Modification of Records

How to handle the following operations
on the record level?

1. Insertion

2. Deletion

3. Update

1. Insertion

= Easy case: records not in sequence
= Insert new record at end of file

= If records are fixed-length, insert new
record in deleted slot

» Difficult case: records are sorted
= Find position and slide following records

= If records are sequenced by linking, insert
overflow blocks

2. Deletion

a. Immediately reclaim space by shifting
other records or removing overflows

b. Mark deleted and list as free for re-use

= Tradeoffs:

= How expensive is immediate reclaim?
= How much space is wasted?

Problem with Deletion
= Dangling pointers:

R1

= When using physica

?

addresses:

)

|

Never reused -~ May be reused
= When using logical addresses:

ID

LOC

/788

2]

/

Never reuse

ID 7788 nor
space in the map

4

3. Update

= If records are fixed-length and the
order is not affected:

= Fetch the record, modify it, write it back
= Otherwise:
= Delete the old record

= Insert the new record overwriting the
tombstones from the deletion

Pointer Swizzling

= Swizzling = replacement of physical
addresses by memory addresses when
loading blocks into memory

= Automatic Swizzling: swizzle all
addresses when loading a block

(need to swizzle all pointer from and to
the block)

= Swizzling on Demand: use addresses
which are invalid as memory addresses

6

Data Organizaton

= There are millions of ways to organize
the data on disk

= Flexibility Space Utilization

>

Complexity Performance

Summary 9

More things you should know:

= Memory Hierarchy

= Storage on harddisks

= Values, Records, Blocks, Files
= Storing and modifying records

Index Structures

Finding Records

= How do we find the records for a query?
= Example: SELECT * FROM Sells

= Need to examine every block in every file
= Group blocks into files by relation!

= Example: SELECT * FROM Sells
WHERE price = 20;

= Need to examine every block in the file

10

Finding Records

= Use of indexes allows to narrow search
to (almost) only the relevant blocks

Value

Matching records

= Indexes can be dense or sparse

11

Dense Index

Dense Index

10

Sequential File

20

110

30

l

40

I

50

60

/0

80

[/ 1] 1]

20

30

40

T
N
T

50

60

::::::::::

/0

90

80

100

\

110

90

120

100

[/ 1] 1]

\
::::::::::

12

Sparse Index

2nd level Sparse Index Sequential File
10 ~ 10 > %8
90| 30| -
170 50 *
20 70 \\ :‘3}8
90
fﬁg \ 110 - 50
\
130 60
490 150
570] 1\ : 70
170] 80
190]
210] fg%
230

13

Deletion from Sparse Index

= Delete 40

10

10

30

20

50

S]]

30

/0

90

50

110

60

130

<
\

150

/0

80

14

Deletion from Sparse Index

= Delete 30

10

10

40

20

50

[L]

40

/0

90

50

110

60

130

<
\

150

/0

80

15

Deletion from Sparse Index

» Delete 30 & 40

10

10

50

20

/0

/A W/

90

50

110

60

130

=

150

/0

80

16

Insertion into Sparse Index

= Insert 35

10
20

o
 »

30
Ny

10
30
50
/0

S]]

50
90
110 60

130
/0
150 30

Insertion into Sparse Index

= Insert 25

10

10

30

20

50

S]]

/0

30

35

90

50

110

60

130

150

/0

80

<
\
R

25

18

Sparse vs Dense

= Sparse uses less index space per record
(can keep more of index in memory)

= Sparse allows multi-level indexes

= Dense can tell if record exists without
accessing it

= Dense needed for secondary indexes
= Primary index = order of records in storage
= Secondary index = impose different order

19

Secondary Index

2nd level Secondary Index Sequential File
10 »10| 20
20| 10| - 40
50| 20|
sl b 1
20|
Careful when 30| 50
Looking for 20 ‘5‘8 i 30
10
50 150
o0 \\‘ 60
20

2nd level

Secondary Index

Secondary Index

10

50 <

» 10

]

Sequential File

20

20

30

/|

| —

40

40

N

10

50

20

60

Sy

AT |

50

N\

30

L

/

10

/

50

60

20

21

Combining Indexes

= SELECT * FROM Sells WHERE beer =
“0d.CL." AND price = 20"

Beer index Sells Price index
4 - '\
ocl+ | v ~ |20
\s coh

= Just intersect buckets in memory!

