
1 

SQL vs PostgreSQL 



Checks in PostgreSQL 

  Tuple-based checks may only refer to 
attributes of that relation 

  Attribute-based checks may only refer 
to the name of the attribute 

  No subqueries allowed! 
  Use triggers for more elaborate checks 

2 



Assertions in PostgreSQL 

  Assertions are not implemented! 
  Use attribute-based or tuple-based 

checks where possible 
  Use triggers for more elaborate checks 

3 



Triggers in PostgreSQL 

  PostgreSQL does not allow events for 
only certain columns 

  Rows and tables are called OLD and 
NEW (no REFERENCING ... AS) 

  PostgreSQL only allows to execute a 
function as the action statement 

4 



The event – 
only changes 
to prices 

Updates let us 
talk about old 
and new tuples 

We need to consider 
each price change 

Condition: 
a raise in 
price > 10 

When the price change 
is great enough, add 
the bar to RipoffBars 

5 

The Trigger – SQL 

CREATE TRIGGER PriceTrig 
 AFTER UPDATE OF price ON Sells 
 REFERENCING 
  OLD ROW AS ooo 
  NEW ROW AS nnn 
 FOR EACH ROW 
 WHEN (nnn.price > ooo.price + 10) 
 INSERT INTO RipoffBars 
  VALUES (nnn.bar); 



The Trigger – PostgreSQL 
The event – 
any changes 
to Sells 

Updates have 
fixed references 
OLD and NEW 

We need to consider 
each price change 

Conditions 
moved into 
function 

Always check 
for a ripoff 
using a function 

6 

CREATE TRIGGER PriceTrigger 
 AFTER UPDATE ON Sells 

 FOR EACH ROW 

 EXECUTE PROCEDURE 
    checkRipoff(); 



Conditions 
moved into 
function 

When the price change 
is great enough, add 
the bar to RipoffBars 

The Function – PostgreSQL 

CREATE FUNCTION CheckRipoff() 
  RETURNS TRIGGER AS $$BEGIN 
    IF NEW.price > OLD.price+10 THEN 
      INSERT INTO RipoffBars 
      VALUES (NEW.bar); 
    END IF; 
    RETURN NEW; 
  END$$ LANGUAGE plpgsql; 

7 

Updates have 
fixed references 
OLD and NEW 



Functions in PostgreSQL 
  CREATE FUNCTION name([arguments]) 

RETURNS [TRIGGER type] AS               
$$function definition$$ LANGUAGE lang; 

  Example:         
CREATE FUNCTION add(int,int)   
RETURNS int AS $$select $1+$2;$$ 
LANGUAGE SQL; 

  CREATE FUNCTION add(i1 int,i2 int) 
RETURNS int AS $$BEGIN RETURN   
i1 + i2; END;$$ LANGUAGE plpgsql; 

8 



9 

Example: Attribute-Based Check 

CREATE TABLE Sells ( 
 bar  CHAR(20), 
 beer  CHAR(20)  CHECK (beer IN 

   (SELECT name FROM Beers)), 
 price  INT CHECK (price <= 100) 
); 



10 

Example: Attribute-Based Check 
CREATE TABLE Sells (       
bar  CHAR(20),   beer CHAR(20),   
price  INT CHECK (price <= 100)); 

CREATE FUNCTION CheckBeerName() RETURNS 
TRIGGER AS $$BEGIN IF NOT NEW.beer IN 
(SELECT name FROM Beers) THEN RAISE 
EXCEPTION ‘no such beer in Beers’;   
END IF; RETURN NEW; END$$        
LANGUAGE plpgsql; 

CREATE TRIGGER BeerName AFTER UPDATE OR 
INSERT ON Sells FOR EACH ROW      
EXECUTE PROCEDURE CheckBeerName(); 



11 

Example: Assertion 

  In Drinkers(name, addr, phone) and 
Bars(name, addr, license), there cannot be 
more bars than drinkers 

CREATE ASSERTION LessBars CHECK ( 
 (SELECT COUNT(*) FROM Bars) <= 

 (SELECT COUNT(*) FROM Drinkers) 
); 



12 

Example: Assertion 
CREATE FUNCTION CheckNumbers()   
RETURNS TRIGGER AS $$BEGIN IF 
(SELECT COUNT(*) FROM Bars) > 
(SELECT COUNT(*) FROM Drinkers)  
THEN RAISE EXCEPTION ‘2manybars’; 
END IF; RETURN NEW; END$$     
LANGUAGE plpgsql; 

