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Database Modifications 

  A modification  command does not 
return a result (as a query does), but 
changes the database in some way 

  Three kinds of modifications: 
1.  Insert  a tuple or tuples 
2.  Delete  a tuple or tuples 
3.  Update  the value(s) of an existing tuple 

or tuples 
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Insertion 

  To insert a single tuple: 
  INSERT INTO <relation> 
  VALUES ( <list of values> ); 

  Example: add to Likes(drinker, beer) 
the fact that Lars likes Odense Classic. 
  INSERT INTO Likes 
  VALUES(’Lars’, ’Od.Cl.’); 
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Specifying Attributes in INSERT 

  We may add to the relation name a list of 
attributes 

  Two reasons to do so: 
1.  We forget the standard order of attributes for 

the relation 
2.  We don’t have values for all attributes, and 

we want the system to fill in missing 
components with NULL or a default value 
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Example: Specifying Attributes 

  Another way to add the fact that Lars 
likes Odense Cl. to Likes(drinker, beer): 

INSERT INTO Likes(beer, drinker) 
VALUES(’Od.Cl.’, ’Lars’); 
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Adding Default Values 

  In a CREATE TABLE statement, we can 
follow an attribute by DEFAULT and a 
value 

  When an inserted tuple has no value for 
that attribute, the default will be used 
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Example: Default Values 

 CREATE TABLE Drinkers ( 
  name CHAR(30) PRIMARY KEY, 
  addr CHAR(50) 

   DEFAULT ’Vestergade’, 
  phone CHAR(16) 
 ); 
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Example: Default Values 

  INSERT INTO Drinkers(name) 
  VALUES(’Lars’); 
Resulting tuple: 

Lars  Vestergade   NULL 
name  address         phone 
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Inserting Many Tuples 

  We may insert the entire result of a 
query into a relation, using the form: 
  INSERT INTO <relation> 
  ( <subquery> ); 
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Example: Insert a Subquery 

  Using Frequents(drinker, bar), enter 
into the new relation PotBuddies(name) 
all of Lars “potential buddies”, i.e., 
those drinkers who frequent at least 
one bar that Lars also frequents 
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Solution 

INSERT INTO PotBuddies 
(SELECT d2.drinker 
 FROM Frequents d1, Frequents d2 
 WHERE d1.drinker = ’Lars’ AND 
 d2.drinker <> ’Lars’ AND 
 d1.bar = d2.bar 

); 

Pairs of Drinker 
tuples where the 
first is for Lars, 
the second is for 
someone else, 
and the bars are 
the same 

The other 
drinker 
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Deletion 

  To delete tuples satisfying a condition 
from some relation: 
  DELETE FROM <relation> 
  WHERE <condition>; 



12 

Example: Deletion 

  Delete from Likes(drinker, beer) the fact 
that Lars likes Odense Classic: 
  DELETE FROM Likes 
  WHERE drinker = ’Lars’ AND 
   beer = ’Od.Cl.’; 
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Example: Delete all Tuples 

  Make the relation Likes empty: 

  DELETE FROM Likes; 

  Note no WHERE clause needed. 
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Example: Delete Some Tuples 

  Delete from Beers(name, manf) all 
beers for which there is another beer by 
the same manufacturer. 

DELETE FROM Beers b 
WHERE EXISTS ( 
 SELECT name FROM Beers 
 WHERE manf = b.manf AND 
  name <> b.name); 

Beers with the same 
manufacturer and 
a different name 
from the name of 
the beer represented 
by tuple b 
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Semantics of Deletion 

  Suppose Albani makes only Odense 
Classic and Eventyr 

  Suppose we come to the tuple b  for 
Odense Classic first 

  The subquery is nonempty, because of 
the Eventyr tuple, so we delete Od.Cl. 

  Now, when b  is the tuple for Eventyr, 
do we delete that tuple too? 
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Semantics of Deletion 

  Answer: we do delete Eventyr as well 
  The reason is that deletion proceeds in 

two stages: 
1.  Mark all tuples for which the WHERE 

condition is satisfied 
2.  Delete the marked tuples 
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Updates 

  To change certain attributes in certain 
tuples of a relation: 
  UPDATE <relation> 
  SET <list of attribute assignments> 
  WHERE <condition on tuples>; 
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Example: Update 

  Change drinker Lars’s phone number to 
47 11 23 42: 

  UPDATE Drinkers 
  SET phone = ’47 11 23 42’ 
  WHERE name = ’Lars’; 
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Example: Update Several Tuples 
  Make 30 the maximum price for beer: 

  UPDATE Sells 
  SET price = 30 
  WHERE price > 30; 



