
1

Real SQL Programming

2

SQL in Real Programs

  We have seen only how SQL is used at
the generic query interface – an
environment where we sit at a terminal
and ask queries of a database

  Reality is almost always different:
conventional programs interacting with
SQL

3

Options

1.  Code in a specialized language is
stored in the database itself (e.g.,
PSM, PL/pgsql)

2.  SQL statements are embedded in a
host language (e.g., C)

3.  Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, PHP/DB)

4

Stored Procedures

  PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements

  PSM = a mixture of conventional
statements (if, while, etc.) and SQL

  Lets us do things we cannot do in SQL
alone

5

Procedures in PostgreSQL

CREATE PROCEDURE <name>
([<arguments>]) AS $$
<program>$$ LANGUAGE <lang>;

  PostgreSQL only supports functions:
CREATE FUNCTION <name>

([<arguments>]) RETURNS VOID AS $$
<program>$$ LANGUAGE <lang>;

6

Parameters for Procedures

  Unlike the usual name-type pairs in
languages like Java, procedures use mode-
name-type triples, where the mode can be:
  IN = function uses value, does not change
 OUT = function changes, does not use
  INOUT = both

7

Example: Stored Procedure

  Let’s write a procedure that takes two
arguments b and p, and adds a tuple
to Sells(bar, beer, price) that has bar =
’C.Ch.’, beer = b, and price = p
  Used by Cafe Chino to add to their menu

more easily

Parameters are both
read-only, not changed

The body ---
a single insertion

8

The Procedure

CREATE FUNCTION ChinoMenu (
 IN b CHAR(20),
 IN p REAL

) RETURNS VOID AS $$
INSERT INTO Sells
VALUES(’C.Ch.’, b, p);
$$ LANGUAGE plpgsql;

9

Invoking Procedures

  Use SQL/PSM statement CALL, with the name
of the desired procedure and arguments

  Example:
 CALL ChinoMenu(’Eventyr’, 50);

  Functions used in SQL expressions wherever
a value of their return type is appropriate

  No CALL in PostgreSQL:
 SELECT ChinoMenu(’Eventyr’, 50);

10

Kinds of PL/pgsql statements

  Return statement: RETURN <expression>
returns value of a function
  Like in Java, RETURN terminates the

function execution

  Declare block: DECLARE <name> <type>
used to declare local variables

  Groups of Statements: BEGIN . . . END
  Separate statements by semicolons

11

Kinds of PL/pgsql statements
  Assignment statements:

 <variable> := <expression>;
  Example: b := ’Od.Cl.’;

  Statement labels: give a statement a
label by prefixing a name and a colon

12

IF Statements

  Simplest form:
 IF <condition> THEN
 <statements(s)>
 END IF;

  Add ELSE <statement(s)> if desired, as
 IF . . . THEN . . . ELSE . . . END IF;

  Add additional cases by ELSEIF
<statements(s)>: IF … THEN … ELSEIF …
THEN … ELSEIF … THEN … ELSE … END IF;

13

Example: IF

  Let’s rate bars by how many customers they
have, based on Frequents(drinker,bar)
 <100 customers: ‘unpopular’
  100-199 customers: ‘average’
 >= 200 customers: ‘popular’

  Function Rate(b) rates bar b

Number of
customers of
bar b

Nested
IF statement

14

Example: IF

CREATE FUNCTION Rate (IN b CHAR(20))
 RETURNS CHAR(10) AS $$
 DECLARE cust INTEGER;
 BEGIN
 cust := (SELECT COUNT(*) FROM Frequents
 WHERE bar = b);
 IF cust < 100 THEN RETURN ’unpopular’;
 ELSEIF cust < 200 THEN RETURN ’average’;
 ELSE RETURN ’popular’;
 END IF;
 END;

15

Loops

  Basic form:
 <<<label>>>
LOOP

 <statements>
END LOOP;

  Exit from a loop by:
 EXIT <label> WHEN <condition>

16

Example: Exiting a Loop

<<loop1>> LOOP
 . . .
 EXIT loop1 WHEN ...;
 . . .

END LOOP;
If this statement is executed and
the condition holds ...

