
1

Subqueries

§  A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a
value in a number of places, including
FROM and WHERE clauses

§  Example: in place of a relation in the
FROM clause, we can use a subquery
and then query its result
§ Must use a tuple-variable to name tuples of

the result

2

Subqueries

§  A parenthesized SELECT-FROM-WHERE
statement (subquery) can be used as a
value in a number of places, including
FROM and WHERE clauses

§  Example: in place of a relation in the
FROM clause, we can use a subquery
and then query its result
§ Must use a tuple-variable to name tuples of

the result

3

Example: Subquery in FROM

§  Find the beers liked by at least one person
who frequents Cafe Chino

SELECT beer

FROM Likes, (SELECT drinker

 FROM Frequents

 WHERE bar = ’C.Ch.’)CCD

WHERE Likes.drinker = CCD.drinker;

Drinkers who
frequent C.Ch.

4

Subqueries That Return One Tuple

§  If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value
§  Usually, the tuple has one component
§  A run-time error occurs if there is no tuple

or more than one tuple

5

Example: Single-Tuple Subquery

§  Using Sells(bar, beer, price), find the
bars that serve Pilsener for the same
price Cafe Chino charges for Od.Cl.

§  Two queries would surely work:
1.  Find the price Cafe Chino charges for Od.Cl.
2.  Find the bars that serve Pilsener at that

price

6

Query + Subquery Solution

 SELECT bar
 FROM Sells
 WHERE beer = ’Pilsener’ AND
 price = (SELECT price
 FROM Sells
 WHERE bar = ’Cafe Chino’
 AND beer = ’Od.Cl.’);

The price at
Which C.Ch.
sells Od.Cl.

7

The IN Operator

§  <tuple> IN (<subquery>) is true if and
only if the tuple is a member of the
relation produced by the subquery
§ Opposite: <tuple> NOT IN (<subquery>)

§  IN-expressions can appear in WHERE
clauses

8

Example: IN

§  Using Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of
each beer that Peter likes
 SELECT *
 FROM Beers
 WHERE name IN (SELECT beer
 FROM Likes
 WHERE drinker =
’Peter’);

The set of
Beers Peter
likes

9

What is the difference?

R(a,b); S(b,c)

SELECT a

FROM R, S

WHERE R.b = S.b;

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

10

IN is a Predicate About R’s Tuples

SELECT a
FROM R

WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) satisfies
the condition;
1 is output once

Two 2’s

11

This Query Pairs Tuples from R, S

SELECT a
FROM R, S

WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice

12

The Exists Operator

§  EXISTS(<subquery>) is true if and only
if the subquery result is not empty

§  Example: From Beers(name, manf),
find those beers that are the unique
beer by their manufacturer

13

Example: EXISTS

 SELECT name
 FROM Beers b1
 WHERE NOT EXISTS (
 SELECT *
 FROM Beers
 WHERE manf = b1.manf AND
 name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute

Notice the
SQL “not
equals”
operator

14

The Operator ANY

§  x = ANY(<subquery>) is a boolean
condition that is true iff x equals at least
one tuple in the subquery result
§ = could be any comparison operator.

§  Example: x >= ANY(<subquery>) means x
is not the uniquely smallest tuple produced
by the subquery
§  Note tuples must have one component only

15

The Operator ALL

§  x <> ALL(<subquery>) is true iff for
every tuple t in the relation, x is not
equal to t
§  That is, x is not in the subquery result

§  <> can be any comparison operator
§  Example: x >= ALL(<subquery>)

means there is no tuple larger than x in
the subquery result

16

Example: ALL

§  From Sells(bar, beer, price), find the
beer(s) sold for the highest price
 SELECT beer
 FROM Sells
 WHERE price >= ALL(
 SELECT price
 FROM Sells);

price from the outer
Sells must not be
less than any price.

17

Union, Intersection, and Difference
§  Union, intersection, and difference of

relations are expressed by the following
forms, each involving subqueries:
§  (<subquery>) UNION (<subquery>)
§  (<subquery>) INTERSECT (<subquery>)
§  (<subquery>) EXCEPT (<subquery>)

18

Example: Intersection

§  Using Likes(drinker, beer), Sells(bar, beer,
price), and Frequents(drinker, bar), find
the drinkers and beers such that:

1.  The drinker likes the beer, and
2.  The drinker frequents at least one bar that

sells the beer

19

Solution

(SELECT * FROM Likes)
 INTERSECT

(SELECT drinker, beer
 FROM Sells, Frequents
 WHERE Frequents.bar = Sells.bar
);

The drinker frequents
a bar that sells the
beer.

Notice trick:
subquery is
really a stored
table.

20

Bag Semantics

§  Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics
§  That is, duplicates are eliminated as the

operation is applied

21

Motivation: Efficiency

§  When doing projection, it is easier to
avoid eliminating duplicates
§  Just work tuple-at-a-time

§  For intersection or difference, it is most
efficient to sort the relations first
§  At that point you may as well eliminate the

duplicates anyway

22

Controlling Duplicate Elimination

§  Force the result to be a set by
SELECT DISTINCT . . .