Summary 4 

More things you should know: 
  More joins 

 OUTER JOIN, NATURAL JOIN 

  Aggregation 
  COUNT, SUM, AVG, MAX, MIN 
  GROUP BY, HAVING 

  Database updates 
  INSERT, DELETE, UPDATE 
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Functional Dependencies 
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Functional Dependencies 

  X →Y  is an assertion about a relation R  that 
whenever two tuples of R  agree on all the 
attributes of X, then they must also agree on 
all attributes in set Y 
  Say “X → Y  holds in R” 
  Convention: …, X, Y, Z  represent sets of 

attributes; A, B, C,… represent single attributes 
  Convention: no set formers in sets of attributes, 

just ABC, rather than {A,B,C } 
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Splitting Right Sides of FD’s 

  X→A1A2…An  holds for R  exactly when 
each of X→A1, X→A2,…, X→An  hold for R 

  Example: A→BC  is equivalent to A→B  
and A→C 

  There is no splitting rule for left sides 
  We’ll generally express FD’s with 

singleton right sides 
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Example: FD’s 

Drinkers(name, addr, beersLiked, manf, 
favBeer) 

  Reasonable FD’s to assert: 
1.  name → addr favBeer 

  Note: this FD is the same as name → addr 
and name → favBeer 

2.  beersLiked → manf 
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Example: Possible Data 

name   addr      beersLiked    manf  favBeer 
Peter   Campusvej   Odense Cl.    Albani  Erdinger W. 
Peter   Campusvej   Erdinger W.    Erdinger  Erdinger W. 
Lars   NULL    Odense Cl.    Albani  Odense Cl. 

Because name → addr Because name → favBeer 

Because beersLiked → manf 
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Keys of Relations 

  K  is a superkey  for relation R  if       
K  functionally determines all of R 

  K  is a key  for R  if K  is a superkey, 
but no proper subset of K  is a 
superkey 
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Example: Superkey 

Drinkers(name, addr, beersLiked, manf,
 favBeer) 

  {name, beersLiked} is a superkey 
because together these attributes 
determine all the other attributes 
  name → addr favBeer 
  beersLiked → manf 
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Example: Key 

  {name, beersLiked} is a key because 
neither {name} nor {beersLiked} is a 
superkey 
  name doesn’t → manf 
  beersLiked doesn’t → addr 

  There are no other keys, but lots of 
superkeys 
  Any superset of {name, beersLiked} 
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Where Do Keys Come From? 

1.  Just assert a key K 
  The only FD’s are K → A  for all 

attributes A 
2.  Assert FD’s and deduce the keys by 

systematic exploration 
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More FD’s From “Physics” 

  Example:        
“no two courses can meet in the same 
room at the same time” tells us:  
  hour room → course 
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Inferring FD’s 

  We are given FD’s X1 → A1, X2 → A2,…, 
Xn → An , and we want to know whether 
an FD Y → B  must hold in any relation 
that satisfies the given FD’s 
  Example:          

If A → B  and B → C  hold, surely A → C  
holds, even if we don’t say so 

  Important for design of good relation 
schemas 
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Inference Test 

  To test if Y → B, start by assuming two 
tuples agree in all attributes of Y 

 Y 
0000000. . . 0 
00000?? . . . ? 
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Inference Test 

  Use the given FD’s to infer that these 
tuples must also agree in certain other 
attributes 
  If B is one of these attributes, then Y → B  

is true 
 Otherwise, the two tuples, with any forced 

equalities, form a two-tuple relation that 
proves Y -> B  does not follow from the 
given FD’s 
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Closure Test 

  An easier way to test is to compute the 
closure  of Y, denoted Y + 

  Basis: Y + = Y 
  Induction: Look for an FD’s left side X 

that is a subset of the current Y + 
  If the FD is X → A, add A to Y + 
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Y+ 
new Y+ 

X A 
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Finding All Implied FD’s 

  Motivation: “normalization,” the process 
where we break a relation schema into 
two or more schemas 

  Example: ABCD  with FD’s AB → C,         
C → D, and D → A 
  Decompose into ABC, AD.  What FD’s hold in 

ABC ? 
  Not only AB → C, but also C → A ! 
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Why? 

a1b1c ABC 

ABCD 

a2b2c 

Thus, tuples in the projection 
with equal C’s have equal A’s 
C → A 

a1b1cd1 a2b2cd2 

comes 
from 

d1=d2 because 
C → D 

a1=a2 because 
D → A 
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Basic Idea 

1.  Start with given FD’s and find all 
nontrivial  FD’s that follow from the 
given FD’s 
  Nontrivial = right side not contained in 

the left 

2.  Restrict to those FD’s that involve only 
attributes of the projected schema 
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Simple, Exponential Algorithm 

