
DM537
Object-Oriented Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM537/!

TYPE CASTS & FILES &
EXCEPTION HANDLING

June 2009 2

Type Conversion

§  Java uses type casts for converting values

§  (int) x: converts x into an integer
§  Example 1: ((int) 127) + 1 == 128
§  Example 2: ((int) -3.999) == -3

§  (double) x: converts x into a float
§  Example 1: ((double) 42) == 42.0
§  Example 2: (double) "42" gives compilation error

§  (String) x: views x as a string
§  Example: Object o = "Hello World!";

 String s = (String) o;

June 2009 3

Catching Exceptions

§  type conversion operations are error-prone
§  Example: Object o = new Integer(23);

 Strings s = (String) o;

§  good idea to avoid type casts
§  sometimes necessary, e.g. when implementing equals method

§  use try-catch statement to handle error situations
§  Example 1: String s;

 try {
 s = (String) o;

 } catch (ClassCastException e) {
 s = "ERROR"; }

June 2009 4

Catching Exceptions

§  use try-catch statement to handle error situations
§  Example 2:
try {
 double x;
 x = Double.parseDouble(str);
 System.out.println("The number is " + x);
} catch (NumberFormatException e) {
 System.out.println("The number sucks.");
}

June 2009 5

Arrays

§  array = built-in, mutable list of fixed-length
§  type declared by adding “[]” to base type
§  Example: int[] speedDial;

§  creation using same “new” as for objects
§  size declared when creating array
§  Example: speedDial = new int[20];

§  also possible to fill array using “{}” while creating it
§  then length determined by number of filled elements
§  Example: speedDial = {65502327, 55555555};

June 2009 6

Arrays

§  array = built-in, mutable list of fixed-length
§  access using “[index]” notation (both read and write, 0-based)
§  size available as attribute “.length”
§  Example:
int[] speedDial = {65502327, 55555555};
for (int i = 0; i < speedDial.length; i++) {
 System.out.println(speedDial[i]);
 speedDial[i] += 100000000;
}
for (int i = 0; i < speedDial.length; i++) {
 System.out.println(speedDial[i]);
}

June 2009 7

Command Line Arguments

§  command line arguments given as array of strings
§  Example:
public class PrintCommandLine {
 public static void main(String[] args) {
 int len = args.length;
 System.out.println("got "+len+" arguments");
 for (int i = 0; i < len; i++) {
 System.out.println("args["+i+"] = "+args[i]);
 }
 }
}

June 2009 8

Reading from Files

§  done the same way as reading from the user
§  i.e., using the class java.util.Scanner
§  instead of System.in we use an object of type java.io.File
§  Example (reading a file given as first argument):
import java.util.Scanner; import java.io.File;
public class OpenFile {
 public static void main(String[] args) {
 File infile = new File(args[0]);
 Scanner sc = new Scanner(infile);
 while (sc.hasNext()) {
 System.out.println(sc.nextLine());
} } }

June 2009 9

Reading from Files

§  Example (reading a file given as first argument):
import java.util.Scanner; import java.io.*;
public class OpenFile {
 public static void main(String[] args) {
 File infile = new File(args[0]);
 try {
 Scanner sc = new Scanner(infile);
 while (sc.hasNext()) { System.out.println(sc.nextLine()); }
 } catch (FileNotFoundException e) {
 System.out.println("Did not find your strange "+args[0]);
} } }

June 2009 10

Writing to Files

§  done the same way as writing to the screen
§  i.e., using the class java.io.PrintStream
§  System.out is a predefined java.io.PrintStream object
§  Example (copying a file line by line):
import java.io.*; import java.util.Scanner;
public class CopyFile {
 public static void main(String[] args) throws new
FileNotFoundException {
 Scanner sc = new Scanner(new File(args[0]));
 PrintStream target = new PrintStream(new File(args[1]));
 while (sc.hasNext()) { target.println(sc.nextLine()); }
 target.close(); } }

June 2009 11

Throwing Exceptions

§  Java uses throw (comparable to raise in Python)
§  Example (method that receives unacceptabe input):
static double power(double a, int b) {
 if (b < 0) {
 String msg = "natural number expected";
 throw new IllegalArgumentException(msg);
 }
 result = 1;
 for (; b > 0; b--) { result *= a; }
 return result;
}

June 2009 12

OBJECT ORIENTATION

June 2009 13

Objects, Classes, and Instances

§  class = description of a class of objects
§  Example: a Car is defined by model, year, and colour
§  object = concrete instance of a class
§  Example: a silver Audi A4 from 2013 is an instance of Car
§  Example (Car as Java class):
public class Car {
 public String model, colour;
 public int year;
 public Car(String model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
} }