§  Force the result to be a bag (i.e., don’t
eliminate duplicates) by ALL, as
in . . . UNION ALL . . .

23

Example: DISTINCT

§  From Sells(bar, beer, price), find all the
different prices charged for beers:
 SELECT DISTINCT price
 FROM Sells;

§  Notice that without DISTINCT, each
price would be listed as many times as
there were bar/beer pairs at that price

24

Example: ALL

§  Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
 (SELECT drinker FROM Frequents)
 EXCEPT ALL

 (SELECT drinker FROM Likes);

§  Lists drinkers who frequent more bars than
they like beers, and does so as many times as
the difference of those counts

25

Join Expressions

§  SQL provides several versions of (bag)
joins

§  These expressions can be stand-alone
queries or used in place of relations in a
FROM clause

26

Products and Natural Joins

§  Natural join:
 R NATURAL JOIN S;

§  Product:
 R CROSS JOIN S;

§  Example:
 Likes NATURAL JOIN Sells;

§  Relations can be parenthesized subqueries, as
well

27

Theta Join

§  R JOIN S ON <condition>
§  Example: using Drinkers(name, addr) and

Frequents(drinker, bar):
 Drinkers JOIN Frequents ON
 name = drinker;

 gives us all (d, a, d, b) quadruples such
that drinker d lives at address a and
frequents bar b

Summary 3

More things you should know:
§  SELECT FROM WHERE statements with

one or more tables
§  Complex conditions, pattern matching
§  Subqueries, natural joins, theta joins

28

Extended Relational Algebra

29

30

The Extended Algebra

δ = eliminate duplicates from bags

τ = sort tuples

γ = grouping and aggregation
Outerjoin: avoids “dangling tuples” =

tuples that do not join with anything

31

Duplicate Elimination

§  R1 := δ(R2)
§  R1 consists of one copy of each tuple

that appears in R2 one or more times

32

Example: Duplicate Elimination

R = (A B)
 1 2
 3 4
 1 2

δ(R) = A B
 1 2
 3 4

33

Sorting

§  R1 := τL (R2)
§  L is a list of some of the attributes of R2

§  R1 is the list of tuples of R2 sorted
lexicographically according to the attributes in L,
i.e., first on the value of the first attribute on L,
then on the second attribute of L, and so on
§  Break ties arbitrarily

§ τ is the only operator whose result is neither a
set nor a bag

34

Example: Sorting

R = (A B)
 1 2
 3 4
 5 2

τB (R) = [(5,2), (1,2), (3,4)]

35

Aggregation Operators

§  Aggregation operators are not operators
of relational algebra

§  Rather, they apply to entire columns of
a table and produce a single result

§  The most important examples: SUM,
AVG, COUNT, MIN, and MAX

36

Example: Aggregation

R = (A B)
 1 3
 3 4
 3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

37

Grouping Operator

§  R1 := γL (R2)
L is a list of elements that are either:

1.  Individual (grouping) attributes
2.  AGG(A), where AGG is one of the

aggregation operators and A is an
attribute
§  An arrow and a new attribute name renames

the component

38

Applying γL(R)
§  Group R according to all the grouping

attributes on list L
§  That is: form one group for each distinct list

of values for those attributes in R

§  Within each group, compute AGG(A) for
each aggregation on list L

§  Result has one tuple for each group:
1.  The grouping attributes and
2.  Their group’s aggregations

39

Example: Grouping/Aggregation

R = (A B C)
 1 2 3
 4 5 6
 1 2 5

γA,B,AVG(C)->X (R) = ??

First, group R by A and B :
 A B C
 1 2 3
 1 2 5
 4 5 6

Then, average C
within groups:

A B X
1 2 4
4 5 6

40

Outerjoin

§  Suppose we join R ⋈C S
§  A tuple of R that has no tuple of S with

which it joins is said to be dangling
§  Similarly for a tuple of S

§  Outerjoin preserves dangling tuples by
padding them NULL

41

Example: Outerjoin

R = (A B) S = (B C)
 1 2 2 3
 4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling

R OUTERJOIN S = A B C
 1 2 3
 4 5 NULL
 NULL 6 7

Summary 4

More things you should know:
§  Duplicate Elimination
§  Sorting
§  Aggregation
§  Grouping
§  Outer Joins

42

Back to SQL

43

44

Outerjoins

§  R OUTER JOIN S is the core of an
outerjoin expression

§  It is modified by:
1.  Optional NATURAL in front of OUTER
2.  Optional ON <condition> after JOIN
3.  Optional LEFT, RIGHT, or FULL before

OUTER
  LEFT = pad dangling tuples of R only
  RIGHT = pad dangling tuples of S only
  FULL = pad both; this choice is the default

Only one
of these

45

Aggregations

§  SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column

§  Also, COUNT(*) counts the number of
tuples

46

Example: Aggregation

§  From Sells(bar, beer, price), find the
average price of Odense Classic:
 SELECT AVG(price)
 FROM Sells

