
Basic SQL Queries

1

2

Why SQL?

  SQL is a very-high-level language
  Say “what to do” rather than “how to do it”
  Avoid a lot of data-manipulation details

needed in procedural languages like C++ or
Java

  Database management system figures
out “best” way to execute query
  Called “query optimization”

3

Select-From-Where Statements
 SELECT desired attributes
 FROM one or more tables
 WHERE condition about tuples of
 the tables

4

Our Running Example

  All our SQL queries will be based on the
following database schema.
  Underline indicates key attributes.

 Beers(name, manf)
 Bars(name, addr, license)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Sells(bar, beer, price)
 Frequents(drinker, bar)

5

Example

  Using Beers(name, manf), what beers are
made by Albani Bryggerierne?
 SELECT name
 FROM Beers
 WHERE manf = ’Albani’;

6

Result of Query

 name
 Od. Cl.
 Eventyr
 Blålys
 . . .

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Albani Bryggerierne, such as Odense Classic.

7

Meaning of Single-Relation Query
  Begin with the relation in the FROM

clause
  Apply the selection indicated by the

WHERE clause
  Apply the extended projection indicated

by the SELECT clause

8

Operational Semantics

Check if
Albani

name manf

Blålys Albani Include t.name
in the result, if so

Tuple-variable t
loops over all
tuples

9

Operational Semantics – General

  Think of a tuple variable visiting each
tuple of the relation mentioned in FROM

  Check if the “current” tuple satisfies the
WHERE clause

  If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple

10

* In SELECT clauses

  When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation”

  Example: Using Beers(name, manf):
 SELECT *
 FROM Beers
 WHERE manf = ’Albani’;

11

Result of Query:

 name manf
 Od.Cl. Albani
 Eventyr Albani
 Blålys Albani

Now, the result has each of the attributes
of Beers

12

Renaming Attributes

  If you want the result to have different
attribute names, use “AS <new name>” to
rename an attribute

  Example: Using Beers(name, manf):
 SELECT name AS beer, manf
 FROM Beers
 WHERE manf = ’Albani’

13

Result of Query:

 beer manf
 Od.Cl. Albani
 Eventyr Albani
 Blålys Albani

14

Expressions in SELECT Clauses

  Any expression that makes sense can
appear as an element of a SELECT clause

  Example: Using Sells(bar, beer, price):
 SELECT bar, beer,
 price*0.134 AS priceInEuro
 FROM Sells;

15

Result of Query

 bar beer priceInEuro
 C.Ch. Od.Cl. 2.68
 C.Ch. Er.Wei. 4.69
 … … …

16

Example: Constants as Expressions

  Using Likes(drinker, beer):

 SELECT drinker, ’ likes Albani ’
 AS whoLikesAlbani
 FROM Likes
 WHERE beer = ’Od.Cl.’;

17

Result of Query

 drinker whoLikesAlbani
 Peter likes Albani
 Kim likes Albani
 … …

18

Example: Information Integration
  We often build “data warehouses” from

the data at many “sources”
  Suppose each bar has its own relation

Menu(beer, price)
  To contribute to Sells(bar, beer, price)

we need to query each bar and insert
the name of the bar

19

Information Integration

  For instance, at the Cafe Biografen we
can issue the query:

SELECT ’Cafe Bio’, beer, price
FROM Menu;

20

Complex Conditions in WHERE
Clause

  Boolean operators AND, OR, NOT
  Comparisons =, <>, <, >, <=, >=

  And many other operators that produce
boolean-valued results

21

Example: Complex Condition

  Using Sells(bar, beer, price), find the price
Cafe Biografen charges for Odense Classic:

 SELECT price
 FROM Sells
 WHERE bar = ’Cafe Bio’ AND
 beer = ’Od.Cl.’;

22

Patterns

  A condition can compare a string to a
pattern by:
 <Attribute> LIKE <pattern> or

<Attribute> NOT LIKE <pattern>

  Pattern is a quoted string with
% = “any string”
 _ = “any character”

