
1

Functional Dependencies

2

Functional Dependencies

§  X →Y is an assertion about a relation R that
whenever two tuples of R agree on all the
attributes of X, then they must also agree on
all attributes in set Y
§  Say “X → Y holds in R”
§  Convention: …, X, Y, Z represent sets of

attributes; A, B, C,… represent single attributes
§  Convention: no set formers in sets of attributes,

just ABC, rather than {A,B,C }

3

Splitting Right Sides of FD’s

§  X→A1A2…An holds for R exactly when
each of X→A1, X→A2,…, X→An hold for R

§  Example: A→BC is equivalent to A→B
and A→C

§  There is no splitting rule for left sides
§  We’ll generally express FD’s with

singleton right sides

4

Example: FD’s

Drinkers(name, addr, beersLiked, manf,
favBeer)

§  Reasonable FD’s to assert:
1.  name → addr favBeer

§  Note: this FD is the same as name → addr
and name → favBeer

2.  beersLiked → manf

5

Example: Possible Data

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Albani Erdinger W.
Peter Campusvej Erdinger W. Erdinger Erdinger W.
Lars NULL Odense Cl. Albani Odense Cl.

Because name → addr Because name → favBeer

Because beersLiked → manf

6

Keys of Relations

§  K is a superkey for relation R if
K functionally determines all of R

§  K is a key for R if K is a superkey,
but no proper subset of K is a
superkey

7

Example: Superkey

Drinkers(name, addr, beersLiked, manf,
 favBeer)

§  {name, beersLiked} is a superkey
because together these attributes
determine all the other attributes
§  name → addr favBeer
§  beersLiked → manf

8

Example: Key

§  {name, beersLiked} is a key because
neither {name} nor {beersLiked} is a
superkey
§  name doesn’t → manf
§  beersLiked doesn’t → addr

§  There are no other keys, but lots of
superkeys
§  Any superset of {name, beersLiked}

9

Where Do Keys Come From?

1.  Just assert a key K
§  The only FD’s are K → A for all

attributes A

2.  Assert FD’s and deduce the keys by
systematic exploration

10

More FD’s From “Physics”

§  Example:
“no two courses can meet in the same
room at the same time” tells us:
§  hour room → course

11

Inferring FD’s

§  We are given FD’s X1 → A1, X2 → A2,…,
Xn → An , and we want to know whether
an FD Y → B must hold in any relation
that satisfies the given FD’s
§  Example:

If A → B and B → C hold, surely A → C
holds, even if we don’t say so

§  Important for design of good relation
schemas

12

Inference Test

§  To test if Y → B, start by assuming two
tuples agree in all attributes of Y

 Y

0000000. . . 0
00000?? . . . ?

13

Inference Test

§  Use the given FD’s to infer that these
tuples must also agree in certain other
attributes
§  If B is one of these attributes, then Y → B

is true
§ Otherwise, the two tuples, with any forced

equalities, form a two-tuple relation that
proves Y → B does not follow from the
given FD’s

14

Closure Test

§  An easier way to test is to compute the
closure of Y, denoted Y +

§  Basis: Y + = Y
§  Induction: Look for an FD’s left side X

that is a subset of the current Y +
§  If the FD is X → A, add A to Y +

15

Y+
new Y+

X A

16

Finding All Implied FD’s

§  Motivation: “normalization,” the process
where we break a relation schema into
two or more schemas

§  Example: ABCD with FD’s AB → C,
C → D, and D → A
§  Decompose into ABC, AD. What FD’s hold

in ABC ?
§  Not only AB → C, but also C → A !