June 2009 14

Attributes

§  attributes belonging to each object are member variables
§  they are declared by giving their types inside the class
§  Example:
public class Car {
 public String model, colour;
 public int year;
 …
}
§  visibility can be public, protected, package or private
§  for now only public or private:

§  public = usable (read and write) for everyone
§  private = usable (read and write) for the class

 June 2009 15

Getters and Setters

§  getter = return value of a private attribute
§  setter = change value of a private attribute
§  Example:
public class Car {
 private String model;
 public String getModel() {
 return this.model;
 }
 public void setModel(String model) {
 this.model = model;
 } …
}

June 2009 16

Getters and Setters

§  very useful to abstract from internal representation
§  Example:
public class Car { // built after 1920
 private byte year;
 public int getYear() {
 return this.year >= 20 ? this.year + 1900 : this.year + 2000;
 }
 public void setYear(int year) {
 this.year = (byte) year % 100;
 } …
}

June 2009 17

Static Attributes

§  attributes belonging to the class are static attributes
§  declaration by static and giving their types inside the class
§  Example:
public class Car {
 private static int number = 0;
 public Car(String model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 Car.number++;
 }
 public int getNumberOfCars() { return number; }
}

June 2009 18

Initializing Global and Local Variables

§  local variable = variable declared in a block
§  global variable = member variable or static attribute
§  all local and all global variables can be initialized
§  Example:
public class Car {
 private static int number = 0;
 public String model = "Skoda Fabia";
 public Car(String model, int year, String colour) {
 boolean[] wheelOk = new boolean[4];
 }
}

June 2009 19

Constructors

§  objects are created by using “new”
§  Example: Car mine = new Car("VW Passat", 2003, "black");
§  Execution:

§  Java Runtime Environment reserves memory for object
§  constructor with matching parameter list is called

§  constructor is a special method with no (given) return type
§  Example:
public class Car {
 public Car(String model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 } …
}
 June 2009 20

Constructors

§  more than one constructor possible (different parameter lists)
§  constructors can use each other in first line using “this(…);”
§  Example:
public class Car {
 public Car(String model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 }
 public Car(String model, byte year, String colour) {
 this(model, year > 20 ? 1900+year : 2000+year, colour);
 }
 …
}
 June 2009 21

Overloading

§  overloading = more than one function of the same name
§  allowed as long as parameter lists are different
§  different return types is not sufficient!
§  Example:
public class Car {
 …
 public void setColour(String colour) { this.colour = colour; }
 public void setColour(String colour, boolean dark) {
 if (dark) { colour = "dark"+colour; }
 this.colour = colour;
 }
}

June 2009 22

Printing Objects

§  printing objects does not give the desired result
§  Example:
 System.out.println(new Car("Audi A1", 2011, "red"));
§  method “public String toString()” (like __str__ in Python)
§  Example:
public class Car {
 …
 public String toString() {
 return this.colour+" "+this.model+" from "+this.year;
 }
}

June 2009 23

PROJECT PART 1

June 2009 24

Organizational Details

§  exam project consisting of 2 parts
§  both parts have to be passed to pass the course

§  projects must be done individually, so no co-operation
§  you may talk about the problem and ideas how to solve them

§  deliverables:
§  written 4 page report as specified in project description
§  handed in electronically as a SINGLE PDF file
§  deadline: Friday, December 6, 23:59

§  ENOUGH - now for the FUN part …

June 2009 25

Board Games: Tic Tac Toe & Co

§  Tic Tac Toe: simple 2 player board game played on a 3 x 3 grid

§  extended rules for n-way Tic Tac Toe:

§  n players
§  (n+1) x (n+1) grid
§  3 marks in a row, column, diagonal

§  Goal: complete an implementation of n-way Tic Tac Toe

§  Challenges: Interfaces, GUI, Array Programming

June 2009 26

Board Games: Tic Tac Toe & Co
§  Task 0: Preparation

§  download and understand existing framework
§  need to describe design in your report!

§  Task 1: Bounding and Shifting Coordinates
§  implement check whether position on board or not
§  implement shift with given differential vector

§  Task 2: Implementing the Board
§  get mark for a position or check if it is free
§  record the move of a player
§  check whether there are any moves left
§  check the winning condition

June 2009 27

Board Games: Tic Tac Toe & Co
§  Task 3: Testing the Game

§  test game play for standard 2 player 3 x 3 Tic Tac Toe
§  test game play for n-way Tic Tac Toe with n > 2

§  Task 4 (optional): Connect Four
§  different simple board game
§  can be implemented similar to Tic Tac Toe

§  Task 5 (optional): Go
§  rich board game in a league with chess
§  can be implemented like this, too
§  more challenging!