CREATE TRIGGER NumberBars AFTER 
INSERT ON Bars EXECUTE PROCEDURE 
CheckNumbers(); 

CREATE TRIGGER NumberDrinkers AFTER 
DELETE ON Drinkers EXECUTE PROCEDURE 
CheckNumbers(); 



13 

Views 



14 

Views 

  A view  is a relation defined in terms 
of stored tables (called base tables ) 
and other views 

  Two kinds: 
1.  Virtual  = not stored in the database; just 

a query for constructing the relation 
2. Materialized  = actually constructed and 

stored 



15 

Declaring Views 

  Declare by: 
 CREATE [MATERIALIZED] VIEW 

 <name> AS <query>; 
  Default is virtual 
  PostgreSQL has no direct support for 

materialized views 



16 

Materialized Views 

  Problem: each time a base table 
changes, the materialized view may 
change 
  Cannot afford to recompute the view with 

each change 

  Solution: Periodic reconstruction of the 
materialized view, which is otherwise 
“out of date” 



17 

Example: A Data Warehouse 

  Bilka stores every sale at every store in 
a database 

  Overnight, the sales for the day are 
used to update a data warehouse  = 
materialized views of the sales 

  The warehouse is used by analysts to 
predict trends and move goods to 
where they are selling best 



18 

Virtual Views 

  only a query is stored 
  no need to change the view when the 

base table changes 
  expensive when accessing the view often 



19 

Example: View Definition 

  CanDrink(drinker, beer) is a view “containing” 
the drinker-beer pairs such that the drinker 
frequents at least one bar that serves the beer: 

  CREATE VIEW CanDrink AS 
  SELECT drinker, beer 
  FROM Frequents, Sells 

  WHERE Frequents.bar = Sells.bar; 



20 

Example: View Definition 

  CanDrink(drinker, beer) is a view “containing”   
the drinker-beer pairs such that the drinker 
frequents at least one bar that serves the beer: 

  CREATE VIEW CanDrink AS 
  SELECT drinker, beer 
  FROM Frequents NATURAL JOIN Sells; 



21 

Example: View Definition 

  CanDrink(drinker, beer) is a view “containing”   
the drinker-beer pairs such that the drinker 
frequents at least one bar that serves the beer: 

 CREATE TABLE CanDrink 
     (drinker TEXT, beer TEXT); 
 CREATE RULE "_RETURN" AS ON SELECT 

     TO CanDrink DO INSTEAD 
     SELECT drinker, beer 
     FROM Frequents NATURAL JOIN Sells; 



22 

Example: Accessing a View 

  Query a view as if it were a base table 
  Example query:      

 SELECT beer FROM CanDrink
 WHERE drinker = ’Peter’; 

  The rule “_RETURN” will rewrite this to: 
SELECT beer FROM (SELECT 
drinker, beer FROM Frequents 
NATURAL JOIN Sells) AS CanDrink 
where drinker = ’Peter’; 



23 

Modifying Virtual Views 

  Generally, it is impossible to modify a 
virtual view, because it does not exist 

  But a rule lets us interpret view 
modifications in a way that makes sense 

  Example: the view Synergy has (drinker, 
beer, bar) triples such that the bar serves 
the beer, the drinker frequents the bar 
and likes the beer 



Natural join of Likes, 
Sells, and Frequents 

Pick one copy of 
each attribute 

24 

Example: The View 

CREATE VIEW Synergy AS 
 SELECT Likes.drinker, Likes.beer, Sells.bar 
 FROM Likes, Sells, Frequents 
 WHERE Likes.drinker = Frequents.drinker 
  AND Likes.beer = Sells.beer 
  AND Sells.bar = Frequents.bar; 



25 

Example: The View 

CREATE VIEW Synergy AS 
 SELECT drinker, beer, bar 
 FROM Likes NATURAL JOIN Sells

 NATURAL JOIN Frequents; 



26 

Interpreting a View Insertion 

  We cannot insert into Synergy – it is a 
virtual view 

  But we can use a rule to turn a (drinker, 
beer, bar) triple into three insertions of 
projected pairs, one for each of Likes, 
Sells, and Frequents 
  Sells.price will have to be NULL 