22

Conventional Indexes

= Sparse, Dense, Multi-level, ...
= Advantages:

= Simple

= Sequential index is good for scans
= Disadvantage:

= Inserts expensive

= Lose sequentiality and balance

23

Example:

Unbalanced Index

10

20 39+

30 / 31|

33 ~ 35 =

— 36 -

40 —' .

50

60 32 \<
38| L
34| -

70 -

80

20 overflow area

(not sequential)

24

B+ Trees

25

Idea

= Conventional indexes are fixed-level

= Give up sequentiality of the index in
favour of balance

= B+Tree = variant of B-Tree
= Allows index tree to grow as needed

= Ensures that all blocks are between half
used and completely full

26

Characteristics

= Parameter n determines number of keys
and pointers per node

= Key size 4 and pointer size 8 allows for
maximal n = 340 (4n + 8(n+1) < 4096)

= Leafs contain at least n/2 key-pointer pairs
to records and a pointer to the next leaf

= Interior nodes contain at least (n-1)/2 keys
and at least n/2 pointers to other nodes

= No restrictions for the root node

27

Example: B+Tree (n=3)

4+—

Example: Leaf node

42

5/

L

7

To record
With key 42

v
To record
With key 57

> To next leaf

29

Example: Interior node

11(23
/ -/
To keys To key{ To keys

K< 11 11 <K< 23 23 <K

Restrictions

Full pode min.Anode
11| 23|42 64
Non-leaf - /// \ / \\
111517
Leaf) T 04185
] N
\ L] bla

Counts even
when null

31

Insertion

= If there is place in the appropriate leaf,
just insert it there

= Otherwise:

= Split the leaf in two and divide the keys
= Insert the smallest value reachable through

the right node
= Recurse until t

= Special case: S
a hew root

into the parent node
nere is enough room

plitting the root results in

32

Example: Insertion

= Insert 85

4+—
4__
4__

Example: Insertion

= Insert 15

4+—
4__
4__

34

Example: Insertion

» Insert 64 42 -

AN

11|23 42 64
316/9 11(15/17 23131137 (42|57 64|85
INNESANNELANNENNNE N

Deletion

= If there are enought keys left in the
appropriate leaf, just delete the key

= Otherwise:

= If there is a direct sibling with more than
minimum key, steal one!

= If not, join the node with a direct sibling and
delete the smallest value reachable through
the former right sibling from its parent

= Special case: If the root contains only
one pointer after deletion, delete it 56

Example: Deletion

= Delete 9 42 -

AN

11|23 64
316 11(15/17 23131137 (42|57 64|85
INNESNNNESANNESNNEES MY

Example: Deletion

= Delete 3 42 -

AN

1523 64
611 15(17 23131137 (42|57 64|85
INNESANNELANNESNNEE ST

Example: Deletion

= Delete 11 jz\
23/ \
6 /615/17§137 4257\

Example: Deletion

= Delete 1/, 37 jz

23 64
I N

6 [15 23[31 42|57 64/85

e s e

40

Example: Deletion

= Delete 31

85

41

Efficiency

= Need to load one block for each level!

= With n = 340 and an average fill of 255
pointers, we can index 25573 = 16.6
million records in only 3 levels

= There are at most 342 blocks in the first
two levels

= First two levels can be kept in memory
using less than 1.4 Mbyte

= Only need to access one block!

Range Queries

= Queries often restrict an attribute to a
range of values

= Example:
SELECT * FROM Sells
WHERE beer > 20;

= Records are found efficiently by searching
for value 20 and then traversing the leafs

= Can also be used if there is both an upper
and a lower limit

43

Summary 10

More things you should know:

Dense Index, Sparse Index
Multi-Level Indexes

Primary vs Secondary Index
Structure of B+Trees

Insertion and Deletion in B+Trees

44

