
Summary 1 

Things you should know now: 
  Basic ideas about databases and DBMSs 
  What is a data model? 
  Idea and Details of the relational model 
  SQL as a data definition language 

Things given as background: 
  History of database systems 
  Semistructured data model 1 



Relational Algebra 

2 



3 

What is an “Algebra” 

  Mathematical system consisting of: 
 Operands – variables or values from which 

new values can be constructed 
 Operators – symbols denoting procedures 

that construct new values from given 
values 

  Example: 
  Integers ..., -1, 0, 1, ... as operands 
  Arithmetic operations +/- as operators 



4 

What is Relational Algebra? 

  An algebra whose operands are 
relations or variables that represent 
relations 

  Operators are designed to do the most 
common things that we need to do with 
relations in a database 
  The result is an algebra that can be used 

as a query language  for relations 



5 

Core Relational Algebra 

  Union, intersection, and difference 
  Usual set operations, but both operands 

must have the same relation schema 
  Selection: picking certain rows 
  Projection: picking certain columns 
  Products and joins: compositions of 

relations 
  Renaming of relations and attributes 



6 

Selection 

  R1 := σC (R2) 
  C  is a condition (as in “if” statements) that 

refers to attributes of R2 

  R1 is all those tuples of R2 that satisfy C 



7 

Example: Selection 

Relation Sells: 
 bar   beer   price 
 Cafe Chino  Od. Cla.  20 
 Cafe Chino  Erd. Wei.  35 
 Cafe Bio  Od. Cla.  20 
 Bryggeriet  Pilsener  31 

ChinoMenu := σbar=“Cafe Chino”(Sells): 
 bar   beer   price 
 Cafe Chino  Od. Cla.  20 
 Cafe Chino  Erd. Wei.  35 



8 

Projection 

  R1 := πL (R2) 
  L  is a list of attributes from the schema of R2 

  R1 is constructed by looking at each tuple of R2, 
extracting the attributes on list L, in the order 
specified, and creating from those components 
a tuple for R1 

  Eliminate duplicate tuples, if any 



9 

Example: Projection 

Relation Sells: 
 bar   beer   price 
 Cafe Chino  Od. Cla.  20 
 Cafe Chino  Erd. Wei.  35 
 Cafe Bio  Od. Cla.  20 
 Bryggeriet  Pilsener  31 

Prices := πbeer,price(Sells): 
 beer   price 
 Od. Cla.  20 
 Erd. Wei.  35 
 Pilsener  31 



10 

Extended Projection 

  Using the same πL operator, we allow 
the list L  to contain arbitrary 
expressions involving attributes: 

1.  Arithmetic on attributes, e.g., A+B->C 
2.  Duplicate occurrences of the same 

attribute 



11 

Example: Extended Projection 

R =  ( A  B ) 
 1  2 
 3  4 

πA+B->C,A,A (R) =  C  A1  A2 
   3  1  1 
   7  3  3 



12 

Product 

  R3 := R1 Χ R2 

  Pair each tuple t1 of R1 with each tuple t2 of R2 
  Concatenation t1t2 is a tuple of R3 

  Schema of R3 is the attributes of R1 and then 
R2, in order 

  But beware attribute A of the same name in R1 
and R2: use R1.A  and R2.A 



13 

Example: R3 := R1 Χ R2 

 R1(  A,  B ) 
 1  2 
 3  4 

 R2(  B,  C ) 
 5  6 
 7  8 
 9      10 

 R3(  A,  R1.B,  R2.B,  C   ) 
 1  2  5  6 
 1  2  7  8 
 1  2  9      10 
 3  4  5  6 
 3  4  7  8 
 3  4  9      10 



14 

Theta-Join 

  R3 := R1 ⋈C R2 
  Take the product R1 Χ R2 

  Then apply σC  to the result 

  As for σ, C  can be any boolean-valued 
condition 
  Historic versions of this operator allowed 

only A θ B, where θ is =, <, etc.; hence 
the name “theta-join” 



15 

Example: Theta Join 

Sells(  bar,  beer,  price  )  Bars(  name, addr        ) 
 C.Ch. Od.C.   20    C.Ch.  Reventlo. 
 C.Ch. Er.W.   35    C.Bi.  Brandts 
 C.Bi.  Od.C.   20    Bryg.  Flakhaven 
 Bryg. Pils.   31 

