
DM550/DM857
Introduction to Programming
Fall 2017 Project (Python)

Department of Mathematics and Computer Science
University of Southern Denmark

October 13, 2017

1



Introduction
The purpose of this project is to try in practice the use of general pro-
gramming techniques as well as knowledge about the programming language
Python. Please make sure to read this entire note before starting your work
on this project. Pay close attention to the three sections below.

Exam Rules
This project is part of the final exam for DM550 and DM857. Both the
project qualification assessments, this Python project, and the Java project
have to be passed in order to pass the overall exam. The project should be
done in groups of 3 students. Other group sizes require written confirmation.

Deliverables
A project report (10-20 pages without appendix) containing the following 6
sections has to be delivered:

• front page (course number, names, sections, dates of birth)

• specification (what the program is supposed to do)

• design (how the program was planned)

• implementation (how the program was written)

• testing (what tests you performed)

• conclusion (how satisfying the result is)

The report has to be delivered as a PDF file (suffix .pdf) together with the
Python source code files (suffix .py) and any needed supporting data files
electronically using Blackboard’s SDU Assignment functionality. In addi-
tion, one printed copy has to be delivered to the “dueslag” of the respective
teaching assistant. Do not forget to include the complete source code!

Deadlines
The deadline for this project is

Friday, October 27, 23:59.

Late deliveries cannot be accepted, so please plan your time accordingly.

2



Project “Fractals and the Beauty of Nature”

Fractals are geometric objects that are similar to themselves on arbitrar-
ily small scales. There are many examples of fractals in nature, and they
form some of the most beautiful structures you can find. One example is
snowflakes, but also lightning has a fractal structure. Another example are
ferns, where each part is similar to the whole.

In this project, we will use the turtle module to generate fractals that
are similar to structures found in nature.

Task 1 – Preparation I

On the course home page you find an example using a
Koch curve to render a snowflake (koch.py), with the
expected results shown in koch.png. Use this example
and experiment with the depth and the length parame-
ters. Consult the documentation on the turtle module
to understand the features used here.

Task 2 – Sierpinski Triangle

A Sierpinski triangle is a triangle divided into three
triangles, that are demselves divided into three tri-
angles etc. On the course home page, you find
four examples (sierpinski0.png, sierpinski1.png,
sierpinski2.png, and sierpinski5.png). On the
right-hand side you see a Sierpinski triangle of depth
5, i.e., a triangle that has been subdivided five times.

You task is to write a Python program that draws a Sierpinski triangle.
To this end, you can follow the approach of the Koch Snowflake, i.e., at depth
0 you draw a triangle. At any other depth n, you draw Sierpinski triangle
of depth n− 1, move to the next corner, draw another Sierpinski triangle of
depth n − 1, move to the last corner, draw the third Sierpinski triangle of
depth n− 1, and, finally, move to the original corner.

Task 3 – Binary Tree

A binary tree is a tree, which is obtained
by first drawing a stem and then subdivid-
ing into two branches. A tree consisting of
just a stem is called a tree of depth 1. The

3



picture to the left shows a tree of depth 12.
On the course home page, you find exam-
ples (tree3.png, tree6.png, tree9.png, and
tree12.png). Here, as an addition, the last two
layers of branches have been colored darkgreen

instead of green.
You task is to write a Python program that draws a binary tree. To this

end, you have to modify the approach from the previous tasks slightly. The
main idea is to draw a line, then turn and draw the left branch, then turn
and draw the right branch, and, finally, go back where you came from.

Task 4 – Fern Time

There are three differences between a
fern and a binary tree. First, the
fern has three branches from each stem
and each subbranch. Second, the fern
uses some small constant angle to turn
the middle branch. Third, the mid-
dle branch is scaled down less than
the left and the right branch. On the
course home page, you find examples
(fern10.png, fern3.png, fern1.png,
and fern03.png).

Your task is to write a Python program that draws a fern. To this end,
you can either develop a new approach or modify the approach from the
previous task.

Hint: You might find it beneficial to rely on a limit for the size of the
subbranches drawn rather than a constant recursion depth. Instead, you
might define a limit for the size of the subbranches drawn and use this as the
base case of the recursion. Note that this modification is an optimisation,
not a requirement.

4



Fractal Description Language

Many fractals can be generated from descriptions in the Fractal Description
Language (.fdl). This language describes a start state of a fractal and a set
of rules how to progress to larger depths.

For example, to generate a Koch curve, we start with the initial (depth 0)
state F signifying a forward move, i.e., a straight line. The rule for expanding
to the next depth is given as a replacement rule.

F -> F L F R F L F

where L is a 60 degree turn to the left and R is a 120 degree turn to the right.
That is, we replace a straight line by a straight line, a left-turn, a straight
line, a sharp right-turn, a straight line, a left-turn, and a fourth and final
straight line.

Thus, the state for depth 1 is F L F R F L F. To get to depth 2, we
have to apply the rule again to all positions of the state where it is possible,
i.e., we have to replace each of the four F by F L F R F L F. The result
is F L F R F L F L F L F R F L F R F L F R F L F L F L F R F L F

where the new sections are underlined to aid your understanding.
To get to depth 3, we would have to replace each of the 16 Fs by the right

side of the rule. For the sake of brevity, I leave this exercise to you.
Let us take a look at the file koch.fdl available from the project section

of the course home page.

start F

rule F -> F L F R F L F

length 2

depth 5

cmd F fd

cmd L lt 60

cmd R rt 120

The first line give the start state, i.e., the
state F for depth 0. The second line give the
only rule needed for the Koch curve, i.e.,
to replace F by F L F R F L F. The third
line specifies the length of each segment, i.e.,
each straight line will be 2 units long. The
fourth line specifies that states should be ex-
panded to depth 5 before drawing the frac-
tal. Finally, the Lines 5 to 7 specify that F

is a straight line, L is a 60 degree left-turn
and R is a 120 degree right-turn.