27 

The Rule 

CREATE RULE ViewRule AS       
ON INSERT TO Synergy       
DO INSTEAD (      

 INSERT INTO Likes VALUES     
 (NEW.drinker, NEW.beer);    
 INSERT INTO Sells(bar, beer) VALUES 
 (NEW.bar, NEW.beer);     
 INSERT INTO Frequents VALUES  
 (NEW.drinker, NEW.bar); 

   ); 



28 

Example: Assertion 
CREATE FUNCTION CheckNumbers()   
RETURNS TRIGGER AS $$BEGIN IF 
(SELECT COUNT(*) FROM Bars) > 
(SELECT COUNT(*) FROM Drinkers)  
THEN RAISE EXCEPTION ‘2manybars’; 
END IF; RETURN NEW; END$$     
LANGUAGE plpgsql; 

CREATE TRIGGER NumberBars AFTER 
INSERT ON Bars EXECUTE PROCEDURE 
CheckNumbers(); 

CREATE TRIGGER NumberDrinkers AFTER 
DELETE ON Drinkers EXECUTE PROCEDURE 
CheckNumbers(); 



29 

Example: Assertion 
CREATE FUNCTION CheckNumbers()   
RETURNS TRIGGER AS $$BEGIN IF  
(SELECT COUNT(*) FROM Bars) >  
(SELECT COUNT(*) FROM Drinkers)   
THEN RETURN NULL;       
END IF; RETURN NEW; END$$    
LANGUAGE plpgsql; 

CREATE TRIGGER NumberBars AFTER  
INSERT ON Bars EXECUTE PROCEDURE 
CheckNumbers(); 

CREATE TRIGGER NumberDrinkers AFTER 
DELETE ON Drinkers EXECUTE PROCEDURE 
CheckNumbers(); 



30 

Example: Assertion 
CREATE RULE CheckBars AS     
ON INSERT TO Bars        
WHEN (SELECT COUNT(*) FROM Bars) >= 
(SELECT COUNT(*) FROM Drinkers)   
DO INSTEAD NOTHING; 

CREATE RULE CheckDrinkers AS    
ON DELETE TO Drinkers        
WHEN (SELECT COUNT(*) FROM Bars) >= 
(SELECT COUNT(*) FROM Drinkers)   
DO INSTEAD NOTHING; 



31 

Transactions 



32 

Why Transactions? 

  Database systems are normally being 
accessed by many users or processes at 
the same time 
  Both queries and modifications 

  Unlike operating systems, which 
support  interaction of processes, a 
DMBS needs to keep processes from 
troublesome interactions 



33 

Example: Bad Interaction 

  You and your domestic partner each 
take $100 from different ATM’s at about 
the same time 
  The DBMS better make sure one account 

deduction does not get lost 

  Compare: An OS allows two people to 
edit a document at the same time;  If 
both write, one’s changes get lost 



34 

Transactions 

  Transaction  = process involving 
database queries and/or modification 

  Normally with some strong properties 
regarding concurrency 

  Formed in SQL from single statements 
or explicit programmer control 



35 

ACID Transactions 

  ACID transactions  are: 
  Atomic: Whole transaction or none is done 
  Consistent: Database constraints preserved 
  Isolated: It appears to the user as if only one 

process executes at a time 
  Durable: Effects of a process survive a crash 

  Optional: weaker forms of transactions are 
often supported as well 



36 

COMMIT 

  The SQL statement COMMIT causes a 
transaction to complete 
  database modifications are now permanent 

in the database 



37 

ROLLBACK 

  The SQL statement ROLLBACK also 
causes the transaction to end, but by 
aborting 
  No effects on the database 

  Failures like division by 0 or a 
constraint violation can also cause 
rollback, even if the programmer does 
not request it 



38 

Example: Interacting Processes 

  Assume the usual Sells(bar,beer,price) 
relation, and suppose that C.Ch. sells 
only Od.Cl. for 20 and Er.We. for 30 

  Peter is querying Sells for the highest 
and lowest price C.Ch. Charges 

  C.Ch. decides to stop selling Od.Cl. And 
Er.We., but to sell only Tuborg at 35 



39 

Peter’s Program 

  Peter executes the following two SQL 
statements called (min) and (max) to 
help us remember what they do 

(max)  SELECT MAX(price) FROM Sells 
   WHERE bar = ’C.Ch.’; 

