
DM502
Programming A

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM502/!

TUPLES

June 2009 2

Tuples as Immutable Sequences

§  tuple = immutable sequence of values
§  like lists, tuples are indexed by integers

§  tuples can be enclosed in parentheses “(” and “)”
§  Example: t1 = "D", "o", "u", "g", "l", "a", "s"

 t2 = (65, 100, 97, 109, 115)
 t3 = 42, # or (42,) - but not (42)

§  tuples can be created from sequences using tuple(iterable)
§  Example: t1 == tuple("Douglas")

 tuple(["You", 2]) == ("You", 2)

June 2009 3

Tuples as Immutable Sequences

§  tuple = immutable sequence of values
§  like lists, tuples are indexed by integers

§  tuples can be accessed using indices and slices
§  Example: t = "D", "o", "u", "g", "l", "a", "s"

 t[3] == "g"
 t[1:3] == ("o", "u")

§  tuples cannot be changed, but they can be concatenated
§  Example: u = ("d",) + t[1:]

June 2009 4

Tuple Assignment

§  remember, how to exchange two values:
§  Solution 1 (new variable): z = y; y = x; x = z
§  Solution 2 (parallel assign.): x, y = y, x

§  now, we see that this is a tuple assignment
§  assignment to a tuple is assignment to each tuple element
§  works not only with other tuple, but with any sequence
§  Example:

 x, y, z = [23, 42, -3.0]
 name = "Peter Schneider-Kamp"
 first, last = name.split()

June 2009 5

Tuples as Return Values

§  useful to return more than one value in a function
§  but functions only return one value
§  tuples can be used to contain multiple values
§  Example 1: built-in function divmod(x,y)

 t = divmod(10, 3)
 print t
 quot, rem = divmod(101, 17)

§  Example 2: extract username, hostname, and domain
 def decompose(email):
 username, rest = email.split("@")
 rest = rest.split(".")
 return username, rest[0], ".".join(rest[1:])

June 2009 6

Variable-Length Argument Tuples

§  functions can take a variable number of arguments
§  arguments are passed as one tuple (gather)
§  Example 1: function that works similar to print statement

 def printf(*args): # * indicates variable arguments
 for arg in args: # iterates through tuple
 print arg, # prints one argument
 print # prints new line

§  Example 2: prints all arguments n times
 def printn(n, *args):
 for arg in args * n:
 print arg

June 2009 7

Tuples instead of Arguments

§  tuples cannot directly be used instead for normal parameters
§  Example:

 t = (42, 23)
 print divmod(t) # gives TypeError

§  using “*” we can declare that a tuple should be scattered
§  Example:

 print divmod(*t) # prints (1, 19)

June 2009 8

Lists and Tuples

§  built-in function zip() combines two sequences
§  Example 1:

 zip([1, 2, 3], ["c", "b", "a"]) == [(1, "c"), (2, "b"), (3, "a")]
§  Example 2:

 zip("You", "suck!") == [("Y", "s"), ("o", "u"), ("u", "c")]

§  iteration through list of tuples using tuple assignment
§  Example:

 t = [(1, "c"), (2, "b"), (3, "a")]
 for num, ch in t:
 print "we have paired", num, "and", ch

June 2009 9

Lists and Tuples

§  with zip(), for loop, and tuple assignment we can iterate
through two sequences in parallel

§  Example 1: sum of product of elements (dot product)
def dot_product(x, y):
 res = 0
 for a, b in zip(x, y):
 res += a*b
 return res
dot_product([1, 4, 3], [4, 5, 6])
§  Example 2: the same shorter …
def dot_product(x, y):
 return reduce(lambda x, y: x + y[0] * y[1], zip(x, y), 0)

June 2009 10

Dictionaries and Tuples

§  dictionaries return a list of tuples with the items() method
§  Example: d = {"a" : 3, "b" : 2, "c" : 1}

 d.items() == [("a", 3), ("c", 1), ("b", 2)]

§  tuples can also be used to create new dictionary using dict()
§  Example: t = [("a", 3), ("c", 1), ("b", 2)]

 dict(t) == {"a" : 3, "b" : 2, "c" : 1}

§  combine with zip() for easy dictionary generation
§  Example: d = dict(zip("abcdefg", range(7,0,-1)))

§  with tuple assignment and for loop, easy traversal
§  Example: for key, val in d.items(): print key, val

June 2009 11

Dictionaries and Tuples

§  tuples can be used as dictionary keys (they are immutable)
§  Example: p = {}; first = "Peter"; last = "Schneider-Kamp"

 p[last, first] = 65502327
§  traversal by for loop and tuple assignment
§  Example 1: for last, first in p: print first, last, p[last, first]
§  Example 2: for (last, first), num in p.items(): print last, first, num

June 2009 12

dict

 *	

p

tuple

0	

 "Schneider-Kamp"	

1	

 "Peter"	

