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Functional Dependencies 
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Functional Dependencies 

§  X →Y  is an assertion about a relation R  that 
whenever two tuples of R  agree on all the 
attributes of X, then they must also agree on 
all attributes in set Y 
§  Say “X → Y  holds in R” 
§  Convention: …, X, Y, Z  represent sets of 

attributes; A, B, C,… represent single attributes 
§  Convention: no set formers in sets of attributes, 

just ABC, rather than {A,B,C } 
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Splitting Right Sides of FD’s 

§  X→A1A2…An  holds for R  exactly when 
each of X→A1, X→A2,…, X→An  hold for R 

§  Example: A→BC  is equivalent to A→B  
and A→C 

§  There is no splitting rule for left sides 
§  We’ll generally express FD’s with 

singleton right sides 
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Example: FD’s 

Drinkers(name, addr, beersLiked, manf, 
favBeer) 

§  Reasonable FD’s to assert: 
1.  name → addr favBeer 

§  Note: this FD is the same as name → addr 
and name → favBeer 

2.  beersLiked → manf 
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Example: Possible Data 

name   addr      beersLiked    manf  favBeer 
Peter   Campusvej   Odense Cl.    Albani  Erdinger W. 
Peter   Campusvej   Erdinger W.    Erdinger  Erdinger W. 
Lars   NULL    Odense Cl.    Albani  Odense Cl. 

Because name → addr Because name → favBeer 

Because beersLiked → manf 
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Keys of Relations 

§  K  is a superkey  for relation R  if       
K  functionally determines all of R 

§  K  is a key  for R  if K  is a superkey, 
but no proper subset of K  is a 
superkey 
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Example: Superkey 

Drinkers(name, addr, beersLiked, manf,
 favBeer) 

§  {name, beersLiked} is a superkey 
because together these attributes 
determine all the other attributes 
§  name → addr favBeer 
§  beersLiked → manf 
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Example: Key 

§  {name, beersLiked} is a key because 
neither {name} nor {beersLiked} is a 
superkey 
§  name doesn’t → manf 
§  beersLiked doesn’t → addr 

§  There are no other keys, but lots of 
superkeys 
§  Any superset of {name, beersLiked} 
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Where Do Keys Come From? 

1.  Just assert a key K 
§  The only FD’s are K → A  for all 

attributes A 

2.  Assert FD’s and deduce the keys by 
systematic exploration 
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More FD’s From “Physics” 

§  Example:        
“no two courses can meet in the same 
room at the same time” tells us:  
§  hour room → course 



11 

Inferring FD’s 

§  We are given FD’s X1 → A1, X2 → A2,…, 
Xn → An , and we want to know whether 
an FD Y → B  must hold in any relation 
that satisfies the given FD’s 
§  Example:          

If A → B  and B → C  hold, surely A → C  
holds, even if we don’t say so 

§  Important for design of good relation 
schemas 
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Inference Test 

§  To test if Y → B, start by assuming two 
tuples agree in all attributes of Y 

 
 Y 

0000000. . . 0 
00000?? . . . ? 



13 

Inference Test 

§  Use the given FD’s to infer that these 
tuples must also agree in certain other 
attributes 
§  If B is one of these attributes, then Y → B  

is true 
§ Otherwise, the two tuples, with any forced 

equalities, form a two-tuple relation that 
proves Y → B  does not follow from the 
given FD’s 
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Closure Test 

§  An easier way to test is to compute the 
closure  of Y, denoted Y + 

§  Basis: Y + = Y 
§  Induction: Look for an FD’s left side X 

that is a subset of the current Y + 
§  If the FD is X → A, add A to Y + 
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Y+ 
new Y+ 

X A 
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Finding All Implied FD’s 

§  Motivation: “normalization,” the process 
where we break a relation schema into 
two or more schemas 

§  Example: ABCD  with FD’s AB → C,         
C → D, and D → A 
§  Decompose into ABC, AD.  What FD’s hold 

in ABC ? 
§  Not only AB → C, but also C → A ! 
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Why? 

a1b1c ABC 

ABCD 

a2b2c 

Thus, tuples in the projection 
with equal C’s have equal A’s 
C → A 

a1b1cd1 a2b2cd2 

comes 
from 

d1=d2 because 
C → D 

a1=a2 because 
D → A 
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Basic Idea 

1.  Start with given FD’s and find all 
nontrivial  FD’s that follow from the 
given FD’s 
§  Nontrivial = right side not contained in 

the left 

2.  Restrict to those FD’s that involve 
only attributes of the projected 
schema 
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Simple, Exponential Algorithm 