23

Example: LIKE

  Using Drinkers(name, addr, phone) find
the drinkers with address in Fynen:

SELECT name
FROM Drinkers
WHERE phone LIKE ’%, 5___ %’;

24

NULL Values

  Tuples in SQL relations can have NULL
as a value for one or more components

  Meaning depends on context
  Two common cases:

 Missing value: e.g., we know Cafe Chino has
some address, but we don’t know what it is

  Inapplicable: e.g., the value of attribute
spouse for an unmarried person

25

Comparing NULL’s to Values

  The logic of conditions in SQL is really
3-valued logic: TRUE, FALSE, UNKNOWN

  Comparing any value (including NULL
itself) with NULL yields UNKNOWN

  A tuple is in a query answer iff the
WHERE clause is TRUE
(not FALSE or UNKNOWN)

26

Three-Valued Logic

  To understand how AND, OR, and NOT
work in 3-valued logic, think of TRUE = 1,
FALSE = 0, and UNKNOWN = ½

  AND = MIN; OR = MAX; NOT(x) = 1-x
  Example:
TRUE AND (FALSE OR NOT(UNKNOWN)) =

MIN(1, MAX(0, (1 - ½))) =
 MIN(1, MAX(0, ½)) = MIN(1, ½) = ½

27

Surprising Example

  From the following Sells relation:
 bar beer price
 C.Ch. Od.Cl. NULL
 SELECT bar
 FROM Sells
 WHERE price < 20 OR price >= 20;

UNKNOWN UNKNOWN

UNKNOWN

28

2-Valued Laws != 3-Valued Laws

  Some common laws, like commutativity
of AND, hold in 3-valued logic

  But not others, e.g., the law of the
excluded middle: p OR NOT p = TRUE
 When p = UNKNOWN, the left side is

MAX(½, (1 – ½)) = ½ != 1

29

Multirelation Queries

  Interesting queries often combine data
from more than one relation

  We can address several relations in one
query by listing them all in the FROM
clause

  Distinguish attributes of the same name
by “<relation>.<attribute>”

30

Example: Joining Two Relations

  Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked
by at least one person who frequents C. Ch.
 SELECT beer
 FROM Likes, Frequents
 WHERE bar = ’C.Ch.’ AND
 Frequents.drinker =

 Likes.drinker;

31

Formal Semantics

  Almost the same as for single-relation
queries:

1.  Start with the product of all the relations
in the FROM clause

2.  Apply the selection condition from the
WHERE clause

3.  Project onto the list of attributes and
expressions in the SELECT clause

32

Operational Semantics

  Imagine one tuple-variable for each
relation in the FROM clause
  These tuple-variables visit each

combination of tuples, one from each
relation

  If the tuple-variables are pointing to
tuples that satisfy the WHERE clause,
send these tuples to the SELECT clause

33

Example

 drinker bar drinker beer

t1 t2
 Peter Od.Cl.
 Peter C.Ch.

 Likes
 Frequents

 to output check these
are equal

check
For C.Ch.

34

Explicit Tuple-Variables

  Sometimes, a query needs to use two
copies of the same relation

  Distinguish copies by following the
relation name by the name of a
tuple-variable, in the FROM clause

  It’s always an option to rename
relations this way, even when not
essential

35

Example: Self-Join

  From Beers(name, manf), find all pairs
of beers by the same manufacturer
  Do not produce pairs like (Od.Cl., Od.Cl.)
  Produce pairs in alphabetic order, e.g.,

(Blålys, Eventyr), not (Eventyr, Blålys)
 SELECT b1.name, b2.name
 FROM Beers b1, Beers b2
 WHERE b1.manf = b2.manf AND
 b1.name < b2.name;

36

Subqueries

  A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a
value in a number of places, including
FROM and WHERE clauses

  Example: in place of a relation in the
FROM clause, we can use a subquery
and then query its result
 Must use a tuple-variable to name tuples of

the result

37

Example: Subquery in FROM

  Find the beers liked by at least one person
who frequents Cafe Chino

SELECT beer
FROM Likes, (SELECT drinker
 FROM Frequents
 WHERE bar = ’C.Ch.’)CCD
WHERE Likes.drinker = CCD.drinker;

Drinkers who
frequent C.Ch.