... control winds up here

17

Other Loop Forms

  WHILE <condition> LOOP
 <statements>

END LOOP;
  Equivalent to the following LOOP:
 LOOP

 EXIT WHEN NOT <condition>;
 <statements>

END LOOP;

18

Other Loop Forms

  FOR <name> IN <start> TO <end>
LOOP

 <statements>
END LOOP;

  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> > <end>;

 <statements>
 <name> := <name>+1;

END LOOP;

19

Other Loop Forms

  FOR <name> IN REVERSE <start> TO
<end> LOOP

 <statements>
END LOOP;

  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> < <end>;

 <statements>
 <name> := <name> - 1;

END LOOP;

20

Other Loop Forms

  FOR <name> IN <start> TO <end>
BY <step> LOOP

 <statements>
END LOOP;

  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> > <end>;

 <statements>
 <name> := <name>+<step>;

END LOOP;

21

Queries

  General SELECT-FROM-WHERE
queries are not permitted in PL/pgsql

  There are three ways to get the effect
of a query:

1.  Queries producing one value can be the
expression in an assignment

2.  Single-row SELECT ... INTO
3.  Cursors

22

Example: Assignment/Query

  Using local variable p and Sells(bar, beer,
price), we can get the price Cafe Chino
charges for Odense Classic by:
 p := (SELECT price FROM Sells
 WHERE bar = ’C.Ch’ AND
 beer = ’Od.Cl.’);

23

SELECT ... INTO

  Another way to get the value of a query
that returns one tuple is by placing INTO
<variable> after the SELECT clause

  Example:
 SELECT price INTO p FROM Sells
 WHERE bar = ’C.Ch.’ AND
 beer = ’Od.Cl.’;

24

Cursors

  A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query

  Declare a cursor c by:
DECLARE c CURSOR FOR <query>;

25

Opening and Closing Cursors

  To use cursor c, we must issue the
command:
 OPEN c;
  The query of c is evaluated, and c is set

to point to the first tuple of the result

  When finished with c, issue command:
 CLOSE c;

26

Fetching Tuples From a Cursor

  To get the next tuple from cursor c,
issue command:
 FETCH FROM c INTO x1, x2,…,xn ;

  The x ’s are a list of variables, one for
each component of the tuples referred
to by c

  c is moved automatically to the next
tuple

27

Breaking Cursor Loops – (1)

  The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple
fetched

  A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver

28

Breaking Cursor Loops – (2)

  Many operations returns if a row has
been found, changed, inserted, or
deleted (SELECT INTO, UPDATE,
INSERT, DELETE, FETCH)

  In plpgsql, we can get the value of the
status in a variable called FOUND

29

Breaking Cursor Loops – (3)

  The structure of a cursor loop is thus:
<<cursorLoop>> LOOP
 …
 FETCH c INTO … ;

 IF NOT FOUND THEN EXIT cursorLoop;
 END IF;
 …

END LOOP;

30

Example: Cursor

  Let us write a procedure that examines
Sells(bar, beer, price), and raises by 10
the price of all beers at Cafe Chino that
are under 30

  Yes, we could write this as a simple
UPDATE, but the details are instructive
anyway

Returns Cafe Chino’s
price list

Used to hold
beer-price pairs
when fetching
through cursor c

31

The Needed Declarations

CREATE FUNCTION RaisePrices()
 RETURNS VOID AS $$
 DECLARE theBeer CHAR(20);
 thePrice REAL;
 c CURSOR FOR
 (SELECT beer, price FROM Sells
 WHERE bar = ’C.Ch.’);

Check if the recent
FETCH failed to
get a tuple

If Cafe Chino charges less than
30 for the beer, raise its price at
at Cafe Chino by 10

32

The Procedure Body
BEGIN

 OPEN c;
 <<menuLoop>> LOOP
 FETCH c INTO theBeer, thePrice;
 EXIT menuLoop WHEN NOT FOUND;
 IF thePrice < 30 THEN
 UPDATE Sells SET price = thePrice + 10
 WHERE bar = ’C.Ch.’ AND beer = theBeer;
 END IF;
 END LOOP;
 CLOSE c;