 WHERE beer = ’Od.Cl.’;

47

Eliminating Duplicates in an
Aggregation

§  Use DISTINCT inside an aggregation
§  Example: find the number of different

prices charged for Bud:
 SELECT COUNT(DISTINCT price)
 FROM Sells

 WHERE beer = ’Od.Cl.’;

48

NULL’s Ignored in
Aggregation

§  NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column

§  But if there are no non-NULL values in a
column, then the result of the
aggregation is NULL
§  Exception: COUNT of an empty set is 0

49

Example: Effect of NULL’s

SELECT count(*)
FROM Sells
WHERE beer = ’Od.Cl.’;

SELECT count(price)
FROM Sells
WHERE beer = ’Od.Cl.’;

The number of bars
that sell Odense Classic

The number of bars
that sell Odense Classic
at a known price

50

Grouping

§  We may follow a SELECT-FROM-WHERE
expression by GROUP BY and a list of
attributes

§  The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group

51

Example: Grouping

§  From Sells(bar, beer, price), find the
average price for each beer:
 SELECT beer, AVG(price)
 FROM Sells

 GROUP BY beer;

beer AVG(price)
Od.Cl. 20
… …

52

Example: Grouping

§  From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Odense Classic at the
bars they frequent:
 SELECT drinker, AVG(price)
 FROM Frequents, Sells
 WHERE beer = ’Od.Cl.’ AND
 Frequents.bar = Sells.bar
 GROUP BY drinker;

Compute all
drinker-bar-
price triples
for Odense Cl.

Then group
them by
drinker

53

Restriction on SELECT Lists
With Aggregation

§  If any aggregation is used, then each
element of the SELECT list must be
either:

1.  Aggregated, or
2.  An attribute on the GROUP BY list

54

Illegal Query Example

§  You might think you could find the bar
that sells Odense Cl. the cheapest by:
 SELECT bar, MIN(price)
 FROM Sells
 WHERE beer = ’Od.Cl.’;

§  But this query is illegal in SQL

55

HAVING Clauses

§  HAVING <condition> may follow a
GROUP BY clause

§  If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated

56

Example: HAVING

§  From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Albani Bryggerierne

57

Solution

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(bar) >= 3 OR

 beer IN (SELECT name
 FROM Beers
 WHERE manf = ’Albani’);

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Albani.

Beers manu-
factured by
Albani.

58

Requirements on HAVING
Conditions

§  Anything goes in a subquery
§  Outside subqueries, they may refer to

attributes only if they are either:
1.  A grouping attribute, or
2.  Aggregated

 (same condition as for SELECT clauses
with aggregation)

59

Database Modifications

§  A modification command does not
return a result (as a query does), but
changes the database in some way

§  Three kinds of modifications:
1.  Insert a tuple or tuples
2.  Delete a tuple or tuples
3.  Update the value(s) of an existing tuple

or tuples

60

Insertion

§  To insert a single tuple:
 INSERT INTO <relation>
 VALUES (<list of values>);

§  Example: add to Likes(drinker, beer)
the fact that Lars likes Odense Classic.
 INSERT INTO Likes
 VALUES(’Lars’, ’Od.Cl.’);

61

Specifying Attributes in INSERT

§  We may add to the relation name a list of
attributes

§  Two reasons to do so:
1.  We forget the standard order of attributes for

the relation
2.  We don’t have values for all attributes, and

we want the system to fill in missing
components with NULL or a default value

62

Example: Specifying Attributes

§  Another way to add the fact that Lars
likes Odense Cl. to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)

VALUES(’Od.Cl.’, ’Lars’);

63

Adding Default Values

§  In a CREATE TABLE statement, we can
follow an attribute by DEFAULT and a
value

§  When an inserted tuple has no value for
that attribute, the default will be used

64

Example: Default Values

 CREATE TABLE Drinkers (
 name CHAR(30) PRIMARY KEY,

 addr CHAR(50)

 DEFAULT ’Vestergade’,

 phone CHAR(16)

);

65

Example: Default Values

 INSERT INTO Drinkers(name)
 VALUES(’Lars’);

Resulting tuple:

 Lars Vestergade NULL

name address phone

66

Inserting Many Tuples

§  We may insert the entire result of a
query into a relation, using the form:
 INSERT INTO <relation>
 (<subquery>);

67

Example: Insert a Subquery

§  Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Lars “potential buddies”, i.e.,
those drinkers who frequent at least
one bar that Lars also frequents

68

Solution

INSERT INTO PotBuddies
(SELECT d2.drinker
 FROM Frequents d1, Frequents d2
 WHERE d1.drinker = ’Lars’ AND
 d2.drinker <> ’Lars’ AND
 d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Lars,
the second is for
someone else,
and the bars are
the same

The other
drinker

69

Deletion

§  To delete tuples satisfying a condition
from some relation:
 DELETE FROM <relation>
 WHERE <condition>;

70

Example: Deletion

§  Delete from Likes(drinker, beer) the fact
that Lars likes Odense Classic:
 DELETE FROM Likes
 WHERE drinker = ’Lars’ AND

 beer = ’Od.Cl.’;

71

Example: Delete all Tuples

§  Make the relation Likes empty:

 DELETE FROM Likes;

§  Note no WHERE clause needed.