38

Subqueries That Return One Tuple

  If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value
  Usually, the tuple has one component
  A run-time error occurs if there is no tuple

or more than one tuple

39

Example: Single-Tuple Subquery

  Using Sells(bar, beer, price), find the
bars that serve Pilsener for the same
price Cafe Chino charges for Od.Cl.

  Two queries would surely work:
1.  Find the price Cafe Chino charges for Od.Cl.
2.  Find the bars that serve Pilsener at that

price

40

Query + Subquery Solution

 SELECT bar
 FROM Sells
 WHERE beer = ’Pilsener’ AND
 price = (SELECT price
 FROM Sells
 WHERE bar = ’Cafe Chino’
 AND beer = ’Od.Cl.’);

The price at
Which C.Ch.
sells Od.Cl.

41

The IN Operator

  <tuple> IN (<subquery>) is true if and
only if the tuple is a member of the
relation produced by the subquery
 Opposite: <tuple> NOT IN (<subquery>)

  IN-expressions can appear in WHERE
clauses

42

Example: IN

  Using Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of
each beer that Peter likes
 SELECT *
 FROM Beers
 WHERE name IN (SELECT beer
 FROM Likes
 WHERE drinker = ’Peter’);

The set of
Beers Peter
likes

43

What is the difference?

R(a,b); S(b,c)

SELECT a

FROM R, S
WHERE R.b = S.b;

SELECT a
FROM R
WHERE b IN (SELECT b FROM S);

44

IN is a Predicate About R’s Tuples

SELECT a
FROM R
WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) satisfies
the condition;
1 is output once

Two 2’s

45

This Query Pairs Tuples from R, S

SELECT a
FROM R, S
WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice

46

The Exists Operator

  EXISTS(<subquery>) is true if and only
if the subquery result is not empty

  Example: From Beers(name, manf),
find those beers that are the unique
beer by their manufacturer

47

Example: EXISTS

 SELECT name
 FROM Beers b1
 WHERE NOT EXISTS (
 SELECT *
 FROM Beers
 WHERE manf = b1.manf AND
 name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute

Notice the
SQL “not
equals”
operator

48

The Operator ANY

  x = ANY(<subquery>) is a boolean
condition that is true iff x equals at least
one tuple in the subquery result
 = could be any comparison operator.

  Example: x >= ANY(<subquery>) means x
is not the uniquely smallest tuple produced
by the subquery
  Note tuples must have one component only

49

The Operator ALL

  x <> ALL(<subquery>) is true iff for
every tuple t in the relation, x is not
equal to t
  That is, x is not in the subquery result

  <> can be any comparison operator
  Example: x >= ALL(<subquery>)

means there is no tuple larger than x in
the subquery result

50

Example: ALL

  From Sells(bar, beer, price), find the
beer(s) sold for the highest price
 SELECT beer
 FROM Sells
 WHERE price >= ALL(
 SELECT price
 FROM Sells);

price from the outer
Sells must not be
less than any price.

51

Union, Intersection, and Difference
  Union, intersection, and difference of

relations are expressed by the following
forms, each involving subqueries:
  (<subquery>) UNION (<subquery>)
  (<subquery>) INTERSECT (<subquery>)
  (<subquery>) EXCEPT (<subquery>)

52

Example: Intersection

  Using Likes(drinker, beer), Sells(bar, beer,
price), and Frequents(drinker, bar), find
the drinkers and beers such that:

1.  The drinker likes the beer, and
2.  The drinker frequents at least one bar that

sells the beer

53

Solution

(SELECT * FROM Likes)
 INTERSECT

(SELECT drinker, beer
 FROM Sells, Frequents
 WHERE Frequents.bar = Sells.bar
);

The drinker frequents
a bar that sells the
beer.