END;$$ LANGUAGE plpgsql;

33

Tuple-Valued Variables

  PL/pgsql allows a variable x to have a
tuple type

  x R%ROWTYPE gives x the type of R’s
tuples

  R could be either a relation or a cursor
  x.a gives the value of the component

for attribute a in the tuple x

34

Example: Tuple Type
  Repeat of RaisePrices() declarations with

variable bp of type beer-price pairs
CREATE FUNCTION RaisePrices()
RETURNS VOID AS $$

 DECLARE CURSOR c IS
 SELECT beer, price FROM Sells
 WHERE bar = ’C.Ch.’;
 bp c%ROWTYPE;

Components of bp are
obtained with a dot and
the attribute name

35

RaisePrices() Body Using bp

BEGIN
 OPEN c;
 LOOP
 FETCH c INTO bp;
 EXIT WHEN NOT FOUND;
 IF bp.price < 30 THEN
 UPDATE Sells SET price = bp.price + 10
 WHERE bar = ’C.Ch.’ AND beer = bp.beer;
 END IF;
 END LOOP;
 CLOSE c;

END;

36

Database-Connection Libraries

37

Host/SQL Interfaces Via
Libraries

  The third approach to connecting
databases to conventional languages
is to use library calls

1.  C + CLI
2.  Java + JDBC
3.  PHP + PEAR/DB

38

Three-Tier Architecture

  A common environment for using a
database has three tiers of processors:

1. Web servers – talk to the user.
2.  Application servers – execute the business

logic
3.  Database servers – get what the app

servers need from the database

39

Example: Amazon

  Database holds the information about
products, customers, etc.

  Business logic includes things like “what
do I do after someone clicks
‘checkout’?”
  Answer: Show the “how will you pay for

this?” screen

40

Environments, Connections, Queries

  The database is, in many DB-access
languages, an environment

  Database servers maintain some number
of connections, so app servers can ask
queries or perform modifications

  The app server issues statements:
queries and modifications, usually

41

JDBC

  Java Database Connectivity (JDBC) is a
library similar for accessing a DBMS
with Java as the host language

  221 drivers available: PostgreSQL,
MySQL, Oracle, ODBC, ...

  http://jdbc.postgresql.org/

URL of the database
your name, and password
go here

The JDBC classes

The driver
for postgresql;
others exist

Loaded by
forName

import java.sql.*;

...
Class.forName(“org.postgresql.Driver”);
Connection myCon =

 DriverManager.getConnection(…);
...

42

Making a Connection

URL for PostgreSQL database
  jdbc:postgresql://<host>[:<port>]/

<database>?user=<user>&
password=<password>

  Alternatively use getConnection variant:
  getConnection(“jdbc:postgresql://

<host>[:<port>]/<database>“,
<user>, <password>);

  DriverManager.getConnection(“jdbc:pos
tgresql://10.110.4.210/petersk09“,
“petersk09“, “geheim“); 43

44

Statements

  JDBC provides two classes:
1.  Statement = an object that can accept a

string that is a SQL statement and can
execute such a string

2.  PreparedStatement = an object that has
an associated SQL statement ready to
execute

createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement 45

Creating Statements

  The Connection class has methods to create
Statements and PreparedStatements

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

 myCon.createStatement(
 ”SELECT beer, price FROM Sells ” +
 ”WHERE bar = ’C.Ch.’ ”
);

46

Executing SQL Statements

  JDBC distinguishes queries from
modifications, which it calls “updates”

  Statement and PreparedStatement each
have methods executeQuery and
executeUpdate
  For Statements: one argument – the query or

modification to be executed
  For PreparedStatements: no argument

47

Example: Update

  stat1 is a Statement
  We can use it to insert a tuple as:
stat1.executeUpdate(

 ”INSERT INTO Sells ” +
 ”VALUES(’C.Ch.’,’Eventyr’,30)”
);

48

Example: Query

  stat2 is a PreparedStatement holding
the query ”SELECT beer, price FROM
Sells WHERE bar = ’C.Ch.’ ”

  executeQuery returns an object of class
ResultSet – we’ll examine it later

  The query:
ResultSet menu = stat2.executeQuery();