72

Example: Delete Some Tuples

§  Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b
WHERE EXISTS (
 SELECT name FROM Beers
 WHERE manf = b.manf AND
 name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b

73

Semantics of Deletion

§  Suppose Albani makes only Odense
Classic and Eventyr

§  Suppose we come to the tuple b for
Odense Classic first

§  The subquery is nonempty, because of
the Eventyr tuple, so we delete Od.Cl.

§  Now, when b is the tuple for Eventyr,
do we delete that tuple too?

74

Semantics of Deletion

§  Answer: we do delete Eventyr as well
§  The reason is that deletion proceeds in

two stages:
1.  Mark all tuples for which the WHERE

condition is satisfied
2.  Delete the marked tuples

75

Updates

§  To change certain attributes in certain
tuples of a relation:
 UPDATE <relation>
 SET <list of attribute assignments>
 WHERE <condition on tuples>;

76

Example: Update

§  Change drinker Lars’s phone number to
47 11 23 42:

 UPDATE Drinkers
 SET phone = ’47 11 23 42’

 WHERE name = ’Lars’;

77

Example: Update Several Tuples
§  Make 30 the maximum price for beer:

 UPDATE Sells
 SET price = 30

 WHERE price > 30;

Summary 4

More things you should know:
§  More joins

§ OUTER JOIN, NATURAL JOIN

§  Aggregation
§  COUNT, SUM, AVG, MAX, MIN
§  GROUP BY, HAVING

§  Database updates
§  INSERT, DELETE, UPDATE

78

79

Functional Dependencies

80

Functional Dependencies

§  X →Y is an assertion about a relation R that
whenever two tuples of R agree on all the
attributes of X, then they must also agree on
all attributes in set Y
§  Say “X → Y holds in R”
§  Convention: …, X, Y, Z represent sets of

attributes; A, B, C,… represent single attributes
§  Convention: no set formers in sets of attributes,

just ABC, rather than {A,B,C }

81

Splitting Right Sides of FD’s

§  X→A1A2…An holds for R exactly when
each of X→A1, X→A2,…, X→An hold for R

§  Example: A→BC is equivalent to A→B
and A→C

§  There is no splitting rule for left sides
§  We’ll generally express FD’s with

singleton right sides

82

Example: FD’s

Drinkers(name, addr, beersLiked, manf,
favBeer)

§  Reasonable FD’s to assert:
1.  name → addr favBeer

§  Note: this FD is the same as name → addr
and name → favBeer

2.  beersLiked → manf

83

Example: Possible Data

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Albani Erdinger W.
Peter Campusvej Erdinger W. Erdinger Erdinger W.
Lars NULL Odense Cl. Albani Odense Cl.

Because name → addr Because name → favBeer

Because beersLiked → manf

84

Keys of Relations

§  K is a superkey for relation R if
K functionally determines all of R

§  K is a key for R if K is a superkey,
but no proper subset of K is a
superkey

85

Example: Superkey

Drinkers(name, addr, beersLiked, manf,
 favBeer)

§  {name, beersLiked} is a superkey
because together these attributes
determine all the other attributes
§  name → addr favBeer
§  beersLiked → manf

86

Example: Key

§  {name, beersLiked} is a key because
neither {name} nor {beersLiked} is a
superkey
§  name doesn’t → manf
§  beersLiked doesn’t → addr

§  There are no other keys, but lots of
superkeys
§  Any superset of {name, beersLiked}

87

Where Do Keys Come From?

1.  Just assert a key K
§  The only FD’s are K → A for all

attributes A

2.  Assert FD’s and deduce the keys by
systematic exploration

88

More FD’s From “Physics”

§  Example:
“no two courses can meet in the same
room at the same time” tells us:
§  hour room → course

89

Inferring FD’s

§  We are given FD’s X1 → A1, X2 → A2,…,
Xn → An , and we want to know whether
an FD Y → B must hold in any relation
that satisfies the given FD’s
§  Example:

If A → B and B → C hold, surely A → C
holds, even if we don’t say so

§  Important for design of good relation
schemas

90

Inference Test

§  To test if Y → B, start by assuming two
tuples agree in all attributes of Y

 Y

0000000. . . 0
00000?? . . . ?

91

Inference Test

§  Use the given FD’s to infer that these
tuples must also agree in certain other
attributes
§  If B is one of these attributes, then Y → B

is true
§ Otherwise, the two tuples, with any forced

equalities, form a two-tuple relation that
proves Y -> B does not follow from the
given FD’s

92

Example: Subquery in FROM

§  Find the beers liked by at least one person
who frequents Cafe Chino

SELECT beer

FROM Likes, (SELECT drinker

 FROM Frequents

 WHERE bar = ’C.Ch.’)CCD

WHERE Likes.drinker = CCD.drinker;

Drinkers who
frequent C.Ch.