1.  For each set of attributes X, compute X + 
2.  Add X → A  for all A in X + - X 
3.  However, drop XY → A  whenever we 

discover X → A 
§  Because XY → A  follows from X → A in any 

projection 

4.  Finally, use only FD’s involving projected 
attributes 
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A Few Tricks 

§  No need to compute the closure of the 
empty set or of the set of all attributes 

§  If we find X + = all attributes, so is the 
closure of any superset of X 
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Example: Projecting FD’s 

§  ABC  with FD’s A → B  and B → C  
Project onto AC: 
§  A +=ABC ; yields A → B, A → C 

§ We do not need to compute AB + or AC + 

§  B +=BC ; yields B → C 
§  C +=C ; yields nothing 
§  BC +=BC ; yields nothing 
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Example: Projecting FD’s 

§  Resulting FD’s: A → B, A → C, and       
B → C 

§  Projection onto AC: A → C 
§ Only FD that involves a subset of {A,C } 
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A Geometric View of FD’s 

§  Imagine the set of all instances  of a 
particular relation 

§  That is, all finite sets of tuples that have 
the proper number of components 

§  Each instance is a point in this space 
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Example: R(A,B) 

{(1,2), (3,4)} 

{} 

{(1,2), (3,4), (1,3)} 

{(5,1)} 
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An FD is a Subset of Instances 

§  For each FD X → A  there is a subset 
of all instances that satisfy the FD 

§  We can represent an FD by a region in 
the space 

§  Trivial FD = an FD that is represented 
by the entire space 
§  Example: A → A 
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Example: A → B for R(A,B) 

{(1,2), (3,4)} 

{} 

{(1,2), (3,4), (1,3)} 

{(5,1)} 
A → B 
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Representing Sets of FD’s 

§  If each FD is a set of relation instances, 
then a collection of FD’s corresponds to 
the intersection of those sets 
§  Intersection = all instances that satisfy all 

of the FD’s 
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Example 

A → B 
B → C 

CD → A 

Instances satisfying 
A → B, B → C, and 
CD → A 
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Implication of FD’s 

§  If an FD Y → B  follows from FD’s       
X1 → A1, …, Xn → An , then the region in 
the space of instances for Y → B  must 
include the intersection of the regions 
for the FD’s Xi  → Ai  
§  That is, every instance satisfying all the 

FD’s Xi  → Ai  surely satisfies Y → B 
§  But an instance could satisfy Y → B, yet 

not be in this intersection 
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Example 

A → B B → C A → C 



31 

Relational Schema Design 

§  Goal of relational schema design is to 
avoid anomalies and redundancy 
§  Update anomaly: one occurrence of a fact 

is changed, but not all occurrences 
§  Deletion anomaly: valid fact is lost when a 

tuple is deleted 
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Example of Bad Design 

Drinkers(name, addr, beersLiked, manf, favBeer) 
 
name   addr   beersLiked  manf  favBeer 
Peter   Campusvej  Odense Cl.  Alb.  Erdinger W. 
Peter   ???   Erdinger W.  Erd.  ??? 
Lars   NULL   Odense Cl.  ???  Odense Cl. 

Data is redundant, because each of the ???’s can be figured 
out by using the FD’s name → addr favBeer and 
beersLiked → manf 
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This Bad Design Also 
Exhibits Anomalies 

Drinkers(name, addr, beersLiked, manf, favBeer) 
 
name   addr   beersLiked  manf  favBeer 
Peter   Campusvej  Odense Cl.  Alb.  Erdinger W. 
Peter   Campusvej  Erdinger W.  Erd.  Erdinger W. 
Lars   NULL   Odense Cl.  Alb.  Odense Cl. 

•  Update anomaly: if Peter moves to Niels Bohrs Alle, 
  will we remember to change each of his tuples? 
•  Deletion anomaly: If nobody likes Odense Classic, we lose 
  track of the fact that Albani manufactures Odense Classic 
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Boyce-Codd Normal Form  

§  We say a relation R  is in BCNF  if 
whenever X → Y  is a nontrivial FD that 
holds in R, X  is a superkey 
§  Remember: nontrivial  means Y  is not 

contained in X 
§  Remember, a superkey  is any superset of 

a key (not necessarily a proper superset) 
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Example 

Drinkers(name, addr, beersLiked, manf, favBeer) 
FD’s: name → addr favBeer,   beersLiked → manf 

§  Only key is {name, beersLiked} 
§  In each FD, the left side is not  a 

superkey 
§  Any one of these FD’s shows Drinkers  

is not in BCNF 
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Another Example 