17

Why?

a1b1c ABC

ABCD

a2b2c

Thus, tuples in the projection
with equal C’s have equal A’s
C → A

a1b1cd1 a2b2cd2

comes
from

d1=d2 because
C → D

a1=a2 because
D → A

18

Basic Idea

1.  Start with given FD’s and find all
nontrivial FD’s that follow from the
given FD’s
§  Nontrivial = right side not contained in

the left

2.  Restrict to those FD’s that involve
only attributes of the projected
schema

19

Simple, Exponential Algorithm

1.  For each set of attributes X, compute X +
2.  Add X → A for all A in X + - X
3.  However, drop XY → A whenever we

discover X → A
§  Because XY → A follows from X → A in any

projection

4.  Finally, use only FD’s involving projected
attributes

20

A Few Tricks

§  No need to compute the closure of the
empty set or of the set of all attributes

§  If we find X + = all attributes, so is the
closure of any superset of X

21

Example: Projecting FD’s

§  ABC with FD’s A → B and B → C
Project onto AC:
§  A +=ABC ; yields A → B, A → C

§ We do not need to compute AB + or AC +

§  B +=BC ; yields B → C
§  C +=C ; yields nothing
§  BC +=BC ; yields nothing

22

Example: Projecting FD’s

§  Resulting FD’s: A → B, A → C, and
B → C

§  Projection onto AC: A → C
§ Only FD that involves a subset of {A,C }

23

A Geometric View of FD’s

§  Imagine the set of all instances of a
particular relation

§  That is, all finite sets of tuples that have
the proper number of components

§  Each instance is a point in this space

24

Example: R(A,B)

{(1,2), (3,4)}

{}

{(1,2), (3,4), (1,3)}

{(5,1)}

25

An FD is a Subset of Instances

§  For each FD X → A there is a subset
of all instances that satisfy the FD

§  We can represent an FD by a region in
the space

§  Trivial FD = an FD that is represented
by the entire space
§  Example: A → A

26

Example: A → B for R(A,B)

{(1,2), (3,4)}

{}

{(1,2), (3,4), (1,3)}

{(5,1)}
A → B

27

Representing Sets of FD’s

§  If each FD is a set of relation instances,
then a collection of FD’s corresponds to
the intersection of those sets
§  Intersection = all instances that satisfy all

of the FD’s

28

Example

A → B
B → C

CD → A

Instances satisfying
A → B, B → C, and
CD → A

29

Implication of FD’s

§  If an FD Y → B follows from FD’s
X1 → A1, …, Xn → An , then the region in
the space of instances for Y → B must
include the intersection of the regions
for the FD’s Xi → Ai
§  That is, every instance satisfying all the

FD’s Xi → Ai surely satisfies Y → B
§  But an instance could satisfy Y → B, yet

not be in this intersection

30

Example

A → B B → C A → C

31

Relational Schema Design

§  Goal of relational schema design is to
avoid anomalies and redundancy
§  Update anomaly: one occurrence of a fact

is changed, but not all occurrences
§  Deletion anomaly: valid fact is lost when a

tuple is deleted

32

Example of Bad Design

Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Alb. Erdinger W.
Peter ??? Erdinger W. Erd. ???
Lars NULL Odense Cl. ??? Odense Cl.

Data is redundant, because each of the ???’s can be figured
out by using the FD’s name → addr favBeer and
beersLiked → manf

33

This Bad Design Also
Exhibits Anomalies

Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer
Peter Campusvej Odense Cl. Alb. Erdinger W.
Peter Campusvej Erdinger W. Erd. Erdinger W.
Lars NULL Odense Cl. Alb. Odense Cl.

•  Update anomaly: if Peter moves to Niels Bohrs Alle,
 will we remember to change each of his tuples?
•  Deletion anomaly: If nobody likes Odense Classic, we lose
 track of the fact that Albani manufactures Odense Classic

34

Boyce-Codd Normal Form

§  We say a relation R is in BCNF if
whenever X → Y is a nontrivial FD that
holds in R, X is a superkey
§  Remember: nontrivial means Y is not

contained in X
§  Remember, a superkey is any superset of

a key (not necessarily a proper superset)

35

Example

Drinkers(name, addr, beersLiked, manf, favBeer)
FD’s: name → addr favBeer, beersLiked → manf