(min)  SELECT MIN(price) FROM Sells 
   WHERE bar = ’C.Ch.’; 



40 

Cafe Chino’s Program 

  At about the same time, C.Ch. executes the 
following steps: (del) and (ins) 

(del)    DELETE FROM Sells 
    WHERE bar = ’C.Ch.’; 

(ins)    INSERT INTO Sells 
    VALUES(’C.Ch.’, ’Tuborg’, 35); 



41 

Interleaving of Statements 

  Although (max) must come before 
(min), and (del) must come before 
(ins), there are no other constraints on 
the order of these statements, unless 
we group Peter’s and/or Cafe Chino’s 
statements into transactions 



42 

Example: Strange Interleaving 

  Suppose the steps execute in the order 
(max)(del)(ins)(min) 

C.Ch. Prices: 
Statement: 
Result: 

  Peter sees MAX < MIN! 

{20,30} 

(del) (ins) 

{35} 

(min) 

 35 

 {20, 30} 

(max) 

30 



43 

Fixing the Problem 
  If we group Peter’s statements (max)

(min) into one transaction, then he 
cannot see this inconsistency 

  He sees C.Ch.’s prices at some fixed 
time 
  Either before or after they changes prices, 

or in the middle, but the MAX and MIN are 
computed from the same prices 



44 

Another Problem: Rollback 

  Suppose C.Ch. executes (del)(ins), not 
as a transaction, but after executing 
these statements, thinks better of it and 
issues a ROLLBACK statement 

  If Peter executes his statements after 
(ins) but before the rollback, he sees a 
value, 35, that never existed in the 
database 



45 

Solution 

  If Joe executes (del)(ins) as a 
transaction, its effect cannot be seen by 
others until the transaction executes 
COMMIT 
  If the transaction executes ROLLBACK 

instead, then its effects can never  be seen 



46 

Isolation Levels 

  SQL defines four isolation levels  = 
choices about what interactions are 
allowed by transactions that execute at 
about the same time 

  Only one level (“serializable”) = ACID 
transactions 

  Each DBMS implements transactions in 
its own way 



47 

Choosing the Isolation Level 

  Within a transaction, we can say: 
SET TRANSACTION ISOLATION LEVEL X 

 where X  = 
1.  SERIALIZABLE 
2.  REPEATABLE READ 
3.  READ COMMITTED 
4.  READ UNCOMMITTED 



48 

Serializable Transactions 

  If Peter = (max)(min) and C.Ch. = 
(del)(ins) are each transactions, and 
Peter runs with isolation level 
SERIALIZABLE, then he will see the 
database either before or after C.Ch. 
runs, but not in the middle 



49 

Isolation Level Is Personal Choice 

  Your choice, e.g., run serializable, 
affects only how you  see the database, 
not how others see it 

  Example: If Cafe Chino Runs 
serializable, but Peter does not, then 
Peter might see no prices for Cafe Chino 
  i.e., it looks to Peter as if he ran in the 

middle of Cafe Chino’s transaction 



50 

Read-Commited Transactions 

  If Peter runs with isolation level READ 
COMMITTED, then he can see only 
committed data, but not necessarily the 
same data each time. 

  Example: Under READ COMMITTED, the 
interleaving (max)(del)(ins)(min) is 
allowed, as long as Cafe Chino commits 
  Peter sees MAX < MIN 



51 

Repeatable-Read Transactions 

  Requirement is like read-committed, 
plus: if data is read again, then 
everything seen the first time will be 
seen the second time 
  But the second and subsequent reads may 

see more  tuples as well 



52 

Example: Repeatable Read 

  Suppose Peter runs under REPEATABLE 
READ, and the order of execution is 
(max)(del)(ins)(min) 
  (max) sees prices 20 and 30 
  (min) can see 35, but must also see 20 and 

30, because they were seen on the earlier 
read by (max) 



53 

Read Uncommitted 

  A transaction running under READ 
UNCOMMITTED can see data in the 
database, even if it was written by a 
transaction that has not committed (and 
may never) 

  Example: If Peter runs under READ 
UNCOMMITTED, he could see a price 35 
even if Cafe Chino later aborts 



54 

Indexes 



55 

Indexes 

  Index  = data structure used to speed 
access to tuples of a relation, given 
values of one or more attributes 

  Could be a hash table, but in a DBMS it 
is always a balanced search tree with 
giant nodes (a full disk page) called a   
B-tree 



