42, -3.0], "Bye!"]

list

x 0	
 "Hello"	

"World"	

"!"	

1	

2	

Stack Diagrams with Lists

June 2009 11

list

x 0	

"Bye!"	
1	

list

0	
 23	

42	

-3.0	

1	

2	

Traversing Lists

§  for loop consecutively assigns variable to elements of list
§  Example: print squares of numbers from 1 to 10

 for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
 print x**2

§  arithmetic sequences can be generated using range function:
§  range([start,] stop[, step])

§  Example:
 range(4) == [0, 1, 2, 3]
 range(1, 11) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 range(9, 1, -2) == [9, 7, 5, 3]
 range(1,10, 2) == [1, 3, 5, 7, 9]

June 2009 12

Traversing Lists

§  for loop consecutively assigns variable to elements of list
§  general form

 for element in my_list:
 print element

§  iteration through list with indices:
 for index in range(len(my_list)):
 element = my_list[index]
 print element

§  Example: in-situ update of list
 x = [8388608, 4398046511104, 0.125]
 for i in range(len(x)):
 x[i] = math.log(x[i], 2)

June 2009 13

List Operations

§  like for strings, “+” concatenates two lists
§  Example:

 [1, 2, 3] + [4, 5, 6] == range(1, 7)
 [[23, 42] + [-3.0]] + ["Bye!"] == [[23, 42, -3.0], "Bye!"]

§  like for strings, “* n” with integer n produces n copies
§  Example:

 len(["I", "love", "penguins!"] * 100) == 300
 (range(1, 3) + range(3, 1, -1)) * 2 == [1, 2, 3, 2, 1, 2, 3, 2]

June 2009 14

List Slices

§  slices work just like for strings
§  Example: x = ["Hello", 2, "u", 2, "!"]

 x[2:4] == ["u", 2]
 x[2:] == x[-3:len(x)]
 y = x[:] # make a copy (lists are mutable!)

§  BUT: we can also assign to slices!
§  Example: x[1:4] = ["to", "you", "too"]

 x == ["Hello", "to", "you", "too", "!"]
 x[1:3] = ["to me"]
 x == ["Hello", "to me", "too", "!"]
 x[2:3] = []
 x == ["Hello", "to me", "!"]

June 2009 15

List Methods

§  appending elements to the end of the list (destructive)
§  Example: x = [5, 3, 1]

 y = [2, 4, 6]
 for e in y: x.append(e)

§  Note: x += [e] would create new list in each step!
§  also available as method: x.extend(y)

§  sorting elements in ascending order (destructive)
§  Example: x.sort()

 x == range(1, 7)

§  careful with destructive updates: x = x.sort()

June 2009 16

Higher-Order Functions (map)

§  Example 1: new list with squares of all elements of a list
def square_all(x):
 res = []
 for e in x: res.append(e**2)
 return res

§  Example 2: new list with all elements increased by one
def increment_all(x):
 res = []
 for e in x: res.append(e+1)
 return res

June 2009 17

Higher-Order Functions (map)

§  these map operations have an identical structure:
res = [] res = []
for e in x: res.append(e**2) for e in x: res.append(e+1)
return res return res
§  Python has generic function map(function, sequence)
§  Implementation idea:
def map(function, sequence):
 res = []
 for e in sequence:
 res.append(function(e))
 return res

June 2009 18

Higher-Order Functions (map)

§  these map operations have an identical structure:
res = [] res = []
for e in x: res.append(e**2) for e in x: res.append(e+1)
return res return res
§  Python has generic function map(function, sequence)
§  Example:
def square(x): return x**2
def increment(x): return x+1
def square_all(x):
 return map(square, x)
def increment_all(x):
 return map(increment, x)

June 2009 19

Higher-Order Functions (filter)

§  Example 1: new list with elements greater than 42
def filter_greater42(x):
 res = []
 for e in x:
 if e > 42: res.append(e)
 return res
§  Example 2: new list with elements whose length is smaller 3
def filter_len_smaller3(x):
 res = []
 for e in x:
 if len(e) < 3: res.append(e)
 return res

June 2009 20

Higher-Order Functions (filter)

§  these filter operations have an identical structure:
res = [] res = []
for e in x: for e in x:
 if e > 42: res.append(e) if len(e) < 3: res.append(e)
return res return res
§  Python has generic function filter(function, iterable)
§  Implementation idea:
def filter(function, iterable):
 res = []
 for e in iterable:
 if function(e): res.append(e)
 return res

June 2009 21

Higher-Order Functions (filter)

§  these filter operations have an identical structure:
res = [] res = []
for e in x: for e in x:
 if e > 42: res.append(e) if len(e) < 3: res.append(e)
return res return res
§  Python has generic function filter(function, iterable)
§  Example:
def greater42(x): return x > 42
def len_smaller3(x): return len(x) < 3
def filter_greater42(x): return filter(greater42, x)
def filter_len_smaller3(x): return filter(len_smaller3, x)

June 2009 22

Higher-Order Functions (reduce)

§  Example 1: computing factorial using range
def mul_all(x):
 prod = 1
 for e in x: prod *= e # prod = prod * e
 return prod
def factorial(n):
 return mul_all(range(1,n+1))
§  Example 2: summing all elements in a list
def add_all(x):
 sum = 0
 for e in x: sum += e # sum = sum + e
 return sum

June 2009 23

Higher-Order Functions (reduce)

§  these reduce operations have an identical structure:
 prod = 1 sum = 0
 for e in x: prod *= e for e in x: sum += e
 return prod return sum
§  Python has generic function reduce(function, sequence, initial)
§  Implementation idea:
def reduce(function, sequence, initial):
 result = initial
 for e in sequence:
 result = function(result, e)
 return result