June 2009 28

ADVANCED
OBJECT-ORIENTATION

June 2009 29

Object-Oriented Design

§  classes often do not exist in isolation from each other
§  a vehicle database might have classes for cars and trucks
§  in such situation, having a common superclass useful
§  Example:
public class Vehicle {
 public String model;
 public int year;
 public Vehicle(String model, int year) {
 this.model = model; this.year = year;
 }
 public String toString() {return this.model+" from "+this.year;}
}

June 2009 30

Extending Classes

§  Car and Truck then extend the Vehicle class
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 this.colour = colour; // this makes NO SENSE
 }
 public String toString() { return this.colour; }
}
public class Truck extends Vehicle {
 public double maxLoad;
 … }

June 2009 31

Class Hierarchy

§  class hierarchies are parts of class diagrams
§  for our example we have:

June 2009 32

Vehicle

Car

is-a

Truck

is-a Object is-a

Abstract Classes

§  often, superclasses should not have instances
§  in our example, we want no objects of class Vehicle
§  can be achieved by declaring the class to be abstract
§  Example:
public abstract class Vehicle {
 public String model;
 public int year;
 public Vehicle(string model, int year) {
 this.model = model; this.year = year;
 }
 public String toString() {return this.model+" from "+this.year;}
}
 June 2009 33

Accessing Attributes

§  attributes of superclasses can be accessed using “this”
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 }
 public String toString() {
 return this.colour+" "+this.model+" from "+this.year;
 }
}

June 2009 34

Accessing Superclass

§  methods of superclasses can be accessed using “super”
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 this.model = model; this.year = year; this.colour = colour;
 }
 public String toString() {
 return this.colour+" "+super.toString();
 }
}

June 2009 35

Superclass Constructors

§  constructors of superclasses can be accessed using “super”
§  Example:
public class Car extends Vehicle {
 public String colour;
 public Car(string model, int year, String colour) {
 super(model, year);
 this.colour = colour;
 }
 public String toString() {
 return this.colour+" "+super.toString();
 }
}

June 2009 36

Abstract Methods

§  abstract method = method declared but not implemented
§  useful in abstract classes (and later interfaces)
§  Example:
public abstract class Vehicle {
 public String model;
 public int year;
 public Vehicle(string model, int year) {
 this.model = model; this.year = year;
 }
 public String toString() {return this.model+" from "+this.year;}
 public abstract computeResaleValue();
}
 June 2009 37

Interfaces

§  different superclasses could have different implementations
§  to avoid conflicts, classes can only extend one (abstract) class
§  interfaces = abstract classes without implementation
§  only contain public abstract methods (abstract left out)
§  no conflict possible with different interfaces
§  Example:
public interface HasValueAddedTax {
 public double getValueAddedTax(double percentage);
}
public class Car implements HasValueAddedTax {
 public double getValueAddedTax(double p) { return 42000; }
 … }

June 2009 38

Interfaces

§  Example:
public interface HasValueAddedTax {
 public double getValueAddedTax(double percentage);
}
public interface Destructible {
 public void destroy();
}
public class Car implements HasValueAddedTax, Destructible {
 public double getValueAddedTax(double p) { return 42000; }
 public void destroy() { this.model = "BROKEN"; }
 …
}

June 2009 39

Interface and Class Hierarchy

§  interfaces outside normal class hierarchy

June 2009 40

Vehicle

Car Truck

HasValueAddedTax Destructible

GRAPHICAL
USER INTERFACES

June 2009 41

HelloWorld Reloaded

§  Java standard GUI package is Swing
§  from popup message to professional user interface
§  Example:
import javax.swing.*;
public class HelloWorldSimple {
 public static void main(String[] args) {
 JOptionPane.showMessageDialog(null, "Hello World!");
 }
}
§  more challenging to do anything more complicated
§  multi-threaded event-driven model-based UI design :-o

June 2009 42

Dialogs

§  user dialogs are created using JDialog class
§  basically like JFrame (next slide), but with a parent window
§  often used via static JOptionPane methods
§  Example:
Object[] options = {1, 2, 3, 4, 5, 10, 23, 42};
Object result = JOptionPane.showInputDialog(null,
 "Select number", "Input”,
 JOptionPane.INFORMATION_MESSAGE, null,
 options, options[0]);
int selectedInt = (Integer) result;

June 2009 43