93

Subqueries That Return One Tuple

§  If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value
§  Usually, the tuple has one component
§  A run-time error occurs if there is no tuple

or more than one tuple

94

Example: Single-Tuple Subquery

§  Using Sells(bar, beer, price), find the
bars that serve Pilsener for the same
price Cafe Chino charges for Od.Cl.

§  Two queries would surely work:
1.  Find the price Cafe Chino charges for Od.Cl.
2.  Find the bars that serve Pilsener at that

price

95

Query + Subquery Solution

 SELECT bar
 FROM Sells
 WHERE beer = ’Pilsener’ AND
 price = (SELECT price
 FROM Sells
 WHERE bar = ’Cafe Chino’
 AND beer = ’Od.Cl.’);

The price at
Which C.Ch.
sells Od.Cl.

96

The IN Operator

§  <tuple> IN (<subquery>) is true if and
only if the tuple is a member of the
relation produced by the subquery
§ Opposite: <tuple> NOT IN (<subquery>)

§  IN-expressions can appear in WHERE
clauses

97

Example: IN

§  Using Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of
each beer that Peter likes
 SELECT *
 FROM Beers
 WHERE name IN (SELECT beer
 FROM Likes
 WHERE drinker =
’Peter’);

The set of
Beers Peter
likes

98

What is the difference?

R(a,b); S(b,c)

SELECT a

FROM R, S

WHERE R.b = S.b;

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

99

IN is a Predicate About R’s Tuples

SELECT a
FROM R

WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) satisfies
the condition;
1 is output once

Two 2’s

100

This Query Pairs Tuples from R, S

SELECT a
FROM R, S

WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice

101

The Exists Operator

§  EXISTS(<subquery>) is true if and only
if the subquery result is not empty

§  Example: From Beers(name, manf),
find those beers that are the unique
beer by their manufacturer

102

Example: EXISTS

 SELECT name
 FROM Beers b1
 WHERE NOT EXISTS (
 SELECT *
 FROM Beers
 WHERE manf = b1.manf AND
 name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute

Notice the
SQL “not
equals”
operator

103

The Operator ANY

§  x = ANY(<subquery>) is a boolean
condition that is true iff x equals at least
one tuple in the subquery result
§ = could be any comparison operator.

§  Example: x >= ANY(<subquery>) means x
is not the uniquely smallest tuple produced
by the subquery
§  Note tuples must have one component only

104

The Operator ALL

§  x <> ALL(<subquery>) is true iff for
every tuple t in the relation, x is not
equal to t
§  That is, x is not in the subquery result

§  <> can be any comparison operator
§  Example: x >= ALL(<subquery>)

means there is no tuple larger than x in
the subquery result

105

Example: ALL

§  From Sells(bar, beer, price), find the
beer(s) sold for the highest price
 SELECT beer
 FROM Sells
 WHERE price >= ALL(
 SELECT price
 FROM Sells);

price from the outer
Sells must not be
less than any price.

106

Union, Intersection, and Difference
§  Union, intersection, and difference of

relations are expressed by the following
forms, each involving subqueries:
§  (<subquery>) UNION (<subquery>)
§  (<subquery>) INTERSECT (<subquery>)
§  (<subquery>) EXCEPT (<subquery>)

107

Example: Intersection

§  Using Likes(drinker, beer), Sells(bar, beer,
price), and Frequents(drinker, bar), find
the drinkers and beers such that:

1.  The drinker likes the beer, and
2.  The drinker frequents at least one bar that

sells the beer

108

Solution

(SELECT * FROM Likes)
 INTERSECT

(SELECT drinker, beer
 FROM Sells, Frequents
 WHERE Frequents.bar = Sells.bar
);

The drinker frequents
a bar that sells the
beer.

Notice trick:
subquery is
really a stored
table.

109

Bag Semantics

§  Although the SELECT-FROM-WHERE
statement uses bag semantics, the
default for union, intersection, and
difference is set semantics
§  That is, duplicates are eliminated as the

operation is applied

110

Motivation: Efficiency

§  When doing projection, it is easier to
avoid eliminating duplicates
§  Just work tuple-at-a-time

§  For intersection or difference, it is most
efficient to sort the relations first
§  At that point you may as well eliminate the

duplicates anyway

111

Controlling Duplicate Elimination

§  Force the result to be a set by
SELECT DISTINCT . . .

§  Force the result to be a bag (i.e., don’t
eliminate duplicates) by ALL, as
in . . . UNION ALL . . .