65502327	

Dictionaries and Tuples

§  tuples can be used as dictionary keys (they are immutable)
§  Example: p = {}; first = "Peter"; last = "Schneider-Kamp"

 p[last, first] = 65502327
§  traversal by for loop and tuple assignment
§  Example 1: for last, first in p: print first, last, p[last, first]
§  Example 2: for (last, first), num in p: print last, first, num

June 2009 13

dict

"Schneider-Kamp", "Peter"	

p 65502327	

Comparing Tuples

§  comparing tuples same as comparing any sequence
§  like with strings, sequences are compared lexicographically
§  Example: (3,) > (2, 2, 2)

 (1, 2, 3, 4, 5) < (1, 2, 3, 5,5)
§  tuples can be used to sort lists after arbitrary criteria
§  Example: sort list of words after their length, shortest last
def sort_by_length(words):
 t = []; res = []
 for word in words: t.append((len(word), word))
 t.sort(reverse=True)
 for length, word in t: res.append(word)
 return res

June 2009 14

Comparing Tuples

§  comparing tuples same as comparing any sequence
§  like with strings, sequences are compared lexicographically
§  Example: (3,) > (2, 2, 2)

 (1, 2, 3, 4, 5) < (1, 2, 3, 5,5)
§  tuples can be used to sort lists after arbitrary criteria
§  Example: sort list of words after their length, shortest last
def sort_by_length(words):
 t = map(lambda x: (len(x), x), words)
 t.sort(reverse=True)
 return map(lambda pair: pair[1], t)

June 2009 15

Sequences of Sequences

§  most sequences can contain other types of sequences
§  string is an exception, as it only contains characters
§  can always use a list of characters instead of string
§  lists usually preferred to tuples (they are mutable)
§  in some situtations, tuples more often used:

1.  tuples are more “easy” to construct, e.g. return n, n**2
2.  tuples can be dictionary keys (they are immutable)
3.  tuples are safer due to “aliasing”, so use them e.g. as

sequence arguments to functions
§  methods sort() and reverse() not available for tuples
§  use functions sorted(iterable) and reversed(iterable) instead

June 2009 16

Debugging Shape Errors

§  lists, dictionaries, and tuples are data structures
§  combining this, we obtain compound data structures
§  this gives rise to new errors, so called shape errors
§  a shape error is when the structure of the compound data

structure does not fit its use
§  Example: d = {("Schneider-Kamp", "Peter") : 65502327}

 for last, first, number in d: print number
§  use structshape module for debugging
§  available from http://thinkpython.com/code/structshape.py
§  Example: from structshape import structshape

 structshape(d) == "dict of 1 tuple of 2 str->int"

June 2009 17

SELECTING
DATA STRUCTURES

June 2009 18

Reading and Cleaning Words

1.  read file given as argument
2.  break lines into words
3.  strip whitespace & punctuation
4.  convert to lower-case letters

§  import module sys for command line arguments sys.argv
§  Example: import sys; print sys.argv

§  import module string for punctuation
§  Example: import string; print string.punctuation

§  use translate(None, deletechars) to remove punctuation
§  Example: "Hello World!".translate(None, "ol")

June 2009 19

Word Frequency in E-Books

1.  use program on Project Gutenberg e-book
2.  skip over beginning & end of ebook (marked "***")
3.  count total number of words
4.  count number of times each word is used
5.  print 20 most frequently used words

§  use Boolean flag to indicate when to start

§  use list to gather all words (and count total number)

§  use dictionary to count number of times each word is used

§  use tuple comparison to sort words

June 2009 20

Optional Parameters

§  have seen functions that take variable length argument list

§  also possible to make some parameters optional
§  in this case, default value has to be supplied by programmer
§  Example:
def print_most_common(hist, num = 10):
 t = most_common(hist)
 print "The most common", num, "words are:"
 for n, word in t[:num]:
 print word, "\t", n
print_most_common(freq, 20)

June 2009 21

Dictionary Subtraction

1.  find all words that do NOT occur in other word list

§  to this end, subtract dictionaries from each other
§  Idea: new dictionary containing with keys only in first dict
§  Implementation:
def subtract(d1, d2):
 d = {}
 for key in d1:
 if key not in d2:
 d[key] = None
 return d

June 2009 22

Random Number Generation

§  to work with random numbers, import module random
§  Example: import random

§  function random() returns random float from 0.0 to < 1.0
§  Example: for i in range(10): print random.random()

§  function randint(a, b) returns random integer in range(a,b+1)
§  Example: for i in range(10): print random.randint(1,10)

§  function choice(seq) returns random element of a sequence
§  Example: random.choice("Slartibartfast")

 random.choice([23, 42, -3.0])

June 2009 23

Random Words

1.  choose random word from histogram according to frequency

§  how to ensure random choice w.r.t. frequency?
§  Idea 1: create list with n copies of word with frequency n
§  Implementation:
def random_word(h):
 t = []
 for word, n in h.items():
 t.extend([word] * n)
 return random.choice(t)
§  works, but very inefficient!

