
1

Design Techniques

1.  Avoid redundancy
2.  Limit the use of weak entity sets
3.  Don’t use an entity set when an

attribute will do

2

Avoiding Redundancy

§  Redundancy = saying the same thing
in two (or more) different ways

§  Wastes space and (more importantly)
encourages inconsistency
§  Two representations of the same fact

become inconsistent if we change one and
forget to change the other

§  Recall anomalies due to FD’s

3

Example: Good

Beers Manfs ManfBy

name

This design gives the address of each
manufacturer exactly once

name addr

4

Example: Bad

Beers Manfs ManfBy

name

This design states the manufacturer of a beer
twice: as an attribute and as a related entity.

name

manf

addr

5

Example: Bad

Beers

name

This design repeats the manufacturer’s address
once for each beer and loses the address if there
are temporarily no beers for a manufacturer

manf manfAddr

6

Entity Sets Versus Attributes

§  An entity set should satisfy at least
one of the following conditions:
§  It is more than the name of something; it

has at least one nonkey attribute
 or

§  It is the “many” in a many-one or many-
many relationship

7

Example: Good

Beers Manfs ManfBy

name

•  Manfs deserves to be an entity set because of
 the nonkey attribute addr
•  Beers deserves to be an entity set because it is
 the “many” of the many-one relationship ManfBy

name addr

8

Example: Good

Beers

name

There is no need to make the manufacturer an
entity set, because we record nothing about
manufacturers besides their name

manf

9

Example: Bad

Beers Manfs ManfBy

name

Since the manufacturer is nothing but a name,
and is not at the “many” end of any relationship,
it should not be an entity set

name

10

Don’t Overuse Weak Entity Sets

§  Beginning database designers often doubt
that anything could be a key by itself
§  They make all entity sets weak, supported by all

other entity sets to which they are linked

§  In reality, we usually create unique ID’s for
entity sets
§  Examples include CPR numbers, car’s license

plates, etc.

11

When Do We Need Weak
Entity Sets?

§  The usual reason is that there is no
global authority capable of creating
unique ID’s

§  Example: it is unlikely that there could
be an agreement to assign unique
player numbers across all football teams
in the world

12

From E/R Diagrams to Relations
§  Entity set → relation

§  Attributes → attributes

§  Relationships → relations whose
attributes are only:
§  The keys of the connected entity sets
§  Attributes of the relationship itself

13

Entity Set → Relation

Relation: Beers(name, manf)

Beers

name manf

14

Relationship → Relation

Drinkers Beers Likes

Likes(drinker, beer)
Favorite

Favorite(drinker, beer)

Married

husband

wife

Married(husband, wife)

name addr name manf

Buddies

1 2

Buddies(name1, name2)

15

Combining Relations

§  OK to combine into one relation:
1.  The relation for an entity-set E
2.  The relations for many-one relationships

of which E is the “many”

§  Example: Drinkers(name, addr) and
Favorite(drinker, beer) combine to
make Drinker1(name, addr, favBeer)

Redundancy

16

Risk with Many-Many Relationships
§  Combining Drinkers with Likes would be

a mistake. It leads to redundancy, as:

name addr beer
Peter Campusvej Od.Cl.
Peter Campusvej Erd.W.

17

Handling Weak Entity Sets

§  Relation for a weak entity set must
include attributes for its complete key
(including those belonging to other
entity sets), as well as its own, nonkey
attributes

§  A supporting relationship is redundant
and yields no relation (unless it has
attributes)

18

Example: Weak Entity Set →
Relation

Logins Hosts At

name name

Hosts(hostName, location)
Logins(loginName, hostName, expiry)
At(loginName, hostName, hostName2)

Must be the same

expiry

At becomes part of
Logins

location

19

Subclasses: Three Approaches

1. Object-oriented : One relation per subset of
subclasses, with all relevant attributes

2.  Use nulls : One relation; entities have NULL
in attributes that don’t belong to them

3.  E/R style : One relation for each subclass:
§  Key attribute(s)
§  Attributes of that subclass

20

Example: Subclass → Relations

Beers

Ales

isa

name manf

color

21

Object-Oriented

 name manf
 Odense Classic Albani

 Beers

name manf color
HC Andersen Albani red

 Ales

Good for queries like “find the
color of ales made by Albani”

22

E/R Style
name manf
Odense Classic Albani
HC Andersen Albani

 Beers

name color
HC Andersen red

 Ales

Good for queries like
“find all beers (including
ales) made by Albani”

23

Using Nulls

name manf color
Odense Classic Albani NULL
HC Andersen Albani red

 Beers

Saves space unless there are lots
of attributes that are usually NULL

Summary 6

More things you should know:
§  Entities, Attributes, Entity Sets,
§  Relationships, Multiplicity, Keys
§  Roles, Subclasses, Weak Entity Sets
§  Design guidelines
§  E/R diagrams → relational model

24

The Project

25

Purpose of the Project

§  To try in practice the process of designing
and creating a relational database
application

§  This process includes:
§  development of an E/R model
§  transfer to the relational model
§  normalization of relations
§  implementation in a DBMS
§  programming of an application