112

Example: DISTINCT

§  From Sells(bar, beer, price), find all the
different prices charged for beers:
 SELECT DISTINCT price
 FROM Sells;

§  Notice that without DISTINCT, each
price would be listed as many times as
there were bar/beer pairs at that price

113

Example: ALL

§  Using relations Frequents(drinker, bar) and
Likes(drinker, beer):
 (SELECT drinker FROM Frequents)
 EXCEPT ALL

 (SELECT drinker FROM Likes);

§  Lists drinkers who frequent more bars than
they like beers, and does so as many times as
the difference of those counts

114

Join Expressions

§  SQL provides several versions of (bag)
joins

§  These expressions can be stand-alone
queries or used in place of relations in a
FROM clause

115

Products and Natural Joins

§  Natural join:
 R NATURAL JOIN S;

§  Product:
 R CROSS JOIN S;

§  Example:
 Likes NATURAL JOIN Sells;

§  Relations can be parenthesized subqueries, as
well

116

Theta Join

§  R JOIN S ON <condition>
§  Example: using Drinkers(name, addr) and

Frequents(drinker, bar):
 Drinkers JOIN Frequents ON
 name = drinker;

 gives us all (d, a, d, b) quadruples such
that drinker d lives at address a and
frequents bar b

Summary 3

More things you should know:
§  SELECT FROM WHERE statements with

one or more tables
§  Complex conditions, pattern matching
§  Subqueries, natural joins, theta joins

117

Extended Relational Algebra

118

119

The Extended Algebra

δ = eliminate duplicates from bags

τ = sort tuples

γ = grouping and aggregation
Outerjoin: avoids “dangling tuples” =

tuples that do not join with anything

120

Duplicate Elimination

§  R1 := δ(R2)
§  R1 consists of one copy of each tuple

that appears in R2 one or more times

121

Example: Duplicate Elimination

R = (A B)
 1 2
 3 4
 1 2

δ(R) = A B
 1 2
 3 4

122

Sorting

§  R1 := τL (R2)
§  L is a list of some of the attributes of R2

§  R1 is the list of tuples of R2 sorted
lexicographically according to the attributes in L,
i.e., first on the value of the first attribute on L,
then on the second attribute of L, and so on
§  Break ties arbitrarily

§ τ is the only operator whose result is neither a
set nor a bag

123

Example: Sorting

R = (A B)
 1 2
 3 4
 5 2

τB (R) = [(5,2), (1,2), (3,4)]

124

Aggregation Operators

§  Aggregation operators are not operators
of relational algebra

§  Rather, they apply to entire columns of
a table and produce a single result

§  The most important examples: SUM,
AVG, COUNT, MIN, and MAX

125

Example: Aggregation

R = (A B)
 1 3
 3 4
 3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

126

Grouping Operator

§  R1 := γL (R2)
L is a list of elements that are either:

1.  Individual (grouping) attributes
2.  AGG(A), where AGG is one of the

aggregation operators and A is an
attribute
§  An arrow and a new attribute name renames

the component

127

Applying γL(R)
§  Group R according to all the grouping

attributes on list L
§  That is: form one group for each distinct list

of values for those attributes in R

§  Within each group, compute AGG(A) for
each aggregation on list L

§  Result has one tuple for each group:
1.  The grouping attributes and
2.  Their group’s aggregations

128

Example: Grouping/Aggregation

R = (A B C)
 1 2 3
 4 5 6
 1 2 5

γA,B,AVG(C)->X (R) = ??

First, group R by A and B :
 A B C
 1 2 3
 1 2 5
 4 5 6

Then, average C
within groups:

A B X
1 2 4
4 5 6

129

Outerjoin

§  Suppose we join R ⋈C S
§  A tuple of R that has no tuple of S with

which it joins is said to be dangling
§  Similarly for a tuple of S

§  Outerjoin preserves dangling tuples by
padding them NULL

130

Example: Outerjoin

R = (A B) S = (B C)
 1 2 2 3
 4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling

R OUTERJOIN S = A B C
 1 2 3
 4 5 NULL
 NULL 6 7

Summary 4

More things you should know:
§  Duplicate Elimination
§  Sorting
§  Aggregation
§  Grouping
§  Outer Joins

131

Back to SQL

132

133

Outerjoins

§  R OUTER JOIN S is the core of an
outerjoin expression

§  It is modified by:
1.  Optional NATURAL in front of OUTER
2.  Optional ON <condition> after JOIN
3.  Optional LEFT, RIGHT, or FULL before

OUTER
  LEFT = pad dangling tuples of R only
  RIGHT = pad dangling tuples of S only
  FULL = pad both; this choice is the default

Only one
of these

134

Aggregations

§  SUM, AVG, COUNT, MIN, and MAX can
be applied to a column in a SELECT
clause to produce that aggregation on
the column

§  Also, COUNT(*) counts the number of
tuples

135

Example: Aggregation

§  From Sells(bar, beer, price), find the
average price of Odense Classic:
 SELECT AVG(price)
 FROM Sells

 WHERE beer = ’Od.Cl.’;

136

Eliminating Duplicates in an
Aggregation

§  Use DISTINCT inside an aggregation
§  Example: find the number of different

prices charged for Bud:
 SELECT COUNT(DISTINCT price)
 FROM Sells

 WHERE beer = ’Od.Cl.’;

137

NULL’s Ignored in
Aggregation

§  NULL never contributes to a sum,
average, or count, and can never be the
minimum or maximum of a column

§  But if there are no non-NULL values in a
column, then the result of the
aggregation is NULL
§  Exception: COUNT of an empty set is 0