49

Accessing the ResultSet

  An object of type ResultSet is
something like a cursor

  Method next() advances the “cursor” to
the next tuple
  The first time next() is applied, it gets the

first tuple
  If there are no more tuples, next() returns

the value false

50

Accessing Components of Tuples
  When a ResultSet is referring to a tuple,

we can get the components of that
tuple by applying certain methods to
the ResultSet

  Method getX (i), where X is some
type, and i is the component number,
returns the value of that component
  The value must have type X

51

Example: Accessing Components

  Menu = ResultSet for query “SELECT beer,
price FROM Sells WHERE bar = ’C.Ch.’ ”

  Access beer and price from each tuple by:
while (menu.next()) {
 theBeer = menu.getString(1);
 thePrice = menu.getFloat(2);
 /*something with theBeer and

 thePrice*/

}

Important Details

  Reusing a Statement object results in
the ResultSet being closed
  Always create new Statement objects using

createStatement() or explicitly close
ResultSets using the close method

  For transactions, for the Connection con
use con.setAutoCommit(false) and
explicitly con.commit() or con.rollback()
  If AutoCommit is false and there is no

commit, closing the connection = rollback 52

53

PHP

  A language to be used for actions within
HTML text

  Indicated by <?PHP code ?>.
  DB library exists within PEAR (PHP

Extension and Application Repository)
  Include with include(DB.php)

54

Variables in PHP

  Must begin with $
  OK not to declare a type for a variable
  But you give a variable a value that

belongs to a “class,” in which case,
methods of that class are available to it

55

String Values

  PHP solves a very important problem
for languages that commonly construct
strings as values:
  How do I tell whether a substring needs to

be interpreted as a variable and replaced
by its value?

  PHP solution: Double quotes means
replace; single quotes means do not

56

Example: Replace or Not?

$100 = ”one hundred dollars”;
$Peter = ’You owe me $100.’;
$Lars = ”You owe me $100.”;

  Value of $Peter is ’You owe me $100’,
while the value of $Lars is ’You owe me
one hundred dollars’

57

PHP Arrays

  Two kinds: numeric and associative
  Numeric arrays are ordinary, indexed

0,1,…
  Example: $a = array(”Paul”, ”George”,

”John”, ”Ringo”);
 Then $a[0] is ”Paul”, $a[1] is ”George”, and so

on

58

Associative Arrays

  Elements of an associative array $a are
pairs x => y, where x is a key string
and y is any value

  If x => y is an element of $a, then
$a[x] is y

59

Example: Associative Arrays

  An environment can be expressed as an
associative array, e.g.:

$myEnv = array(

 ”phptype” => ”pgsql”,
 ”hostspec” => ”localhost”,
 ”port” => ”5432”,
 ”database” => ”petersk09”,

 ”username” => ”petersk09”,
 ”password” => ”geheim”);

Function connect
in the DB library

60

Making a Connection

  With the DB library imported and the
array $myEnv available:

$myCon = DB::connect($myEnv);

Class is Connection
because it is returned
by DB::connect()

61

Executing SQL Statements

  Method query applies to a Connection
object

  It takes a string argument and returns a
result
  Could be an error code or the relation

returned by a query

Concatenation
in PHP

Remember this
variable is replaced
by its value.

Method
application

62

Example: Executing a Query

  Find all the bars that sell a beer given
by the variable $beer

$beer = ’Od.Cl.’;
$result = $myCon->query(
 ”SELECT bar FROM Sells” .
 ”WHERE beer = ’$beer’;”);

63

Cursors in PHP

  The result of a query is the tuples
returned

  Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none

64

Example: Cursors

while ($bar = $result->fetchRow())
{
 // do something with $bar

}

65

Example: Tuple Cursors

$bar = “C.Ch.“;
$menu = $myCon->query(
“SELECT beer, price FROM Sells
WHERE bar = ‘$bar‘;“);

while ($bp = $result->fetchRow())
{
 print $bp[0] . “ for “ . $bp[1];

}