§  Only key is {name, beersLiked}
§  In each FD, the left side is not a

superkey
§  Any one of these FD’s shows Drinkers

is not in BCNF

36

Another Example

Beers(name, manf, manfAddr)
FD’s: name → manf, manf → manfAddr
§  Only key is {name}
§  Name → manf does not violate BCNF, but

manf → manfAddr does

37

Decomposition into BCNF

§  Given: relation R with FD’s F
§  Look among the given FD’s for a BCNF

violation X → Y
§  If any FD following from F violates BCNF,

then there will surely be an FD in F itself
that violates BCNF

§  Compute X +
§  Not all attributes, or else X is a superkey

38

Decompose R Using X → Y

§  Replace R by relations with schemas:
1.  R1 = X +
2.  R2 = R – (X + – X)

§  Project given FD’s F onto the two
new relations

39

Decomposition Picture

R-X + X X +-X

R2

R1

R

40

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)
F = name → addr, name → favBeers

 beersLiked → manf
§  Pick BCNF violation name → addr
§  Close the left side:

 {name}+ = {name, addr, favBeer}
§  Decomposed relations:

1.  Drinkers1(name, addr, favBeer)
2.  Drinkers2(name, beersLiked, manf)

41

Example: BCNF Decomposition

§  We are not done; we need to check
Drinkers1 and Drinkers2 for BCNF

§  Projecting FD’s is easy here
§  For Drinkers1(name, addr, favBeer),

relevant FD’s are name → addr and
name → favBeer
§  Thus, {name} is the only key and Drinkers1

is in BCNF

42

Example: BCNF Decomposition

§  For Drinkers2(name, beersLiked, manf),
the only FD is beersLiked → manf, and
the only key is {name, beersLiked}
§  Violation of BCNF

§  beersLiked+ = {beersLiked, manf}, so
we decompose Drinkers2 into:

1.  Drinkers3(beersLiked, manf)
2.  Drinkers4(name, beersLiked)

43

Example: BCNF Decomposition
§  The resulting decomposition of Drinkers:

1.  Drinkers1(name, addr, favBeer)
2.  Drinkers3(beersLiked, manf)
3.  Drinkers4(name, beersLiked)
§  Notice: Drinkers1 tells us about drinkers,

Drinkers3 tells us about beers, and Drinkers4
tells us the relationship between drinkers and
the beers they like

§  Compare with running example:
1.  Drinkers(name, addr, phone)
2.  Beers(name, manf)
3.  Likes(drinker,beer)

44

Third Normal Form – Motivation

§  There is one structure of FD’s that
causes trouble when we decompose

§  AB → C and C → B
§  Example:

A = street address, B = city, C = post code

§  There are two keys, {A,B } and {A,C }
§  C → B is a BCNF violation, so we must

decompose into AC, BC

45

We Cannot Enforce FD’s

§  The problem is that if we use AC and
BC as our database schema, we cannot
enforce the FD AB → C by checking
FD’s in these decomposed relations

§  Example with A = street, B = city, and
C = post code on the next slide

46

An Unenforceable FD

 street post
Campusvej 5230
Vestergade 5000

 city post
Odense 5230
Odense 5000

Join tuples with equal post codes

 street city post
Campusvej Odense 5230
Vestergade Odense 5000

No FD’s were violated in the decomposed relations and
FD street city → post holds for the database as a whole

47

An Unenforceable FD

 street post
Hjallesevej 5230
Hjallesevej 5000

 city post
Odense 5230
Odense 5000

Join tuples with equal post codes

 street city post
Hjallesevej Odense 5230
Hjallesevej Odense 5000

Although no FD’s were violated in the decomposed relations,
FD street city → post is violated by the database as a whole

48

Another Unenforcable FD

§  Departures(time, track, train)
§  time track → train and train → track
§  Two keys, {time,track} and {time,train}
§  train → track is a BCNF violation, so we

must decompose into
Departures1(time, train)
Departures2(track,train)

49

Another Unenforceable FD

 time train
 19:08 ICL54
 19:16 IC852

 track train
 4 ICL54
 3 IC852

Join tuples with equal train code

 time track train
 19:08 4 ICL54
 19:16 3 IC852

No FD’s were violated in the decomposed relations,
FD time track → train holds for the database as a whole

50

Another Unenforceable FD

 time train
 19:08 ICL54
 19:08 IC 42

 track train
 4 ICL54
 4 IC 42

Join tuples with equal train code

 time track train
 19:08 4 ICL54
 19:08 4 IC 42

Although no FD’s were violated in the decomposed relations,
FD time track → train is violated by the database as a whole