138

Example: Effect of NULL’s

SELECT count(*)
FROM Sells
WHERE beer = ’Od.Cl.’;

SELECT count(price)
FROM Sells
WHERE beer = ’Od.Cl.’;

The number of bars
that sell Odense Classic

The number of bars
that sell Odense Classic
at a known price

139

Grouping

§  We may follow a SELECT-FROM-WHERE
expression by GROUP BY and a list of
attributes

§  The relation that results from the
SELECT-FROM-WHERE is grouped
according to the values of all those
attributes, and any aggregation is
applied only within each group

140

Example: Grouping

§  From Sells(bar, beer, price), find the
average price for each beer:
 SELECT beer, AVG(price)
 FROM Sells

 GROUP BY beer;

beer AVG(price)
Od.Cl. 20
… …

141

Example: Grouping

§  From Sells(bar, beer, price) and
Frequents(drinker, bar), find for each drinker
the average price of Odense Classic at the
bars they frequent:
 SELECT drinker, AVG(price)
 FROM Frequents, Sells
 WHERE beer = ’Od.Cl.’ AND
 Frequents.bar = Sells.bar
 GROUP BY drinker;

Compute all
drinker-bar-
price triples
for Odense Cl.

Then group
them by
drinker

142

Restriction on SELECT Lists
With Aggregation

§  If any aggregation is used, then each
element of the SELECT list must be
either:

1.  Aggregated, or
2.  An attribute on the GROUP BY list

143

Illegal Query Example

§  You might think you could find the bar
that sells Odense Cl. the cheapest by:
 SELECT bar, MIN(price)
 FROM Sells
 WHERE beer = ’Od.Cl.’;

§  But this query is illegal in SQL

144

HAVING Clauses

§  HAVING <condition> may follow a
GROUP BY clause

§  If so, the condition applies to each
group, and groups not satisfying the
condition are eliminated

145

Example: HAVING

§  From Sells(bar, beer, price) and
Beers(name, manf), find the average
price of those beers that are either
served in at least three bars or are
manufactured by Albani Bryggerierne

146

Solution

SELECT beer, AVG(price)
FROM Sells
GROUP BY beer
HAVING COUNT(bar) >= 3 OR

 beer IN (SELECT name
 FROM Beers
 WHERE manf = ’Albani’);

Beer groups with at least
3 non-NULL bars and also
beer groups where the
manufacturer is Albani.

Beers manu-
factured by
Albani.

147

Requirements on HAVING
Conditions

§  Anything goes in a subquery
§  Outside subqueries, they may refer to

attributes only if they are either:
1.  A grouping attribute, or
2.  Aggregated

 (same condition as for SELECT clauses
with aggregation)

148

Database Modifications

§  A modification command does not
return a result (as a query does), but
changes the database in some way

§  Three kinds of modifications:
1.  Insert a tuple or tuples
2.  Delete a tuple or tuples
3.  Update the value(s) of an existing tuple

or tuples

149

Insertion

§  To insert a single tuple:
 INSERT INTO <relation>
 VALUES (<list of values>);

§  Example: add to Likes(drinker, beer)
the fact that Lars likes Odense Classic.
 INSERT INTO Likes
 VALUES(’Lars’, ’Od.Cl.’);

150

Specifying Attributes in INSERT

§  We may add to the relation name a list of
attributes

§  Two reasons to do so:
1.  We forget the standard order of attributes for

the relation
2.  We don’t have values for all attributes, and

we want the system to fill in missing
components with NULL or a default value

151

Example: Specifying Attributes

§  Another way to add the fact that Lars
likes Odense Cl. to Likes(drinker, beer):

INSERT INTO Likes(beer, drinker)

VALUES(’Od.Cl.’, ’Lars’);

152

Adding Default Values

§  In a CREATE TABLE statement, we can
follow an attribute by DEFAULT and a
value

§  When an inserted tuple has no value for
that attribute, the default will be used

153

Example: Default Values

 CREATE TABLE Drinkers (
 name CHAR(30) PRIMARY KEY,

 addr CHAR(50)

 DEFAULT ’Vestergade’,

 phone CHAR(16)

);

154

Example: Default Values

 INSERT INTO Drinkers(name)
 VALUES(’Lars’);

Resulting tuple:

 Lars Vestergade NULL

name address phone

155

Inserting Many Tuples

§  We may insert the entire result of a
query into a relation, using the form:
 INSERT INTO <relation>
 (<subquery>);

156

Example: Insert a Subquery

§  Using Frequents(drinker, bar), enter
into the new relation PotBuddies(name)
all of Lars “potential buddies”, i.e.,
those drinkers who frequent at least
one bar that Lars also frequents

157

Solution

INSERT INTO PotBuddies
(SELECT d2.drinker
 FROM Frequents d1, Frequents d2
 WHERE d1.drinker = ’Lars’ AND
 d2.drinker <> ’Lars’ AND
 d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Lars,
the second is for
someone else,
and the bars are
the same

The other
drinker

158

Deletion

§  To delete tuples satisfying a condition
from some relation:
 DELETE FROM <relation>
 WHERE <condition>;

159

Example: Deletion

§  Delete from Likes(drinker, beer) the fact
that Lars likes Odense Classic:
 DELETE FROM Likes
 WHERE drinker = ’Lars’ AND

 beer = ’Od.Cl.’;

160

Example: Delete all Tuples

§  Make the relation Likes empty:

 DELETE FROM Likes;

§  Note no WHERE clause needed.

