
1

Example: Associative Arrays

  An environment can be expressed as an
associative array, e.g.:

$myEnv = array(

 ”phptype” => ”pgsql”,
 ”hostspec” => ”localhost”,
 ”port” => ”5432”,
 ”database” => ”petersk09”,

 ”username” => ”petersk09”,
 ”password” => ”geheim”);

Function connect
in the DB library

2

Making a Connection

  With the DB library imported and the
array $myEnv available:

$myCon = DB::connect($myEnv);

Class is Connection
because it is returned
by DB::connect()

3

Executing SQL Statements

  Method query applies to a Connection
object

  It takes a string argument and returns a
result
  Could be an error code or the relation

returned by a query

Concatenation
in PHP

Remember this
variable is replaced
by its value.

Method
application

4

Example: Executing a Query

  Find all the bars that sell a beer given
by the variable $beer

$beer = ’Od.Cl.’;
$result = $myCon->query(
 ”SELECT bar FROM Sells” .
 ”WHERE beer = ’$beer’;”);

5

Cursors in PHP

  The result of a query is the tuples
returned

  Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none

6

Example: Cursors

while ($bar = $result->fetchRow())
{
 // do something with $bar

}

7

Example: Tuple Cursors

$bar = “C.Ch.“;
$menu = $myCon->query(
“SELECT beer, price FROM Sells
WHERE bar = ‘$bar‘;“);

while ($bp = $result->fetchRow())
{
 print $bp[0] . “ for “ . $bp[1];

}

8

An Aside: SQL Injection

  SQL queries are often constructed by
programs

  These queries may take constants from
user input

  Careless code can allow rather
unexpected queries to be constructed
and executed

9

Example: SQL Injection

  Relation Accounts(name, passwd, acct)
  Web interface: get name and password from

user, store in strings n and p, issue query,
display account number

$result = $myCon->query(
“SELECT acct FROM Accounts WHERE
name = ‘$n’ AND passwd = ‘$p’;”);

10

User (Who Is Not Bill Gates) Types

Name:

Password:

Your account number is 1234-567

gates’ --

who cares?

Comment
in PostgreSQL

All treated as a comment

11

The Query Executed

SELECT acct FROM Accounts
WHERE name = ’gates’ --’ AND
 passwd = ’who cares?’

Summary 8

More things you should know:
  Stored Procedures, PL/pgsql
  Declarations, Statements, Loops,
  Cursors, Tuple Variables
  Three-Tier Approach, JDBC, PHP/DB

12

13

Database Implementation

Database Implementation

Isn‘t implementing a database system easy?
  Store relations
  Parse statements
  Print results
  Change relations

14

15

Introducing the

Database Management System

•  The latest from DanLabs
•  Incorporates latest relational technology
•  Linux compatible

16

DanDB 3000
Implementation Details

  Relations stored in files (ASCII)
  Relation R is in /var/db/R
  Example:

Peter # Erd.We.
Lars # Od.Cl. . . .

17

DanDB 3000
Implementation Details

  Directory file (ASCII) in /var/db/directory
  For relation R(A,B) with A of type

VARCHAR(n) and B of type integer:
R # A # STR # B # INT

  Example:

Favorite # drinker # STR # beer # STR
Sells # bar # STR # beer # STR # ...

. . .

18

DanDB 3000
Sample Sessions

% dandbsql
 Welcome to DanDB 3000!
>

> quit
%

. . .

19

DanDB 3000
Sample Sessions

> SELECT *
 FROM Favorite;

 drinker # beer
 ##################
 Peter # Erd.We.
 Lars # Od.Cl.
 (2 rows)

>

20

DanDB 3000
Sample Sessions

> SELECT drinker AS snob
 FROM Favorite, Sells
 WHERE Favorite.beer = Sells.beer
 AND price > 25;

 snob
 ######
 Peter
 (1 rows)

>

21

DanDB 3000
Sample Sessions

> CREATE TABLE expensive (bar TEXT);
> INSERT INTO expensive (SELECT bar
 FROM Sells
 WHERE price > 25);
>