51

3NF Let’s Us Avoid This Problem

§  3rd Normal Form (3NF) modifies the
BCNF condition so we do not have to
decompose in this problem situation

§  An attribute is prime if it is a member of
any key

§  X → A violates 3NF if and only if X is
not a superkey, and also A is not prime

52

Example: 3NF

§  In our problem situation with FD’s
AB → C and C → B, we have keys AB
and AC

§  Thus A, B, and C are each prime
§  Although C → B violates BCNF, it does

not violate 3NF

53

What 3NF and BCNF Give You

§  There are two important properties of a
decomposition:

1.  Lossless Join: it should be possible to project
the original relations onto the decomposed
schema, and then reconstruct the original

2.  Dependency Preservation: it should be
possible to check in the projected relations
whether all the given FD’s are satisfied

54

3NF and BCNF – Continued

§  We can get (1) with a BCNF decomposition
§  We can get both (1) and (2) with a 3NF

decomposition
§  But we can’t always get (1) and (2) with a

BCNF decomposition
§  street-city-post is an example
§  time-track-train is another example

55

Testing for a Lossless Join

§  If we project R onto R1, R2,…, Rk , can
we recover R by rejoining?

§  Any tuple in R can be recovered from
its projected fragments

§  So the only question is: when we rejoin,
do we ever get back something we
didn’t have originally?

56

The Chase Test

§  Suppose tuple t comes back in the join
§  Then t is the join of projections of

some tuples of R, one for each Ri of
the decomposition

§  Can we use the given FD’s to show that
one of these tuples must be t ?

57

The Chase – (2)

§  Start by assuming t = abc… .
§  For each i, there is a tuple si of R that

has a, b, c,… in the attributes of Ri
§  si can have any values in other

attributes
§  We’ll use the same letter as in t, but

with a subscript, for these components

58

Example: The Chase

§  Let R = ABCD, and the decomposition
be AB, BC, and CD

§  Let the given FD’s be C → D and B →
A

§  Suppose the tuple t = abcd is the join
of tuples projected onto AB, BC, CD

 A B C D
 a b c1 d1

 a2 b c d2

 a3 b3 c d
d

Use C → D

a

Use B → A

59

The Tableau

We’ve proved the
second tuple must be t

The tuples
of R pro-
jected onto
AB, BC, CD

60

Summary of the Chase

1.  If two rows agree in the left side of a FD, make
their right sides agree too

2.  Always replace a subscripted symbol by the
corresponding unsubscripted one, if possible

3.  If we ever get an unsubscripted row, we know
any tuple in the project-join is in the original (the
join is lossless)

4.  Otherwise, the final tableau is a counterexample

61

Example: Lossy Join

§  Same relation R = ABCD and same
decomposition.

§  But with only the FD C → D

62

The Tableau

 A B C D
 a b c1 d1

 a2 b c d2

 a3 b3 c d
d

Use C → D These three tuples are an example
R that shows the join lossy
abcd is not in R, but we can project and
rejoin to get abcd

These projections
rejoin to form
abcd

63

3NF Synthesis Algorithm

§  We can always construct a decomposition
into 3NF relations with a lossless join and
dependency preservation

§  Need minimal basis for the FD’s:
1.  Right sides are single attributes
2.  No FD can be removed
3.  No attribute can be removed from a left side

64

Constructing a Minimal Basis

1.  Split right sides
2.  Repeatedly try to remove an FD and

see if the remaining FD’s are
equivalent to the original

3.  Repeatedly try to remove an attribute
from a left side and see if the resulting
FD’s are equivalent to the original

65

3NF Synthesis – (2)

§  One relation for each FD in the minimal
basis
§  Schema is the union of the left and right

sides

§  If no key is contained in an FD, then add
one relation whose schema is some key

66

Example: 3NF Synthesis

§  Relation R = ABCD
§  FD’s A → B and A → C
§  Decomposition: AB and AC from the

FD’s, plus AD for a key