1.  For each set of attributes X, compute X + 
2.  Add X → A  for all A in X + - X 
3.  However, drop XY → A  whenever we 

discover X → A 
  Because XY → A  follows from X → A in any 

projection 

4.  Finally, use only FD’s involving projected 
attributes 
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A Few Tricks 

  No need to compute the closure of the 
empty set or of the set of all attributes 

  If we find X + = all attributes, so is the 
closure of any superset of X 
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Example: Projecting FD’s 

  ABC  with FD’s A → B  and B → C  
Project onto AC: 
  A +=ABC ; yields A → B, A → C 

 We do not need to compute AB + or AC + 

  B +=BC ; yields B → C 
  C +=C ; yields nothing 
  BC +=BC ; yields nothing 
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Example: Projecting FD’s 

  Resulting FD’s: A → B, A → C, and       
B → C 

  Projection onto AC: A → C 
 Only FD that involves a subset of {A,C } 
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A Geometric View of FD’s 

  Imagine the set of all instances  of a 
particular relation 

  That is, all finite sets of tuples that have 
the proper number of components 

  Each instance is a point in this space 
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Example: R(A,B) 

{(1,2), (3,4)} 

{} 

{(1,2), (3,4), (1,3)} 

{(5,1)} 
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An FD is a Subset of Instances 

  For each FD X → A  there is a subset 
of all instances that satisfy the FD 

  We can represent an FD by a region in 
the space 

  Trivial FD = an FD that is represented 
by the entire space 
  Example: A → A 
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Example: A → B for R(A,B) 

{(1,2), (3,4)} 

{} 

{(1,2), (3,4), (1,3)} 

{(5,1)} 
A → B 
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Representing Sets of FD’s 

  If each FD is a set of relation instances, 
then a collection of FD’s corresponds to 
the intersection of those sets 
  Intersection = all instances that satisfy all 

of the FD’s 
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Example 

A → B 
B → C 

CD → A 

Instances satisfying 
A → B, B → C, and 
CD → A 
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Implication of FD’s 

  If an FD Y → B  follows from FD’s       
X1 → A1, …, Xn → An , then the region in 
the space of instances for Y → B  must 
include the intersection of the regions 
for the FD’s Xi  → Ai  
  That is, every instance satisfying all the 

FD’s Xi  → Ai  surely satisfies Y → B 
  But an instance could satisfy Y → B, yet 

not be in this intersection 
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Example 

A → B B → C A → C 
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Relational Schema Design 

  Goal of relational schema design is to 
avoid anomalies and redundancy 
  Update anomaly: one occurrence of a fact 

is changed, but not all occurrences 
  Deletion anomaly: valid fact is lost when a 

tuple is deleted 
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Example of Bad Design 

Drinkers(name, addr, beersLiked, manf, favBeer) 

name   addr   beersLiked  manf  favBeer 
Peter   Campusvej  Odense Cl.  Alb.  Erdinger W. 
Peter   ???   Erdinger W.  Erd.  ??? 
Lars   NULL   Odense Cl.  ???  Odense Cl. 

Data is redundant, because each of the ???’s can be figured 
out by using the FD’s name → addr favBeer and 
beersLiked → manf 
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This Bad Design Also 
Exhibits Anomalies 

Drinkers(name, addr, beersLiked, manf, favBeer) 

name   addr   beersLiked  manf  favBeer 
Peter   Campusvej  Odense Cl.  Alb.  Erdinger W. 
Peter   Campusvej  Erdinger W.  Erd.  Erdinger W. 
Lars   NULL   Odense Cl.  Alb.  Odense Cl. 

•  Update anomaly: if Peter moves to Niels Bohrs Alle, 
  will we remember to change each of his tuples? 
•  Deletion anomaly: If nobody likes Odense Classic, we lose 
  track of the fact that Albani manufactures Odense Classic 
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Boyce-Codd Normal Form  

  We say a relation R  is in BCNF  if 
whenever X → Y  is a nontrivial FD that 
holds in R, X  is a superkey 
  Remember: nontrivial  means Y  is not 

contained in X 
  Remember, a superkey  is any superset of 

a key (not necessarily a proper superset) 
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Example 

Drinkers(name, addr, beersLiked, manf, favBeer) 
FD’s: name → addr favBeer,   beersLiked → manf 

  Only key is {name, beersLiked} 
  In each FD, the left side is not  a 

superkey 
  Any one of these FD’s shows Drinkers  

is not in BCNF 
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Another Example 

Beers(name, manf, manfAddr) 
FD’s: name → manf,   manf → manfAddr 
  Only key is {name} 
  Name → manf does not violate BCNF, but 

manf → manfAddr does 
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Decomposition into BCNF 