Create table with expensive bars

22

DanDB 3000
Implementation Details

  To execute “SELECT * FROM R WHERE condition”:
1.  Read /var/db/dictionary, find line starting with “R #”
2.  Display rest of line
3.  Read /var/db/R file, for each line:

a.  Check condition
b.  If OK, display line

23

DanDB 3000
Implementation Details

  To execute “CREATE TABLE S (A1 t1, A2 t2);”:
1.  Map t1 and t2 to internal types T1 and T2
2.  Append new line “S # A1 # T1 # A2 # T2”

to /var/db/directory

  To execute “INSERT INTO S (SELECT * FROM R
 WHERE condition);”:
1.  Process select as before
2.  Instead of displaying, append lines to file /var/db/S

24

DanDB 3000
Implementation Details

  To execute “SELECT A,B FROM R,S WHERE condition;”:
1.  Read /var/db/dictionary to get schema for R and S
2.  Read /var/db/R file, for each line:

a.  Read /var/db/S file, for each line:
i.  Create join tuple
ii.  Check condition
iii.  Display if OK

25

DanDB 3000
Problems

  Tuple layout on disk
  Change string from ‘Od.Cl.’ to ‘Odense

Classic’ and we have to rewrite file
  ASCII storage is expensive
  Deletions are expensive

  Search expensive – no indexes!
  Cannot find tuple with given key quickly
  Always have to read full relation

26

DanDB 3000
Problems

  Brute force query processing
  Example:
SELECT * FROM R,S WHERE R.A=S.A
AND S.B > 1000;

  Do select first?
  Natural join more efficient?

  No concurrency control

27

DanDB 3000
Problems

  No reliability
  Can lose data
  Can leave operations half done

  No security
  File system insecure
  File system security is too coarse

  No application program interface (API)
  How to access the data from a real program?

28

DanDB 3000
Problems

  Cannot interact with other DBMSs
  Very limited support of SQL

  No constraint handling etc.
  No administration utilities, no web

frontend, no graphical user interface, ...
  Lousy salesmen!

Data Storage

29

Computer System

30

CPU

RAM SATA

Secondary
Storage

... ...

The Memory Hierarchy

Cache

RAM

Harddisk

Tape Robot
31

0.5/GB

1.5/GB

70/GB

a lot/MB 0.3 ns

2.5 ns

8.5 ms

minutes

co
st

latency

primary

secondary

tertiary

DBMS and Storage

  Databases typically too large to keep in
primary storage

  Tables typically kept in secondary
storage

  Large amounts of data that are only
accessed infrequently are stored in
tertiary storage

  Indexes and current tables cached in
primary storage

32

Harddisk

  N rotating magenetic platters
  2xN heads for reading and writing
  track, cylinder, sector, gap

33

…

Harddisk Access

  access time: how long does it take to
load a block from the harddisk?

  seek time: how long does it take to
move the heads to the right cylinder?

  rotational delay: how long does it take
until the head gets to the right sectors?

  transfer time: how long does it take to
read the block?

  access = seek + rotational + transfer
34

Seek Time

  average seek time = ½ time to move
head from outermost to innermost
cylinder

35

…

Rotational Delay

  average rotational delay = ½ rotation

36

head here

block to read

Transfer Time

  Transfer time = 1/n rotation when
there are n blocks on one track

37

from here

to here

Access Time

  Typical harddisk:
 Maximal seek time: 10 ms
  Rotational speed: 7200 rpm
  Block size: 4096 bytes
  Sectors (512 bytes) per track: 1600 (average)

  Average access time:
  Average seek time: 5 ms
  Average rotational delay: 60/7200/2 = 4.17 ms
  Average transfer time: 0.04 ms

38

9.21 ms

Random vs Sequential Access

  Random access of blocks:
1/0.00921s * 4096 byte = 0.42 Mbyte/s

  Sequential access of blocks:
120/s * 200 * 4096 byte = 94 Mbyte/s

  Performance of the DBMS dominated by
number of random accesses

39

On Disk Cache

40

CPU

RAM SATA

Secondary
Storage

... ...

cache

cache

Problems with Harddisks

  Even with caches, harddisk remains
bottleneck for DBMS performance

  Harddisks can fail:
  Intermittent failure
 Media decay
 Write failure
  Disk crash

  Handle intermittent failures by
rereading the block in question

41

Detecting Read Failures

  Use checksums to detect failures
  Simplest form is parity bit:

  0 if number of ones in the block is even
  1 if number of ones in the block is odd
  Detects all 1-bit failures
  Detects 50% of many-bit failures
  By using n bits, we can reduce the chance

of missing an error to 1/2^n

42

Disk Arrays

  Use more than one disk for higher
reliability and/or performance

  RAID (Redundant Arrays of
Independent Disks)