Notice trick:
subquery is
really a stored
table.

54

Bag Semantics

  Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics
  That is, duplicates are eliminated as the

operation is applied

55

Motivation: Efficiency

  When doing projection, it is easier to
avoid eliminating duplicates
  Just work tuple-at-a-time

  For intersection or difference, it is most
efficient to sort the relations first
  At that point you may as well eliminate the

duplicates anyway

56

Controlling Duplicate Elimination

  Force the result to be a set by
SELECT DISTINCT . . .

  Force the result to be a bag (i.e., don’t
eliminate duplicates) by ALL, as
in . . . UNION ALL . . .

57

Example: DISTINCT

  From Sells(bar, beer, price), find all the
different prices charged for beers:
 SELECT DISTINCT price
 FROM Sells;
  Notice that without DISTINCT, each

price would be listed as many times as
there were bar/beer pairs at that price

58

Example: ALL

  Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
 (SELECT drinker FROM Frequents)
 EXCEPT ALL
 (SELECT drinker FROM Likes);
  Lists drinkers who frequent more bars than

they like beers, and does so as many times as
the difference of those counts

59

Join Expressions

  SQL provides several versions of (bag)
joins

  These expressions can be stand-alone
queries or used in place of relations in a
FROM clause

60

Products and Natural Joins

  Natural join:
 R NATURAL JOIN S;

  Product:
 R CROSS JOIN S;

  Example:
 Likes NATURAL JOIN Sells;
  Relations can be parenthesized subqueries, as

well

61

Theta Join

  R JOIN S ON <condition>
  Example: using Drinkers(name, addr) and

Frequents(drinker, bar):
 Drinkers JOIN Frequents ON
 name = drinker;
 gives us all (d, a, d, b) quadruples such
that drinker d lives at address a and
frequents bar b

Summary 3

More things you should know:
  SELECT FROM WHERE statements with

one or more tables
  Complex conditions, pattern matching
  Subqueries, natural joins, theta joins

62

Extended Relational Algebra

63

64

The Extended Algebra

δ = eliminate duplicates from bags

τ = sort tuples

γ = grouping and aggregation
Outerjoin: avoids “dangling tuples” =

tuples that do not join with anything

65

Duplicate Elimination

  R1 := δ(R2)
  R1 consists of one copy of each tuple

that appears in R2 one or more times

66

Example: Duplicate Elimination

R = (A B)
 1 2
 3 4
 1 2

δ(R) = A B
 1 2
 3 4

67

Sorting

  R1 := τL (R2)
  L is a list of some of the attributes of R2

  R1 is the list of tuples of R2 sorted
lexicographically according to the attributes in L,
i.e., first on the value of the first attribute on L,
then on the second attribute of L, and so on
  Break ties arbitrarily

 τ is the only operator whose result is neither a
set nor a bag

68

Example: Sorting

R = (A B)
 1 2
 3 4
 5 2

τB (R) = [(5,2), (1,2), (3,4)]

69

Aggregation Operators

  Aggregation operators are not operators
of relational algebra

  Rather, they apply to entire columns of
a table and produce a single result

  The most important examples: SUM,
AVG, COUNT, MIN, and MAX

70

Example: Aggregation

R = (A B)
 1 3
 3 4
 3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

71

Grouping Operator

  R1 := γL (R2)
L is a list of elements that are either:

1.  Individual (grouping) attributes
2.  AGG(A), where AGG is one of the

aggregation operators and A is an
attribute
  An arrow and a new attribute name renames

the component

72

Applying γL(R)
  Group R according to all the grouping

attributes on list L
  That is: form one group for each distinct list

of values for those attributes in R

  Within each group, compute AGG(A) for
each aggregation on list L

  Result has one tuple for each group:
1.  The grouping attributes and
2.  Their group’s aggregations

73

Example: Grouping/Aggregation

R = (A B C)
 1 2 3
 4 5 6
 1 2 5

γA,B,AVG(C)->X (R) = ??

