Modification of Records

How to handle the following operations
on the record level?

1. Insertion

2. Deletion

3. Update



1. Insertion

= Easy case: records not in sequence
= Insert new record at end of file

= If records are fixed-length, insert new
record in deleted slot

» Difficult case: records are sorted
= Find position and slide following records

= If records are sequenced by linking, insert
overflow blocks




2. Deletion

a. Immediately reclaim space by shifting
other records or removing overflows

b. Mark deleted and list as free for re-use

= Tradeoffs:

= How expensive is immediate reclaim?
=  How much space is wasted?



Problem with Deletion
= Dangling pointers:
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3. Update

= If records are fixed-length and the
order is not affected:

= Fetch the record, modify it, write it back
= Otherwise:
= Delete the old record

= Insert the new record overwriting the
tombstones from the deletion



Pointer Swizzling

= Swizzling = replacement of physical
addresses by memory addresses when
loading blocks into memory

= Automatic Swizzling: swizzle all
addresses when loading a block

(need to swizzle all pointer from and to
the block)

= Swizzling on Demand: use addresses
which are invalid as memory addresses
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Data Organizaton

= There are millions of ways to organize
the data on disk

= Flexibility Space Utilization

>

Complexity Performance




Summary 9

More things you should know:

= Memory Hierarchy

= Storage on harddisks

= Values, Records, Blocks, Files
= Storing and modifying records



Index Structures



Finding Records

= How do we find the records for a query?
= Example: SELECT * FROM Sells

= Need to examine every block in every file
= Group blocks into files by relation!

= Example: SELECT * FROM Sells
WHERE price = 20;

= Need to examine every block in the file
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Finding Records

= Use of indexes allows to narrow search
to (almost) only the relevant blocks

Value

Matching records

= Indexes can be dense or sparse
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Dense Index

Dense Index
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Sparse Index

2nd level Sparse Index Sequential File
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Deletion from Sparse Index

= Delete 40

10

10

30

20

50

S]]

30

/0

90

50

110

60

130

<
\

150

/0

80

14



Deletion from Sparse Index

= Delete 30
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Deletion from Sparse Index

» Delete 30 & 40
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Insertion into Sparse Index

= Insert 35
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Insertion into Sparse Index

= Insert 25
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Sparse vs Dense

= Sparse uses less index space per record
(can keep more of index in memory)

= Sparse allows multi-level indexes

= Dense can tell if record exists without
accessing it

= Dense needed for secondary indexes
= Primary index = order of records in storage
= Secondary index = impose different order
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Secondary Index

2nd level Secondary Index Sequential File
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2nd level

Secondary Index

Secondary Index
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Combining Indexes

= SELECT * FROM Sells WHERE beer =
“0d.CL." AND price = 20"

Beer index Sells Price index
4 - '\
ocl+ | v ~ |20
\s coh

= Just intersect buckets in memory!

22



Conventional Indexes

= Sparse, Dense, Multi-level, ...
= Advantages:

= Simple

= Sequential index is good for scans
= Disadvantage:

= Inserts expensive

= Lose sequentiality and balance
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Example:

Unbalanced Index
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B+ Trees
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Idea

= Conventional indexes are fixed-level

= Give up sequentiality of the index in
favour of balance

= B+Tree = variant of B-Tree
= Allows index tree to grow as needed

= Ensures that all blocks are between half
used and completely full
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Characteristics

= Parameter n determines number of keys
and pointers per node

= Key size 4 and pointer size 8 allows for
maximal n = 340 (4n + 8(n+1) < 4096)

= Leafs contain at least n/2 key-pointer pairs
to records and a pointer to the next leaf

= Interior nodes contain at least (n-1)/2 keys
and at least n/2 pointers to other nodes

= No restrictions for the root node
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Example: B+Tree (n=3)
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Example: Leaf node
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Example: Interior node
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Restrictions
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Insertion

= If there is place in the appropriate leaf,
just insert it there

= Otherwise:

= Split the leaf in two and divide the keys
= Insert the smallest value reachable through

the right node
= Recurse until t

= Special case: S
a hew root

into the parent node
nere is enough room

plitting the root results in

32



Example: Insertion

= Insert 85
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Example: Insertion

= Insert 15
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Example: Insertion

» Insert 64 42 -
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Deletion

= If there are enought keys left in the
appropriate leaf, just delete the key

= Otherwise:

= If there is a direct sibling with more than
minimum key, steal one!

= If not, join the node with a direct sibling and
delete the smallest value reachable through
the former right sibling from its parent

= Special case: If the root contains only
one pointer after deletion, delete it 56



Example: Deletion

= Delete 9 42 -
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Example: Deletion

= Delete 3 42 -
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Example: Deletion

= Delete 11 jz\
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Example: Deletion
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Example: Deletion

= Delete 31

85
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Efficiency

= Need to load one block for each level!

= With n = 340 and an average fill of 255
pointers, we can index 25573 = 16.6
million records in only 3 levels

= There are at most 342 blocks in the first
two levels

= First two levels can be kept in memory
using less than 1.4 Mbyte

= Only need to access one block!



Range Queries

= Queries often restrict an attribute to a
range of values

= Example:
SELECT * FROM Sells
WHERE beer > 20;

= Records are found efficiently by searching
for value 20 and then traversing the leafs

= Can also be used if there is both an upper
and a lower limit
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Summary 10

More things you should know:

Dense Index, Sparse Index
Multi-Level Indexes

Primary vs Secondary Index
Structure of B+Trees

Insertion and Deletion in B+Trees

44