5



Task 5 – Preparation II
Download all the .fdl files from the course homepage (at least dragon.fdl,
fern.fdl, koch.fdl, sierpinski.fdl, sierpinski2.fdl, snowflake.fdl,
and tree.fdl).

Try to understand how the rules generate their respective fractals. While
most of the fractals are known from earlier tasks, dragon.fdl represents a
dragon curve and sierpinski.fdl represents a Sierpinski curve.

Task 6 – Applying One Rule
A rule consists of a single letter for the left side and a list of letters for
the right side. Your task is to create a function apply(left,right,state)

that applies the rule to each matching element of the list. For a function call
apply("F",["F","L","F","R","F","L","F"],["F","R","F","R","F"]) it
should generate the list [["F","L","F","R","F","L","F"],"R",["F","L",
"F","R","F","L","F"],"R",["F","L","F","R","F","L","F"]].

Task 7 – Flattening After applying one or more rules, the list represent-
ing the fractal is a mixed list consisting of both letters and lists as elements.
Write a function flatten(state) that turns it into a simple list of letter.
For a function call flatten([["F","L","F","R","F","L","F"],"R",
["F","L","F","R","F","L","F"],"R",["F","L","F","R","F","L","F"]]

the expected result is ["F","L","F","R","F","L","F","R","F","L","F",
"R","F","L","F","R","F","L","F","R","F","L","F"].

Task 8 – Increasing Depth Write a function step(rules,state) that
takes a list state, applies all rules in rules, and finally flattens the resulting
list.

Then write a function compute(depth,rules,start) that uses the step

function depth times to transform the list start into a list representing a
fractal of depth depth.

Task 9 – Representing Rules (supplementary) Define a user-defined
type (=Python class) to represent a rule. Use methods instead of functions
for the functionality from Tasks 6–8, whenever this makes sense.

Note that this task is optional and does not have to be solved for this
project to be considered as passed.

6



Task 10 – Preparation III
Try to understand the other parts of the fdl files, in particular the commands.

Task 11 – Executing Commands
A command consists of a command string (such as fd, bk, lt, rt, scale, nop)
and a list of arguments. Your task is write a function execute(turtle,length,

cmd,args) for executing a command with its arguments and returning the
current length. This function gets as the first two arguments a turtle object
and a length.

The command with command string lt and argument list ["60"] should
execute the Python statement turtle.lt(60) and return length. The
command with command string fd should execute the Python statement
turtle.fd(length) and return length. The command scale should mul-
tiply length with the given float and return it. Finally, the command nop

simply does nothing (no operation) and returns length.

Task 12 – Loading a Fractal Description Language File
A fractal is described by a start state, a list of rules, a mapping from single
letters to commands, a length, and a target depth.

Your task is to create a function parse(fdl) that takes as argument the
name of an fdl file and reads the different elements from the fdl file into
appropriate data structures.

Task 13 – Loading a Fractal Description Language File
Your final task is to create a function that run(turtle,fdl) that takes as
argument a turtle and the name of an fdl file. The function first uses parse

to read the fdl file. Then it uses compute to compute the list of letters
representing the fractal at the given target depth. Finally, it uses execute

to execute all the commands represented by this list of letters.

Task 14 – Support for Pen Size and Colors (supplementary)
The fractals look nice enough, but some colors and wider lines would make
them more pretty. Your supplementary task is to extend the Fractal Descrip-
ton language by the commands color and width where color gets a color
name, a color code or “random” as an argument while width gets a float.
Random colors can e.g. be generated by using the randint function from
the random module and format strings:
"#%02x%02x%02x" % (randint(0,255),randint(0,255),randint(0,255))

7



Here is an example for a nicer dragon curve:

start F X

rule X -> X R Y F

rule Y -> F X L Y

length 3

depth 13

color random

width 2.0

cmd F fd

cmd X nop

cmd Y nop

cmd L lt 90

cmd R rt 90

Note that this task is optional and does not have to be solved for this
project to be considered as passed.

Task 15 – Taking it to the third dimension (challenge) The fractals
described by the Fractal Description Language are represented as Lindenmayer-
systems or short L-systems. Such systems can be extended to the third
dimension using rotational matrices. This extension is described in Chap-
ter 1, Section 1.5 of the book “The Algorithmic Beauty of Plants” (http:
//algorithmicbotany.org/papers/abop/abop.pdf).

Implement this extension and use a Python-based 3D visualization system
such as GlowScript or Panda3D to visualize 3D fractals such as the space-
filling Moore curve.

Note that this task is optional and does not have to be solved for this
project to be considered as passed.

Task 16 – Making it real (challenge) Bracketing and randomization are
two techniques to create more realistic fractals. They are also9 described in
the book “The Algorithmic Beauty of Plants” (http://algorithmicbotany.
org/papers/abop/abop.pdf).

Implement these extensions, either for the 2-dimensional or 3-dimensional
L-systems. Then build trees, bushes, flowers, or completely different struc-
tures that can be used as background in a computer animation or computer
game. Animate the objects to move, e.g. according to wind.

Note that this task is optional and does not have to be solved for this
project to be considered as passed.

8

http://algorithmicbotany.org/papers/abop/abop.pdf
http://algorithmicbotany.org/papers/abop/abop.pdf
http://algorithmicbotany.org/papers/abop/abop.pdf
http://algorithmicbotany.org/papers/abop/abop.pdf