     BarInfo := Sells ⋈Sells.bar = Bars.name Bars 

     BarInfo(  bar,  beer,  price,  name, addr        ) 
  C.Ch.  Od.C.  20  C.Ch.   Reventlo. 
  C.Ch.  Er.W.  35  C.Ch.   Reventlo. 
  C.Bi.  Od.C.  20  C.Bi.   Brandts 
  Bryg.  Pils.  31  Bryg.   Flakhaven 



16 

Natural Join 

  A useful join variant (natural  join) 
connects two relations by: 
  Equating attributes of the same name, and 
  Projecting out one copy of each pair of 

equated attributes 

  Denoted R3 := R1 ⋈ R2 



17 

Example: Natural Join 
Sells(  bar,  beer,  price  )  Bars(  bar,  addr        ) 

 C.Ch. Od.Cl.  20    C.Ch.  Reventlo. 
 C.Ch. Er.We.  35    C.Bi.  Brandts 
 C.Bi.  Od.Cl.  20    Bryg.  Flakhaven 
 Bryg. Pils.   31 

       BarInfo := Sells ⋈ Bars 
Note:  Bars.name has become Bars.bar 

 to make the natural join “work” 

    BarInfo(  bar,  beer,  price,  addr        ) 
  C.Ch.  Od.Cl.  20  Reventlo. 
  C.Ch.  Er.We.  35  Reventlo. 
  C.Bi.  Od.Cl.  20  Brandts 
  Bryg.  Pils.   31  Flakhaven 



18 

Renaming 

  The ρ operator gives a new schema to a 
relation 

  R1 := ρR1(A1,…,An)(R2) makes R1 be a 
relation with attributes A1,…,An  and the 
same tuples as R2 

  Simplified notation: R1(A1,…,An) := R2 



19 

Example: Renaming 

Bars(  name, addr        ) 
 C.Ch.  Reventlo. 
 C.Bi.   Brandts 
 Bryg.  Flakhaven 

   R(  bar,  addr        ) 
 C.Ch.  Reventlo. 
 C.Bi.   Brandts 
 Bryg.  Flakhaven 

R(bar, addr) := Bars 



20 

Building Complex Expressions 

  Combine operators with parentheses 
and precedence rules 

  Three notations, just as in arithmetic: 
1.  Sequences of assignment statements 
2.  Expressions with several operators 
3.  Expression trees 



21 

Sequences of Assignments 

  Create temporary relation names 
  Renaming can be implied by giving 

relations a list of attributes 

  Example: R3 := R1 ⋈C R2 can be 
written: 
R4 := R1 Χ R2 

R3 := σC (R4) 



22 

Expressions in a Single Assignment 

  Example: the theta-join R3 := R1 ⋈C R2 
can be written: R3 := σC (R1 Χ R2) 

  Precedence of relational operators: 
1.  [σ, π, ρ] (highest) 

2.  [Χ, ⋈] 
3. ∩ 
4.  [∪, —] 



23 

Expression Trees 

  Leaves are operands – either variables 
standing for relations or particular, 
constant relations 

  Interior nodes are operators, applied to 
their child or children 



24 

Example: Tree for a Query 

  Using the relations Bars(name, addr) 
and Sells(bar, beer, price), find the 
names of all the bars that are either at 
Brandts or sell Pilsener for less than 35: 



25 

As a Tree: 

Bars Sells 

σaddr = “Brandts” σprice<35 AND beer=“Pilsener” 

πname 

ρR(name) 

πbar 

∪ 



26 

Example: Self-Join 

  Using Sells(bar, beer, price), find the bars 
that sell two different beers at the same 
price 

  Strategy: by renaming, define a copy of 
Sells, called S(bar, beer1, price).  The 
natural join of Sells and S consists of 
quadruples (bar, beer, beer1, price) such 
that the bar sells both beers at this price 



27 

The Tree 

Sells Sells 

ρS(bar, beer1, price) 

⋈ 

πbar 

σbeer != beer1 



28 

Schemas for Results 

  Union, intersection, and difference: the 
schemas of the two operands must be 
the same, so use that schema for the 
result 

  Selection: schema of the result is the 
same as the schema of the operand 

  Projection: list of attributes tells us the 
schema 



29 

Schemas for Results 

  Product: schema is the attributes of both 
relations 
  Use R1.A and R2.A, etc., to distinguish two 

attributes named A 

  Theta-join: same as product 
  Natural join: union of the attributes of the 

two relations 
  Renaming: the operator tells the schema 



30 

Relational Algebra on Bags 

  A bag (or multiset ) is like a set, but an 
element may appear more than once 

  Example: {1,2,1,3} is a bag 
  Example: {1,2,3} is also a bag that 

happens to be a set 



31 

Why Bags? 