First, group R by A and B :
 A B C
 1 2 3
 1 2 5
 4 5 6

Then, average C
within groups:

A B X
1 2 4
4 5 6

74

Outerjoin

  Suppose we join R ⋈C S
  A tuple of R that has no tuple of S with

which it joins is said to be dangling
  Similarly for a tuple of S

  Outerjoin preserves dangling tuples by
padding them NULL

75

Example: Outerjoin

R = (A B) S = (B C)
 1 2 2 3
 4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling

R OUTERJOIN S = A B C
 1 2 3
 4 5 NULL
 NULL 6 7

Summary 4

More things you should know:
  Duplicate Elimination
  Sorting
  Aggregation
  Grouping
  Outer Joins

76

Back to SQL

77

78

Outerjoins

  R OUTER JOIN S is the core of an
outerjoin expression

  It is modified by:
1.  Optional NATURAL in front of OUTER
2.  Optional ON <condition> after JOIN
3.  Optional LEFT, RIGHT, or FULL before

OUTER
  LEFT = pad dangling tuples of R only
  RIGHT = pad dangling tuples of S only
  FULL = pad both; this choice is the default

Only one
of these

79

Aggregations

  SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column

  Also, COUNT(*) counts the number of
tuples

80

Example: Aggregation

  From Sells(bar, beer, price), find the
average price of Odense Classic:
 SELECT AVG(price)
 FROM Sells
 WHERE beer = ’Od.Cl.’;

81

Eliminating Duplicates in an
Aggregation

  Use DISTINCT inside an aggregation
  Example: find the number of different

prices charged for Bud:
 SELECT COUNT(DISTINCT price)
 FROM Sells
 WHERE beer = ’Od.Cl.’;

82

NULL’s Ignored in Aggregation

  NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column

  But if there are no non-NULL values in a
column, then the result of the
aggregation is NULL
  Exception: COUNT of an empty set is 0

83

Example: Effect of NULL’s

SELECT count(*)
FROM Sells
WHERE beer = ’Od.Cl.’;

SELECT count(price)
FROM Sells
WHERE beer = ’Od.Cl.’;

The number of bars
that sell Odense Classic

The number of bars
that sell Odense Classic
at a known price

84

Grouping

  We may follow a SELECT-FROM-WHERE
expression by GROUP BY and a list of
attributes

  The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group

85

Example: Grouping

  From Sells(bar, beer, price), find the
average price for each beer:
 SELECT beer, AVG(price)
 FROM Sells
 GROUP BY beer;

beer AVG(price)
Od.Cl. 20
… …

86

Example: Grouping

  From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Odense Classic at the
bars they frequent:
 SELECT drinker, AVG(price)
 FROM Frequents, Sells
 WHERE beer = ’Od.Cl.’ AND
 Frequents.bar = Sells.bar
 GROUP BY drinker;

Compute all
drinker-bar-
price triples
for Odense Cl.

Then group
them by
drinker

87

Restriction on SELECT Lists
With Aggregation

  If any aggregation is used, then each
element of the SELECT list must be
either:

1.  Aggregated, or
2.  An attribute on the GROUP BY list

88

Illegal Query Example

  You might think you could find the bar
that sells Odense Cl. the cheapest by:
 SELECT bar, MIN(price)
 FROM Sells
 WHERE beer = ’Od.Cl.’;

  But this query is illegal in SQL

89

HAVING Clauses

  HAVING <condition> may follow a
GROUP BY clause

  If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated

90

Example: HAVING

  From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Albani Bryggerierne

91

Solution

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(bar) >= 3 OR

 beer IN (SELECT name
 FROM Beers
 WHERE manf = ’Albani’);

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Albani.

Beers manu-
factured by
Albani.