June 2009 24

Random Words

§  Idea 2: use list with cumulative sum of frequencies
§  Implementation:
def random_word(h):
 words = h.keys(); sum = 0; cum = []
 for word in words: sum += h[word]; cum.append(sum)
 num = random.randint(1, cum[-1]); low = 0; high = len(cum)-1
 while low < high:
 mid = (low+high) / 2
 if num <= cum[mid]: high = mid
 elif num > cum[mid]: low = mid+1
 return words[low]

June 2009 25

Markov Analysis

1.  generate more meaningful random texts

§  word order in texts is not random
§  markov analysis maps a finite number of words (prefix) to all

possible following words (suffix)

§  how to represent the prefixes?

§  how to represent the collection of possible suffixes?

§  how to represent the mapping from prefixes to suffixes?

June 2009 26

Data Structures

§  for mapping, we clearly use a dictionary

§  for prefixes, we need to be able to “shift” them (list?)
§  we also need to use them as dictionary keys
§  thus, we use tuples to present prefixes (+ slicing and “*”)

§  for suffixes, we need to add elements (list? dictionary?)
§  we also need to efficiently generate random word (list?)
§  tradeoff space vs time

§  dictionary uses less space and easy to add
§  list uses less time for generating a word
§  can change representation before generation

June 2009 27

Debugging Hard Bugs

§  bugs can be hard to find

§  four popular strategies
1.  reading: re-read your code, check that it is right!
2.  running: make changes, experiment with outcome
3.  ruminating: take time to think it over (and over)
4.  retreating: revert to a known-to-be-good version

§  often combination of these strategies needed
§  always good to view debugging as scientific experiment

June 2009 28

FILE HANDLING

June 2009 29

Persistence

§  persistent = keeping (some) data stored during runs
§  transient = beginning from input data each time over

§  most programs so far have been transient

§  examples of persistent programs:
§  operating systems
§  web servers
§  most app(lication)s on recent iOS and Mac OS X

§  text files are easiest way to save some program state
§  alternatively, program states can be saved in databases

June 2009 30

Writing to a File

§  we know how to read a file using open(name)
§  we can specify read/write mode using open(name, mode)
§  Example: f1 = open("anna_karenina.txt", "r")

 f2 = open(“myfile.txt", "w")

§  use method write(str) of file object to append string to file
§  Example: f2.write("This is my first line!\n")

 f2.write("This is my second line!\n")
§  each invocation of write(str) will append, not overwrite!

§  when you are finished with a file, please close() it
§  Example: f1.close()

 f2.close()
 June 2009 31

Format Operator

§  values need to be converted to a string for use in write(str)
§  for single value, the str(object) function can be used
§  Example: f.write(str(42))

§  alternatively, use format operator “%”
§  Example: f.write("%d" % 42)

 f.write("The answer is %d, my friend!" % 42)
§  first argument format string, second argument value
§  format sequence %d for integer, %g for float, %s for string

§  for multiple values, use tuple as value
§  Example: f.write("The %s is %g!" % ("answer", 42.0))

June 2009 32

Directories

§  file are organized in directories
§  every program has a current directory
§  the current directory is used by default, e.g. for open(name)
§  get current directory by importing getcwd() from os module
§  Example: import os

 print os.getcwd()
§  change current working directory by using chdir(path)
§  Example: os.chdir("..")

 print os.getcwd()
§  list contents of a given directory by using os.listdir(path)
§  Example: print os.listdir("dm502")

June 2009 33

Filenames and Paths

§  path = directory & file name
§  relative paths start from current directory
§  Example:
path1 = "dm502/tools/anna_karenina.txt"

§  absolute paths are independent from current directory
§  Example:
path2 = "/Users/petersk/sdu/dm502/tools/anna_karenina.py"

§  can be obtained from relative path using os.path.abspath(path)
§  Example:
path3 = os.path.abspath(path1)

June 2009 34

Operations on Paths

§  check whether a directory or file exists using os.path.exists
§  Example: os.path.exists(path1) == True

 os.path.exists("no_name") == False

§  check whether a path is a directory using os.path.isdir
§  Example: os.path.isdir(path1) == False

 os.path.isdir("..") == True

§  check whether a path is a file using os.path.isfile
§  Example: os.path.isfile(path1) == True

 os.path.isfile("..") == False

June 2009 35

Traversing Directories

§  build a path from directory and realtive path using os.path.join
§  Example: path4 = os.path.join("..", "dm502")

§  Case: recursively find all files in a directory
def find_files(dir):
 for name in os.listdir(dir):
 path = os.path.join(dir, name)
 if os.path.isfile(path): # print file name
 print path
 else: # recursively search subdirectory
 find_files(path)

June 2009 36

Catching Exceptions

§  file operations are error-prone
§  Example: open("no_name") # raises IOError

§  good idea to avoid errors using os.path.exists etc.
§  not possible to check all possible situations

§  use try-except statement to handle error situations
§  Example: try:

 f = open(name)
 lines = f.readlines()
 except:
 lines = ["ERROR"]

June 2009 37