  SQL, the most important query 
language for relational databases, is 
actually a bag language 

  Some operations, like projection, are 
more efficient on bags than sets 



32 

Operations on Bags 

  Selection applies to each tuple, so its 
effect on bags is like its effect on sets. 

  Projection also applies to each tuple, 
but as a bag operator, we do not 
eliminate duplicates. 

  Products and joins are done on each 
pair of tuples, so duplicates in bags 
have no effect on how we operate. 



33 

Example: Bag Selection 

R(  A,  B  ) 
 1  2 
 5  6 
 1  2 

    σA+B < 5 (R) =  A  B 
   1  2 
   1  2 



34 

Example: Bag Projection 

R(  A,  B  )  
 1  2 
 5  6 
 1  2 

      πA (R) =  A 
   1 
   5 
   1 



35 

Example: Bag Product 

R(  A,  B  )   S(  B,  C  ) 
 1  2    3  4 
 5  6    7  8 
 1  2 

R Χ S =  A  R.B  S.B  C 
  1  2  3  4 
  1  2  7  8 
  5  6  3  4 
  5  6  7  8 
  1  2  3  4 
  1  2  7  8 



36 

Example: Bag Theta-Join 

R(  A,  B  )   S(  B,  C  ) 
 1  2    3  4 
 5  6    7  8 
 1  2 

R ⋈ R.B<S.B S =  A  R.B  S.B  C 
   1  2  3  4 
   1  2  7  8 
   5  6  7  8 
   1  2  3  4 
   1  2  7  8 



37 

Bag Union 

  An element appears in the union of two 
bags the sum of the number of times it 
appears in each bag 

  Example: {1,2,1} ∪ {1,1,2,3,1} = 
{1,1,1,1,1,2,2,3} 



38 

Bag Intersection 

  An element appears in the intersection 
of two bags the minimum of the 
number of times it appears in either. 

  Example:       
{1,2,1,1} ∩ {1,2,1,3} = {1,1,2}. 



39 

Bag Difference 

  An element appears in the difference   
A – B  of bags as many times as it 
appears in A, minus the number of 
times it appears in B. 
  But never less than 0 times. 

  Example: {1,2,1,1} – {1,2,3} = {1,1}. 



40 

Beware: Bag Laws != Set Laws 
  Some, but not all  algebraic laws that 

hold for sets also hold for bags 
  Example: the commutative law for 

union (R ∪S = S ∪R ) does  hold for 
bags 
  Since addition is commutative, adding the 

number of times x  appears in R and S 
does not depend on the order of R and S 



41 

Example: A Law That Fails 

  Set union is idempotent, meaning that  
S ∪S = S 

  However, for bags, if x appears n  times 
in S, then it appears 2n  times in          
S ∪S 

  Thus S ∪S  != S  in general 
  e.g., {1} ∪ {1} = {1,1} != {1} 



Summary 2 

More things you should know: 
  Relational Algebra 
  Selection, (Extended) Projection, 

Product, Join, Natural Join, Renaming 
  Complex Operations as Sequences, 

Expressions, or Trees 
  Difference between Sets and Bags 

42 



Basic SQL Queries 

43 



44 

Why SQL? 

  SQL is a very-high-level language 
  Say “what to do” rather than “how to do it” 
  Avoid a lot of data-manipulation details 

needed in procedural languages like C++ or 
Java 

  Database management system figures 
out “best” way to execute query  
  Called “query optimization” 



45 

Select-From-Where Statements 
 SELECT desired attributes 
 FROM one or more tables 
 WHERE condition about tuples of 
  the tables 



46 

Our Running Example 

  All our SQL queries will be based on the 
following database schema. 
  Underline indicates key attributes. 

   Beers(name, manf) 
   Bars(name, addr, license) 
   Drinkers(name, addr, phone) 
   Likes(drinker, beer) 
   Sells(bar, beer, price) 
   Frequents(drinker, bar) 



47 

Example 

  Using Beers(name, manf), what beers are 
made by Albani Bryggerierne? 
  SELECT name 
  FROM Beers 
  WHERE manf = ’Albani’; 



48 

Result of Query 

  name 
  Od. Cl. 
   Eventyr 
  Blålys 
     . . . 