56 

Declaring Indexes 

  No standard! 
  Typical syntax (also PostgreSQL): 
CREATE INDEX BeerInd ON 
Beers(manf); 

CREATE INDEX SellInd ON 
Sells(bar, beer); 



57 

Using Indexes 

  Given a value v, the index takes us to 
only those tuples that have v  in the 
attribute(s) of the index 

  Example: use BeerInd and SellInd to 
find the prices of beers manufactured 
by Albani and sold by Cafe Chino    
(next slide) 



58 

Using Indexes 

SELECT price FROM Beers, Sells 
WHERE manf = ’Albani’ AND 
 Beers.name = Sells.beer AND 

 bar = ’C.Ch.’; 
1.  Use BeerInd to get all the beers made 

by Albani 
2.  Then use SellInd to get prices of those 

beers, with bar = ’C.Ch.’ 



59 

Database Tuning 

  A major problem in making a database 
run fast is deciding which indexes to 
create 

  Pro: An index speeds up queries that can 
use it 

  Con: An index slows down all 
modifications on its relation because the 
index must be modified too 



60 

Example: Tuning 

  Suppose the only things we did with 
our beers database was: 

1.  Insert new facts into a relation (10%) 
2.  Find the price of a given beer at a given 

bar (90%) 

  Then SellInd on Sells(bar, beer) would 
be wonderful, but BeerInd on 
Beers(manf) would be harmful 



61 

Tuning Advisors 

  A major research area 
  Because hand tuning is so hard 

  An advisor gets a query load, e.g.: 
1.  Choose random queries from the history 

of queries run on the database, or 
2.  Designer provides a sample workload 



62 

Tuning Advisors 

  The advisor generates candidate 
indexes and evaluates each on the 
workload 
  Feed each sample query to the query 

optimizer, which assumes only this one 
index is available 

 Measure the improvement/degradation in 
the average running time of the queries 



Summary 7 

More things you should know: 
  Constraints, Cascading, Assertions 
  Triggers, Event-Condition-Action 
  Triggers in PostgreSQL, Functions 
  Views, Rules 
  Transactions 

63 



64 

Real SQL Programming 



65 

SQL in Real Programs 

  We have seen only how SQL is used at 
the generic query interface – an 
environment where we sit at a terminal 
and ask queries of a database 

  Reality is almost always different: 
conventional programs interacting with 
SQL 



66 

Options 

1.  Code in a specialized language is 
stored in the database itself (e.g., 
PSM, PL/SQL) 

2.  SQL statements are embedded in a 
host language (e.g., C) 

3.  Connection tools are used to allow a 
conventional language to access a 
database (e.g., CLI, JDBC, PHP/DB) 



67 

Stored Procedures 

  PSM, or “persistent stored modules,” 
allows us to store procedures as 
database schema elements 

  PSM =  a mixture of conventional 
statements (if, while, etc.) and SQL 

  Lets us do things we cannot do in SQL 
alone 



68 

Basic PSM Form 

CREATE PROCEDURE <name> ( 
  <parameter list> ) 
 <optional local declarations> 
 <body>; 

  Function alternative: 
CREATE FUNCTION <name> ( 
  <parameter list> ) RETURNS <type> 



69 

Parameters in PSM 

  Unlike the usual name-type pairs in 
languages like C, PSM uses mode-
name-type triples, where the mode  can 
be: 
  IN = procedure uses value, does not 

change value 
 OUT = procedure changes, does not use 
  INOUT = both 



70 

Example: Stored Procedure 

  Let’s write a procedure that takes two 
arguments b  and p, and adds a tuple 
to Sells(bar, beer, price) that has bar = 
’Cafe Chino’, beer = b, and price = p 
  Used by Cafe Chino to add to their menu 

more easily 



Parameters are both 
read-only, not changed 

The body --- 
a single insertion 

71 

The Procedure 

CREATE PROCEDURE ChinoMenu ( 
 IN  b  CHAR(20), 
 IN p  REAL 

) 
INSERT INTO Sells 
VALUES(’C.Ch.’, b, p); 



72 

Invoking Procedures 

  Use SQL/PSM statement CALL, with the name 
of the desired procedure and arguments 

  Example:  
 CALL ChinoMenu(’Eventyr’, 50); 

  Functions used in SQL expressions wherever 
a value of their return type is appropriate 