161

Example: Delete Some Tuples

§  Delete from Beers(name, manf) all
beers for which there is another beer by
the same manufacturer.

DELETE FROM Beers b
WHERE EXISTS (
 SELECT name FROM Beers
 WHERE manf = b.manf AND
 name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b

162

Semantics of Deletion

§  Suppose Albani makes only Odense
Classic and Eventyr

§  Suppose we come to the tuple b for
Odense Classic first

§  The subquery is nonempty, because of
the Eventyr tuple, so we delete Od.Cl.

§  Now, when b is the tuple for Eventyr,
do we delete that tuple too?

163

Semantics of Deletion

§  Answer: we do delete Eventyr as well
§  The reason is that deletion proceeds in

two stages:
1.  Mark all tuples for which the WHERE

condition is satisfied
2.  Delete the marked tuples

164

Updates

§  To change certain attributes in certain
tuples of a relation:
 UPDATE <relation>
 SET <list of attribute assignments>
 WHERE <condition on tuples>;

165

Example: Update

§  Change drinker Lars’s phone number to
47 11 23 42:

 UPDATE Drinkers
 SET phone = ’47 11 23 42’

 WHERE name = ’Lars’;

166

Example: Update Several Tuples
§  Make 30 the maximum price for beer:

 UPDATE Sells
 SET price = 30

 WHERE price > 30;

Summary 4

More things you should know:
§  More joins

§ OUTER JOIN, NATURAL JOIN

§  Aggregation
§  COUNT, SUM, AVG, MAX, MIN
§  GROUP BY, HAVING

§  Database updates
§  INSERT, DELETE, UPDATE

167

168

Functional Dependencies

169

Functional Dependencies

§  X →Y is an assertion about a relation R that
whenever two tuples of R agree on all the
attributes of X, then they must also agree on
all attributes in set Y
§  Say “X → Y holds in R”
§  Convention: …, X, Y, Z represent sets of

attributes; A, B, C,… represent single attributes
§  Convention: no set formers in sets of attributes,

just ABC, rather than {A,B,C }

170

Splitting Right Sides of FD’s

§  X→A1A2…An holds for R exactly when
each of X→A1, X→A2,…, X→An hold for R

§  Example: A→BC is equivalent to A→B
and A→C

§  There is no splitting rule for left sides
§  We’ll generally express FD’s with

singleton right sides

171

Example: FD’s

Drinkers(name, addr, beersLiked, manf,
favBeer)

§  Reasonable FD’s to assert:
1.  name → addr favBeer

§  Note: this FD is the same as name → addr
and name → favBeer

2.  beersLiked → manf

172

Example: Possible Data

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Albani Erdinger W.
Peter Campusvej Erdinger W. Erdinger Erdinger W.
Lars NULL Odense Cl. Albani Odense Cl.

Because name → addr Because name → favBeer

Because beersLiked → manf

173

Keys of Relations

§  K is a superkey for relation R if
K functionally determines all of R

§  K is a key for R if K is a superkey,
but no proper subset of K is a
superkey

174

Example: Superkey

Drinkers(name, addr, beersLiked, manf,
 favBeer)

§  {name, beersLiked} is a superkey
because together these attributes
determine all the other attributes
§  name → addr favBeer
§  beersLiked → manf

175

Example: Key

§  {name, beersLiked} is a key because
neither {name} nor {beersLiked} is a
superkey
§  name doesn’t → manf
§  beersLiked doesn’t → addr

§  There are no other keys, but lots of
superkeys
§  Any superset of {name, beersLiked}

176

Where Do Keys Come From?

1.  Just assert a key K
§  The only FD’s are K → A for all

attributes A

2.  Assert FD’s and deduce the keys by
systematic exploration

177

More FD’s From “Physics”

§  Example:
“no two courses can meet in the same
room at the same time” tells us:
§  hour room → course

178

Inferring FD’s

§  We are given FD’s X1 → A1, X2 → A2,…,
Xn → An , and we want to know whether
an FD Y → B must hold in any relation
that satisfies the given FD’s
§  Example:

If A → B and B → C hold, surely A → C
holds, even if we don’t say so

§  Important for design of good relation
schemas

179

Inference Test

§  To test if Y → B, start by assuming two
tuples agree in all attributes of Y

 Y

0000000. . . 0
00000?? . . . ?

180

Inference Test

§  Use the given FD’s to infer that these
tuples must also agree in certain other
attributes
§  If B is one of these attributes, then Y → B

is true
§ Otherwise, the two tuples, with any forced

equalities, form a two-tuple relation that
proves Y -> B does not follow from the
given FD’s