The answer is a relation with a single attribute, 
name, and tuples with the name of each beer 
by Albani Bryggerierne, such as Odense Classic. 



49 

Meaning of Single-Relation Query 
  Begin with the relation in the FROM 

clause 
  Apply the selection indicated by the 

WHERE clause 
  Apply the extended projection indicated 

by the SELECT clause 



50 

Operational Semantics 

Check if 
Albani 

name manf 

Blålys Albani Include t.name  
in the result, if so 

Tuple-variable t 
loops over all 
tuples 



51 

Operational Semantics – General 

  Think of a tuple variable visiting each 
tuple of the relation mentioned in FROM 

  Check if the “current” tuple satisfies the 
WHERE clause 

  If so, compute the attributes or 
expressions of the SELECT clause using 
the components of this tuple 



52 

* In SELECT clauses 

  When there is one relation in the FROM 
clause, * in the SELECT clause stands for 
“all attributes of this relation” 

  Example: Using Beers(name, manf): 
  SELECT * 
  FROM Beers 
  WHERE manf = ’Albani’; 



53 

Result of Query: 

  name   manf 
  Od.Cl.   Albani 
  Eventyr  Albani 
  Blålys   Albani 
     . . .      . . . 

Now, the result has each of the attributes 
of Beers 



54 

Renaming Attributes 

  If you want the result to have different 
attribute names, use “AS <new name>” to 
rename an attribute 

  Example: Using Beers(name, manf): 
  SELECT name AS beer, manf 
  FROM Beers 
  WHERE manf = ’Albani’ 



55 

Result of Query: 

  beer   manf 
  Od.Cl.   Albani 
  Eventyr  Albani 
  Blålys   Albani 
     . . .   . . . 



56 

Expressions in SELECT Clauses 

  Any expression that makes sense can 
appear as an element of a SELECT clause 

  Example: Using Sells(bar, beer, price): 
 SELECT bar, beer, 
  price*0.134 AS priceInEuro 
 FROM Sells; 



57 

Result of Query 

  bar  beer  priceInEuro 
  C.Ch.  Od.Cl.   2.68 
  C.Ch.  Er.Wei.   4.69 
    …     …     … 



58 

Example: Constants as Expressions 

  Using Likes(drinker, beer): 

 SELECT drinker, ’ likes Albani ’ 
    AS whoLikesAlbani 
 FROM Likes 
 WHERE beer = ’Od.Cl.’; 



59 

Result of Query 

  drinker  whoLikesAlbani 
  Peter  likes Albani 
  Kim  likes Albani 
    …     … 



60 

Example: Information Integration 
  We often build “data warehouses” from 

the data at many “sources” 
  Suppose each bar has its own relation 

Menu(beer, price) 
  To contribute to Sells(bar, beer, price) 

we need to query each bar and insert 
the name of the bar 



61 

Information Integration 

  For instance, at the Cafe Biografen we 
can issue the query: 

SELECT ’Cafe Bio’, beer, price 
FROM Menu; 



62 

Complex Conditions in WHERE 
Clause 

  Boolean operators AND, OR, NOT 
  Comparisons =, <>, <, >, <=, >= 

  And many other operators that produce 
boolean-valued results 



63 

Example: Complex Condition 

  Using Sells(bar, beer, price), find the price 
Cafe Biografen charges for Odense Classic: 

  SELECT price 
  FROM Sells 
  WHERE bar = ’Cafe Bio’ AND 
   beer = ’Od.Cl.’; 



64 

Patterns 

  A condition can compare a string to a 
pattern by: 
 <Attribute> LIKE <pattern>   or 

<Attribute> NOT LIKE <pattern> 

  Pattern  is a quoted string with    
% = “any string”       
 _ = “any character” 



65 

Example: LIKE 

  Using Drinkers(name, addr, phone) find 
the drinkers with address in Fynen: 

SELECT name 
FROM Drinkers 
WHERE phone LIKE ’%, 5___ %’; 



66 

NULL Values 

  Tuples in SQL relations can have NULL 
as a value for one or more components 

  Meaning depends on context 
  Two common cases: 

 Missing value: e.g., we know Cafe Chino has 
some address, but we don’t know what it is 