June 2009 24

Higher-Order Functions (reduce)

§  these reduce operations have an identical structure:
 prod = 1 sum = 0
 for e in x: prod *= e for e in x: sum += e
 return prod return sum
§  Python has generic function reduce(function, sequence, initial)
§  Example:
def add(x,y): return x+y
def mul(x,y): return x*y
def add_all(x):
 return reduce(add, x, 0)
def mul_all(x):
 return reduce(mul, x, 1)

June 2009 25

Deleting Elements

§  there are three different ways to delete elements from list

§  if you know index and want the element, use pop(index)
§  Example: my_list = [23, 42, -3.0, 4711]

 my_list.pop(1) == 42
 my_list == [23, -3.0, 4711]

§  if you do not know index, but the element, use remove(value)
§  Example: my_list.remove(-3.0)

 my_list == [23, 4711]
§  if you know the index, you can use the del statement
§  Example: del my_list[0]

 my_list == [4711]

June 2009 26

Deleting Elements

§  there are three different ways to delete elements from list

§  as we have seen, you can also use slices to delete elements
§  Example: my_list = [23, 42, -3.0, 4711]

 my_list[2:] = []
 my_list == [23, 42]

§  alternatively, you can use del together with slices
§  Example: my_list = my_list * 3

 del my_list[:3]
 my_list == [42, 23, 42]

June 2009 27

Lists vs Strings

§  string = sequence of letters
§  list = sequence of values

§  convert a string into a list using the built-in list() function
§  Example: list("Hej hop") == ["H", "e", "j", " ", "h", "o", "p"]

§  split up a string into a list using the split(sep) method
§  Example: "Slartibartfast".split("a") == ["Sl", "rtib", "rtf", "st"]

§  reverse operation is the join(sequence) method
§  Example: " and ".join(["A", "B", "C"]) == "A and B and C"

 "".join(["H", "e", "j", " ", "h", "o", "p"]) = "Hej Hop"

June 2009 28

Objects and Values

§  two possible stack diagrams for a = "mango"; b = "mango"

§  we can check identity of objects using the is operator
§  Example: a is b == True
§  two possible stack diagrams for x = [23, 42]; y = [23, 42]

§  Example: x is y == False

June 2009 29

a	
 "mango"	

"mango"	
b

a	
 "mango"	

b

list

0	
 23	

42	
1	

x
y	

list

0	
 23	

42	
1	

x
y	

list

0	
 23	

42	
1	

Aliasing

§  when assigning y = x, both variables refer to same object
§  Example: x = [23, 42, -3.0]

 y = x
 x is y == True

§  here, there are two references to one (aliased) object

§  fine for immutable objects (like strings)
§  problematic for mutable objects (like lists)
§  Example: y[2] = 4711

 x == [23, 42, 4711]

§  HINT: when unsure, always copy list using y = x[:]

June 2009 30

list

0	
 23	

42	
1	

x
y	

2	
 -3.0	

§  lists passed as arguments to functions can be changed
§  Example: tripling the first element

 def triple_head(x):
 x[:1] = [x[0]]*3
 my_list = [23, 42, -3.0]
 triple_head(x)

__main__

triple_head

List Arguments

June 2009 31

list

my_list	
 0	
 23	

42	

-3.0	

1	

2	

x

§  lists passed as arguments to functions can be changed
§  Example: tripling the first element

 def triple_head(x):
 x[:1] = [x[0]]*3
 my_list = [23, 42, -3.0]
 triple_head(x)
 my_list == [23, 23, 23, 42, -3.0]

__main__

triple_head

list

my_list	
 0	
 23	

23	

23	

1	

2	

List Arguments

June 2009 32

x 3	

3	
 -3.0	

42	

§  lists passed as arguments to functions can be changed
§  some operations change object

§  assignment using indices
§  append(object) method
§  extend(iterable) method
§  sort() method
§  del statement

§  some operations return a new object
§  access using slices
§  strip() method
§  “+” on strings and lists
§  “* n” on strings and lists

List Arguments

June 2009 33

Debugging Lists

§  working with mutable objects like lists requires attention!
1.  many list methods return None and modify destructively

§  word = word.strip() makes sense
§  t = t.sort() does NOT!

2.  there are many ways to do something – stick with one!
§  t.append(x) or t = t + [x]
§  use either pop, remove, del or slice assignment for deletion

3.  make copies when you are unsure!
§  Example: …

 sorted_list = my_list[:]
 sorted_list.sort()
 …

June 2009 34

DICTIONARIES

June 2009 35

Generalized Mappings

§  list = mapping from integer indices to values
§  dictionary = mapping from (almost) any type to values
§  indices are called keys and pairs of keys and values items

§  empty dictionaries created using curly braces “{}”
§  Example: en2da = {}

§  keys are assigned to values using same syntax as for sequences
§  Example: en2da["queen"] = "dronning"

 print en2da

§  curly braces “{” and “}” can be used to create dictionary
§  Example: en2da = {"queen" : "dronning", "king" : "konge"}

June 2009 36

Dictionary Operations

§  printing order can be different: print en2da
§  access using indices: en2da["king"] == "konge"
§  KeyError when key not mapped: print en2da["prince"]
§  length is number of items: len(en2da) == 2
§  in operator tests if key mapped: "king" in en2da == True

 "prince" in en2da == False
§  keys() metod gives list of keys:

 en2da.keys() == ["king", "queen"]
§  values() method gives list of values:

 en2da.values() == ["konge", "dronning"]
§  useful e.g. for test if value is used:

 "prins" in en2da.values() == False
June 2009 37