Beers(name, manf, manfAddr) 
FD’s: name → manf,   manf → manfAddr 
§  Only key is {name} 
§  Name → manf does not violate BCNF, but 

manf → manfAddr does 
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Decomposition into BCNF 

§  Given: relation R  with FD’s F 
§  Look among the given FD’s for a BCNF 

violation X → Y 
§  If any FD following from F  violates BCNF, 

then there will surely be an FD in F  itself 
that violates BCNF 

§  Compute X + 
§  Not all attributes, or else X is a superkey 
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Decompose R  Using X → Y 

§  Replace R  by relations with schemas: 
1.   R1 = X + 
2.   R2 = R – (X + – X ) 

§  Project  given FD’s F  onto the two 
new relations 
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Decomposition Picture 

R-X + X X +-X 

R2 

R1 

R 
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Example: BCNF Decomposition 

Drinkers(name, addr, beersLiked, manf, favBeer) 
F  =  name → addr,  name → favBeers

 beersLiked → manf 
§  Pick BCNF violation name → addr 
§  Close the left side:    

 {name}+ = {name, addr, favBeer} 
§  Decomposed relations: 

1.  Drinkers1(name, addr, favBeer) 
2.  Drinkers2(name, beersLiked, manf) 
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Example: BCNF Decomposition 

§  We are not done; we need to check 
Drinkers1 and Drinkers2 for BCNF 

§  Projecting FD’s is easy here 
§  For Drinkers1(name, addr, favBeer), 

relevant FD’s are name → addr and   
name → favBeer 
§  Thus, {name} is the only key and Drinkers1 

is in BCNF 
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Example: BCNF Decomposition 

§  For Drinkers2(name, beersLiked, manf), 
the only FD is beersLiked → manf, and 
the only key is {name, beersLiked} 
§  Violation of BCNF 

§  beersLiked+ = {beersLiked, manf}, so 
we decompose Drinkers2  into: 

1.  Drinkers3(beersLiked, manf) 
2.  Drinkers4(name, beersLiked) 
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Example: BCNF Decomposition 
§  The resulting decomposition of Drinkers: 

1.  Drinkers1(name, addr, favBeer) 
2.  Drinkers3(beersLiked, manf) 
3.  Drinkers4(name, beersLiked) 
§  Notice: Drinkers1  tells us about drinkers, 

Drinkers3  tells us about beers, and Drinkers4  
tells us the relationship between drinkers and 
the beers they like 

§  Compare with running example: 
1.  Drinkers(name, addr, phone) 
2.  Beers(name, manf) 
3.  Likes(drinker,beer) 
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Third Normal Form – Motivation 

§  There is one structure of FD’s that 
causes trouble when we decompose 

§  AB → C  and C → B 
§  Example:        

A = street address, B = city, C = post code 

§  There are two keys, {A,B } and {A,C } 
§  C → B  is a BCNF violation, so we must 

decompose into AC, BC  
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We Cannot Enforce FD’s 

§  The problem is that if we use AC  and 
BC  as our database schema, we cannot 
enforce the FD AB → C  by checking 
FD’s in these decomposed relations 

§  Example with A = street, B = city, and 
C = post code on the next slide 
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An Unenforceable FD 

   street    post 
Campusvej   5230 
Vestergade   5000 

   city     post 
Odense  5230 
Odense  5000 

Join tuples with equal post codes 

   street     city     post 
Campusvej  Odense  5230 
Vestergade  Odense  5000 

No FD’s were violated in the decomposed relations and 
FD street city → post holds for the database as a whole 
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An Unenforceable FD 

   street    post 
Hjallesevej   5230 
Hjallesevej   5000 

   city     post 
Odense  5230 
Odense  5000 

Join tuples with equal post codes 

   street     city     post 
Hjallesevej  Odense  5230 
Hjallesevej  Odense  5000 

Although no FD’s were violated in the decomposed relations, 
FD street city → post is violated by the database as a whole 
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Another Unenforcable FD 

§  Departures(time, track, train) 
§  time track → train  and train → track 
§  Two keys, {time,track} and {time,train} 
§  train → track is a BCNF violation, so we 

must decompose into   
Departures1(time, train)    
Departures2(track,train)  
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Another Unenforceable FD 

   time   train 
  19:08   ICL54 
  19:16   IC852 

   track train 
  4   ICL54 
  3   IC852 

Join tuples with equal train code 

   time     track  train 
  19:08     4   ICL54 
  19:16     3   IC852 

No FD’s were violated in the decomposed relations, 
FD time track → train holds for the database as a whole 
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Another Unenforceable FD 

   time   train 
  19:08   ICL54 
  19:08   IC 42 

   track train 
  4   ICL54 
  4   IC 42 

Join tuples with equal train code 

   time     track  train 
  19:08     4   ICL54 
  19:08     4   IC 42 

Although no FD’s were violated in the decomposed relations, 
FD time track → train is violated by the database as a whole 
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3NF Let’s Us Avoid This Problem 