92

Requirements on HAVING
Conditions

  Anything goes in a subquery
  Outside subqueries, they may refer to

attributes only if they are either:
1.  A grouping attribute, or
2.  Aggregated

 (same condition as for SELECT clauses
with aggregation)

93

Database Modifications

  A modification command does not
return a result (as a query does), but
changes the database in some way

  Three kinds of modifications:
1.  Insert a tuple or tuples
2.  Delete a tuple or tuples
3.  Update the value(s) of an existing tuple

or tuples

94

Insertion

  To insert a single tuple:
 INSERT INTO <relation>
 VALUES (<list of values>);

  Example: add to Likes(drinker, beer)
the fact that Lars likes Odense Classic.
 INSERT INTO Likes
 VALUES(’Lars’, ’Od.Cl.’);

95

Specifying Attributes in INSERT

  We may add to the relation name a list of
attributes

  Two reasons to do so:
1.  We forget the standard order of attributes for

the relation
2.  We don’t have values for all attributes, and

we want the system to fill in missing
components with NULL or a default value

96

Example: Specifying Attributes

  Another way to add the fact that Lars
likes Odense Cl. to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)
VALUES(’Od.Cl.’, ’Lars’);

97

Adding Default Values

  In a CREATE TABLE statement, we can
follow an attribute by DEFAULT and a
value

  When an inserted tuple has no value for
that attribute, the default will be used

98

Example: Default Values

 CREATE TABLE Drinkers (
 name CHAR(30) PRIMARY KEY,
 addr CHAR(50)

 DEFAULT ’Vestergade’,
 phone CHAR(16)
);

99

Example: Default Values

 INSERT INTO Drinkers(name)
 VALUES(’Lars’);
Resulting tuple:

Lars Vestergade NULL
name address phone

100

Inserting Many Tuples

  We may insert the entire result of a
query into a relation, using the form:
 INSERT INTO <relation>
 (<subquery>);

101

Example: Insert a Subquery

  Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Lars “potential buddies”, i.e.,
those drinkers who frequent at least
one bar that Lars also frequents

102

Solution

INSERT INTO PotBuddies
(SELECT d2.drinker
 FROM Frequents d1, Frequents d2
 WHERE d1.drinker = ’Lars’ AND
 d2.drinker <> ’Lars’ AND
 d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Lars,
the second is for
someone else,
and the bars are
the same

The other
drinker

103

Deletion

  To delete tuples satisfying a condition
from some relation:
 DELETE FROM <relation>
 WHERE <condition>;

104

Example: Deletion

  Delete from Likes(drinker, beer) the fact
that Lars likes Odense Classic:
 DELETE FROM Likes
 WHERE drinker = ’Lars’ AND
 beer = ’Od.Cl.’;

105

Example: Delete all Tuples

  Make the relation Likes empty:

 DELETE FROM Likes;

  Note no WHERE clause needed.

106

Example: Delete Some Tuples

  Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b
WHERE EXISTS (
 SELECT name FROM Beers
 WHERE manf = b.manf AND
 name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b

107

Semantics of Deletion

  Suppose Albani makes only Odense
Classic and Eventyr

  Suppose we come to the tuple b for
Odense Classic first

  The subquery is nonempty, because of
the Eventyr tuple, so we delete Od.Cl.

  Now, when b is the tuple for Eventyr,
do we delete that tuple too?

108

Semantics of Deletion

  Answer: we do delete Eventyr as well
  The reason is that deletion proceeds in

two stages:
1.  Mark all tuples for which the WHERE

condition is satisfied
2.  Delete the marked tuples

109

Updates

  To change certain attributes in certain
tuples of a relation:
 UPDATE <relation>
 SET <list of attribute assignments>
 WHERE <condition on tuples>;

110

Example: Update

  Change drinker Lars’s phone number to
47 11 23 42:

 UPDATE Drinkers
 SET phone = ’47 11 23 42’
 WHERE name = ’Lars’;

111

Example: Update Several Tuples
  Make 30 the maximum price for beer:

 UPDATE Sells
 SET price = 30
 WHERE price > 30;

Summary 4

More things you should know:
  More joins

 OUTER JOIN, NATURAL JOIN

  Aggregation
  COUNT, SUM, AVG, MAX, MIN
  GROUP BY, HAVING

  Database updates
  INSERT, DELETE, UPDATE

112