43

logically one disk

RAID 0

  Alternate blocks between two or more
disks (“Striping“)

  Increases performance both for writing
and reading

  No increase in reliability

44

0

Disk 1 2

1
2 3
4 5

Storing blocks 0-5
in the first three
blocks of disk 1 & 2

RAID 1

  Duplicate blocks on two or more disks
(“Mirroring“)

  Increases performance for reading
  Increases reliability significantly

45

0

Disk 1 2

0
1 1
2 2

Storing blocks 0-2
in the first three
blocks of disk 1 & 2

RAID 5

  Stripe blocks on n+1 disks where for each
block, one disk stores parity information

  More performant when writing than RAID 1
  Increased reliability compared to RAID 0

46

0

Disk 1 2 3

1
P 2
5 P

Storing blocks 0-5
in the first three
blocks of disk 1, 2 & 3

P
3
4

RAID Capacity

  Assume disks with capacity 1 TByte
  RAID 0: N disks = N TByte
  RAID 1: N disks = 1 TByte
  RAID 5: N disks = (N-1) TByte
  RAID 6: N disks = (N-M) TByte
  ...

47

Storage of Values

  Basic unit of storage: Byte
  Integer: 4 bytes

Example: 42 is

  Real: n bits for mantissa, m for exponent
  Characters: ASCII, UTF8, ...
  Boolean: and

48

8
bits

00000000 00000000 00000000 00101010

00000000 11111111

Storage of Values

  Dates:
  Days since January 1, 1900
  DDMMYYYY (not DDMMYY)

  Time:
  Seconds since midnight
  HHMMSS

  Strings:
  Null terminated
  Length given

49

L r a s

4 a L r s

DBMS Storage Overview

50

Values

Records

Blocks

Files

Memory

Record

  Collection of related data items (called
Fields)

  Typically used to store one tuple
  Example: Sells record consisting of

  bar field
  beer field
  price field

51

Record Metadata

  For fixed-length records, schema
contains the following information:
  Number of fields
  Type of each field
 Order in record

  For variable-length records, every
record contains this information in its
header

52

Record Header

  Reserved part at the beginning of a
record

  Typically contains:
  Record type (which Schema?)
  Record length (for skipping)
  Time stamp (last access)

53

Files

  Files consist of blocks containing records
  How to place records into blocks?

54

assume fixed
length blocks

assume a single file

Files

  Options for storing records in blocks:
1.  Separating records
2.  Spanned vs. unspanned
3.  Sequencing
4.  Indirection

55

1. Separating Records

Block

a.  no need to separate - fixed size recs.
b.  special marker
c.  give record lengths (or offsets)

i.  within each record
ii.  in block header

56

R2 R1 R3

2. Spanned vs Unspanned

  Unspanned: records must be in one block

  Spanned: one record in two or more blocks

  Unspanned much simpler, but wastes space
  Spanned essential if record size > block size

57

R1 R2 R3 R4 R5

R1 R2 R3
(a)

R3
(b) R6 R5 R4 R7

(a)

3. Sequencing

  Ordering records in a file (and in the blocks)
by some key value

  Can be used for binary search
  Options:

a.  Next record is physically contiguous

b.  Records are linked

58

Next (R1) R1 ...

R1 Next (R1)

4. Indirection
  How does one refer to records?

a.  Physical address (disk id, cylinder, head,
sector, offset in block)

b.  Logical record ids and a mapping table

  Tradeoff between flexibility and cost
59

Physical
addr. Rec ID

Indirection map

17 2:34:5:742:2340

Modification of Records

How to handle the following operations
on the record level?
1.  Insertion
2.  Deletion
3.  Update

60

1. Insertion

  Easy case: records not in sequence
  Insert new record at end of file
  If records are fixed-length, insert new

record in deleted slot

  Difficult case: records are sorted
  Find position and slide following records
  If records are sequenced by linking, insert

overflow blocks

61

2. Deletion

a.  Immediately reclaim space by shifting
other records or removing overflows

b.  Mark deleted and list as free for re-use
  Tradeoffs:

  How expensive is immediate reclaim?
  How much space is wasted?

62

Problem with Deletion
  Dangling pointers:

  When using physical addresses:

  When using logical addresses:

63

R1 ?

Never reused May be reused

ID LOC

7788

Never reuse
ID 7788 nor
space in the map