  Inapplicable: e.g., the value of attribute 
spouse for an unmarried person 



67 

Comparing NULL’s to Values 

  The logic of conditions in SQL is really  
3-valued logic: TRUE, FALSE, UNKNOWN 

  Comparing any value (including NULL 
itself) with NULL yields UNKNOWN 

  A tuple is in a query answer iff the 
WHERE clause is TRUE     
(not FALSE or UNKNOWN) 



68 

Three-Valued Logic 

  To understand how AND, OR, and NOT 
work in 3-valued logic, think of TRUE = 1, 
FALSE = 0, and UNKNOWN = ½ 

  AND = MIN; OR = MAX; NOT(x) = 1-x 
  Example: 
TRUE AND (FALSE OR NOT(UNKNOWN)) = 

MIN(1, MAX(0, (1 - ½ ))) = 
 MIN(1, MAX(0, ½ )) = MIN(1, ½ ) = ½ 



69 

Surprising Example 

  From the following Sells relation: 
   bar   beer  price 
   C.Ch.  Od.Cl.  NULL 
 SELECT bar 
 FROM Sells 
 WHERE price < 20 OR price >= 20; 

UNKNOWN      UNKNOWN 

UNKNOWN 



70 

2-Valued Laws != 3-Valued Laws 

  Some common laws, like commutativity 
of AND, hold in 3-valued logic 

  But not others, e.g., the law of the 
excluded middle: p OR NOT p = TRUE 
 When p = UNKNOWN, the left side is  

MAX( ½, (1 – ½ )) = ½ != 1 



71 

Multirelation Queries 

  Interesting queries often combine data 
from more than one relation 

  We can address several relations in one 
query by listing them all in the FROM 
clause 

  Distinguish attributes of the same name 
by “<relation>.<attribute>” 



72 

Example: Joining Two Relations 

  Using relations Likes(drinker, beer) and 
Frequents(drinker, bar), find the beers liked 
by at least one person who frequents C. Ch. 
 SELECT beer 
 FROM Likes, Frequents 
 WHERE bar = ’C.Ch.’ AND 
  Frequents.drinker = 

        Likes.drinker; 



73 

Formal Semantics 

  Almost the same as for single-relation 
queries: 

1.  Start with the product of all the relations 
in the FROM clause 

2.  Apply the selection condition from the 
WHERE clause 

3.  Project onto the list of attributes and 
expressions in the SELECT clause 



74 

Operational Semantics 

  Imagine one tuple-variable for each 
relation in the FROM clause 
  These tuple-variables visit each 

combination of tuples, one from each 
relation 

  If the tuple-variables are pointing to 
tuples that satisfy the WHERE clause, 
send these tuples to the SELECT clause 



75 

Example 

 drinker       bar   drinker     beer 

t1          t2 
     Peter       Od.Cl. 
 Peter        C.Ch. 

      Likes 
    Frequents 

 to output check these 
are equal 

check 
For C.Ch. 



76 

Explicit Tuple-Variables 

  Sometimes, a query needs to use two 
copies of the same relation 

  Distinguish copies by following the 
relation name by the name of a    
tuple-variable, in the FROM clause 

  It’s always an option to rename 
relations this way, even when not 
essential 



77 

Example: Self-Join 

  From Beers(name, manf), find all pairs 
of beers by the same manufacturer 
  Do not produce pairs like (Od.Cl., Od.Cl.) 
  Produce pairs in alphabetic order, e.g., 

(Blålys, Eventyr), not (Eventyr, Blålys) 
 SELECT b1.name, b2.name 
 FROM Beers b1, Beers b2 
 WHERE b1.manf = b2.manf AND 
  b1.name < b2.name; 



78 

Subqueries 

  A parenthesized SELECT-FROM-WHERE 
statement (subquery) can be used as a 
value in a number of places, including 
FROM and WHERE clauses 

  Example: in place of a relation in the 
FROM clause, we can use a subquery 
and then query its result 
 Must use a tuple-variable to name tuples of 

the result 



79 

Example: Subquery in FROM 

  Find the beers liked by at least one person 
who frequents Cafe Chino 

SELECT beer 
FROM Likes, (SELECT drinker 
  FROM Frequents 
  WHERE bar = ’C.Ch.’)CCD 
WHERE Likes.drinker = CCD.drinker; 

Drinkers who 
frequent C.Ch. 



80 

Subqueries That Return One Tuple 

  If a subquery is guaranteed to produce 
one tuple, then the subquery can be 
used as a value 
  Usually, the tuple has one component 
  A run-time error occurs if there is no tuple 

or more than one tuple 