  Given: relation R  with FD’s F 
  Look among the given FD’s for a BCNF 

violation X → Y 
  If any FD following from F  violates BCNF, 

then there will surely be an FD in F  itself 
that violates BCNF 

  Compute X + 
  Not all attributes, or else X is a superkey 
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Decompose R  Using X → Y 

  Replace R  by relations with schemas: 
1.   R1 = X + 
2.   R2 = R – (X + – X ) 

  Project  given FD’s F  onto the two 
new relations 
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Decomposition Picture 

R-X + X X +-X 

R2 

R1 

R 
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Example: BCNF Decomposition 

Drinkers(name, addr, beersLiked, manf, favBeer) 
F  =  name → addr,  name → favBeers

 beersLiked → manf 
  Pick BCNF violation name → addr 
  Close the left side:    

 {name}+ = {name, addr, favBeer} 
  Decomposed relations: 

1.  Drinkers1(name, addr, favBeer) 
2.  Drinkers2(name, beersLiked, manf) 
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Example: BCNF Decomposition 

  We are not done; we need to check 
Drinkers1 and Drinkers2 for BCNF 

  Projecting FD’s is easy here 
  For Drinkers1(name, addr, favBeer), 

relevant FD’s are name → addr and   
name → favBeer 
  Thus, {name} is the only key and Drinkers1 

is in BCNF 
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Example: BCNF Decomposition 

  For Drinkers2(name, beersLiked, manf), 
the only FD is beersLiked → manf, and 
the only key is {name, beersLiked} 
  Violation of BCNF 

  beersLiked+ = {beersLiked, manf}, so 
we decompose Drinkers2  into: 

1.  Drinkers3(beersLiked, manf) 
2.  Drinkers4(name, beersLiked) 
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Example: BCNF Decomposition 
  The resulting decomposition of Drinkers: 

1.  Drinkers1(name, addr, favBeer) 
2.  Drinkers3(beersLiked, manf) 
3.  Drinkers4(name, beersLiked) 
  Notice: Drinkers1  tells us about drinkers, 

Drinkers3  tells us about beers, and Drinkers4  
tells us the relationship between drinkers and 
the beers they like 

  Compare with running example: 
1.  Drinkers(name, addr, phone) 
2.  Beers(name, manf) 
3.  Likes(drinker,beer) 
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Third Normal Form – Motivation 

  There is one structure of FD’s that 
causes trouble when we decompose 

  AB → C  and C → B 
  Example:        

A = street address, B = city, C = post code 

  There are two keys, {A,B } and {A,C } 
  C → B  is a BCNF violation, so we must 

decompose into AC, BC  
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We Cannot Enforce FD’s 

  The problem is that if we use AC  and 
BC  as our database schema, we cannot 
enforce the FD AB → C  by checking 
FD’s in these decomposed relations 

  Example with A = street, B = city, and 
C = post code on the next slide 
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An Unenforceable FD 

   street    post 
Campusvej   5230 
Vestergade   5000 

   city     post 
Odense  5230 
Odense  5000 

Join tuples with equal post codes 

   street     city     post 
Campusvej  Odense  5230 
Vestergade  Odense  5000 

No FD’s were violated in the decomposed relations and 
FD street city → post holds for the database as a whole 
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An Unenforceable FD 

   street    post 
Hjallesevej   5230 
Hjallesevej   5000 

   city     post 
Odense  5230 
Odense  5000 

Join tuples with equal post codes 

   street     city     post 
Hjallesevej  Odense  5230 
Hjallesevej  Odense  5000 

Although no FD’s were violated in the decomposed relations, 
FD street city → post is violated by the database as a whole 
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3NF Let’s Us Avoid This Problem 

  3rd Normal Form (3NF) modifies the 
BCNF condition so we do not have to 
decompose in this problem situation 

  An attribute is prime  if it is a member of 
any key 

  X → A violates 3NF if and only if X  is 
not a superkey, and also A  is not prime 
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Example: 3NF 

  In our problem situation with FD’s      
AB → C  and C → B, we have keys AB  
and AC 

  Thus A, B, and C  are each prime 
  Although C → B  violates BCNF, it does 

not violate 3NF 
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What 3NF and BCNF Give You 

  There are two important properties of a 
decomposition: 

1.  Lossless Join: it should be possible to project 
the original relations onto the decomposed 
schema, and then reconstruct the original 

2.  Dependency Preservation: it should be 
possible to check in the projected relations 
whether all the given FD’s are satisfied 
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3NF and BCNF – Continued 

  We can get (1) with a BCNF decomposition 
  We can get both (1) and (2) with a 3NF 

decomposition 
  But we can’t always get (1) and (2) with a 

BCNF decomposition 
  street-city-post is an example 