§  3rd Normal Form (3NF) modifies the 
BCNF condition so we do not have to 
decompose in this problem situation 

§  An attribute is prime  if it is a member of 
any key 

§  X → A violates 3NF if and only if X  is 
not a superkey, and also A  is not prime 
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Example: 3NF 

§  In our problem situation with FD’s      
AB → C  and C → B, we have keys AB  
and AC 

§  Thus A, B, and C  are each prime 
§  Although C → B  violates BCNF, it does 

not violate 3NF 
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What 3NF and BCNF Give You 

§  There are two important properties of a 
decomposition: 

1.  Lossless Join: it should be possible to project 
the original relations onto the decomposed 
schema, and then reconstruct the original 

2.  Dependency Preservation: it should be 
possible to check in the projected relations 
whether all the given FD’s are satisfied 
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3NF and BCNF – Continued 

§  We can get (1) with a BCNF decomposition 
§  We can get both (1) and (2) with a 3NF 

decomposition 
§  But we can’t always get (1) and (2) with a 

BCNF decomposition 
§  street-city-post is an example 
§  time-track-train is another example 
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Testing for a Lossless Join 

§  If we project R  onto R1, R2,…, Rk , can 
we recover R  by rejoining? 

§  Any tuple in R  can be recovered from 
its projected fragments 

§  So the only question is: when we rejoin, 
do we ever get back something we 
didn’t have originally? 
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The Chase Test 

§  Suppose tuple t  comes back in the join 
§  Then t  is the join of projections of 

some tuples of R, one for each Ri  of 
the decomposition 

§  Can we use the given FD’s to show that 
one of these tuples must be t ? 
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The Chase – (2) 

§  Start by assuming t = abc… . 
§  For each i, there is a tuple si of R  that 

has a, b, c,… in the attributes of Ri 
§  si can have any values in other 

attributes 
§  We’ll use the same letter as in t, but 

with a subscript, for these components 
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Example: The Chase 

§  Let R = ABCD, and the decomposition 
be AB, BC, and CD 

§  Let the given FD’s be C → D and B → 
A 

§  Suppose the tuple t = abcd is the join 
of tuples projected onto AB, BC, CD 



  A   B   C   D 
  a   b   c1   d1 

  a2   b   c   d2 

  a3   b3   c   d 
d 

Use C → D 

a 

Use B → A 
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The Tableau 

We’ve proved the 
second tuple must be t 

The tuples 
of R pro- 
jected onto 
AB, BC, CD 



60 

Summary of the Chase 

1.  If two rows agree in the left side of a FD, make 
their right sides agree too 

2.  Always replace a subscripted symbol by the 
corresponding unsubscripted one, if possible 

3.  If we ever get an unsubscripted row, we know 
any tuple in the project-join is in the original (the 
join is lossless) 

4.  Otherwise, the final tableau is a counterexample 
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Example: Lossy Join 

§  Same relation R = ABCD  and same 
decomposition. 

§  But with only the FD C → D  
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The Tableau 

  A   B   C   D 
  a   b   c1   d1 

  a2   b   c   d2 

  a3   b3   c   d 
d 

Use C → D These three tuples are an example 
R  that shows the join lossy 
abcd is not in R, but we can project and 
rejoin to get abcd 

These projections 
rejoin to form 
abcd 
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3NF Synthesis Algorithm 

§  We can always construct a decomposition 
into 3NF relations with a lossless join and 
dependency preservation 

§  Need minimal basis  for the FD’s: 
1.  Right sides are single attributes 
2.  No FD can be removed 
3.  No attribute can be removed from a left side 
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Constructing a Minimal Basis 

1.  Split right sides 
2.  Repeatedly try to remove an FD and 

see if the remaining FD’s are 
equivalent to the original 

3.  Repeatedly try to remove an attribute 
from a left side and see if the resulting 
FD’s are equivalent to the original 
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3NF Synthesis – (2) 

§  One relation for each FD in the minimal 
basis 
§  Schema is the union of the left and right 

sides 

§  If no key is contained in an FD, then add 
one relation whose schema is some key 
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Example: 3NF Synthesis 

§  Relation R = ABCD 
§  FD’s A → B  and A → C 
§  Decomposition: AB and AC from the 

FD’s, plus AD for a key  