26

Project as part of The Exam

§  Part of the exam and grading!
§  The project must be done individually
§  No cooperation is allowed beyond what

is explicitly stated in the description

27

Subject of the Project

§  To create an electronic inventory for a
computer store

§  Keep information about complete
computer systems and components

§  System should be able to
§  calculate prices for components and

computer systems
§ make lists of components to order from the

distributor
28

Objects of the System

§  component: name, kind, price
§  kind is one of CPU, RAM, graphics card,

mainboard, case
§  CPU: socket, bus speed
§  RAM: type, bus speed
§ mainboard: CPU socket, RAM type, on-

board graphics?, form factor
§  case: form factor

29

Objects of the System

§  computer system: catchy name, list of
components
§  requires a case, a mainboard, a CPU, RAM,

optionally a graphics card
§  sockets, bus speed, RAM type, and form

factor must match
§  if there is no on-board graphics, a graphics

card must be included

30

Objects of the System

§  current stock: list of components and their
current amount

§  minimum inventory: list of components,
their allowed minimum amount, and their
preferred amount after restocking

31

Intended Use of the System

§  Print a daily price list for components
and computer systems

§  Give quotes for custom orders
§  Print out a list of components for

restocking on Saturday morning
(computer store restocks his inventory
every Saturday at his distributor)

32

Selling Price

§  Selling price for a component is the
price + 30%

§  Selling price for a computer system is
sum of the selling prices of the
components rounded up to next ’99‘

§  Rebate System:
§  total price is reduced by 2% for each

additional computer system ordered
§ maximal 20% rebate

33

Example: Selling Price

§  computer system for which the
components are worth DKK 1984

§  the selling price of the components is
1984*1.3 = 2579.2

§  It would be sold for DKK 2599
§  Order of 3 systems: DKK 7485, i.e.,

DKK 2495 per system
§  Order of 11, 23, or 42 systems:

DKK 2079 per system
34

Functionality of the System

§  List of all components in the system and
their current amount

§  List of all computer systems in the
system and how many of each could be
build from the current stock

§  Price list including all components and
their selling prices grouped by kind all
computers systems that could be build
from the current stock including their
components and selling price 35

Functionality of the System

§  Price offer given the computer system
and the quantity

§  Sell a component or a computer system
by updating the current stock

§  Restocking list including names and
amounts of all components needed for
restocking to the preferred level

36

Limitations for the Project

§  No facilities for updating are required
except for the Selling mentioned explicitly

§  Only a simple command-line based
interface for user interaction is required
§  Choices by the user can be input by showing

a numbered list of alternatives or by
prompting for component names, etc.

§  You are welcome to include update
facilities or make a better user interface
but this will not influence the final grade! 37

Tasks

1.  Develop an appropriate E/R model
2.  Transfer to a relational model
3.  Ensure that all relations are in 3NF

(decompose and refine the E/R model)
4.  Implement in PostgreSQL DBMS

(ensuring the constraints hold)
5.  Program in Java or Python an

application for the user interaction
providing all functionality from above

38

Test Data

§  Can be made up as you need it
§  At least in the order of 8 computer

systems and 30 components
§  Sharing data with other participants in

the course is explicitly allowed and
encouraged

39

Formalities

§  Printed report of approx. 10 pages
§  design choices and reasoning
§  structure of the final solution
§ Must include:

§ A diagram of your E/R model
§ Schemas of your relations
§ Arguments showing that these are in 3NF
§ Central parts of your SQL code + explanation
§ A (very) short user manual for the application
§ Documentation of testing

40

Milestones

§  There are two stages:
1.  Tasks 1-3, deadline March 11

Preliminary report describing design choices,
E/R model, resulting relational model
(will be commented on and handed back)

2.  Tasks 4-5, deadline March 25
Final report as correction and extension of
the preliminary report

§  Grade for the project will be based both
on the preliminary and on the final report

41

Implementation

§  Java with fx JDBC as DB interface
§  Python with fx psycopg2 as DB interface
§  SQL and Java/Python code handed in

electronically with report in Blackboard
§  Database for testing must be available

on the PostgreSQL server
§  Testing during grading will use your

program and the data on that server

42

43

Constraints

44

Constraints and Triggers

§  A constraint is a relationship among data
elements that the DBMS is required to
enforce
§  Example: key constraints

§  Triggers are only executed when a
specified condition occurs, e.g., insertion
of a tuple
§  Easier to implement than complex constraints

45

Kinds of Constraints

§  Keys
§  Foreign-key, or referential-integrity
§  Value-based constraints

§  Constrain values of a particular attribute

§  Tuple-based constraints
§  Relationship among components

§  Assertions: any SQL boolean expression

46

Review: Single-Attribute Keys

§  Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute

§  Example:
CREATE TABLE Beers (

 name CHAR(20) PRIMARY KEY,

 manf CHAR(20)

);

47

Review: Multiattribute Key

§  The bar and beer together are the key for Sells:
 CREATE TABLE Sells (
 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 PRIMARY KEY (bar, beer)

);

48

Foreign Keys

§  Values appearing in attributes of one
relation must appear together in certain
attributes of another relation

§  Example: in Sells(bar, beer, price), we
might expect that a beer value also
appears in Beers.name

49

Expressing Foreign Keys

§  Use keyword REFERENCES, either:
1.  After an attribute (for one-attribute keys)
2.  As an element of the schema:

 FOREIGN KEY (<list of attributes>)
 REFERENCES <relation> (<attributes>)

§  Referenced attributes must be declared
PRIMARY KEY or UNIQUE

50

Example: With Attribute

CREATE TABLE Beers (
 name CHAR(20) PRIMARY KEY,

 manf CHAR(20);

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20) REFERENCES Beers(name),

 price REAL);

51

Example: As Schema Element

CREATE TABLE Beers (
 name CHAR(20) PRIMARY KEY,
 manf CHAR(20));
CREATE TABLE Sells (
 bar CHAR(20),
 beer CHAR(20),
 price REAL,
 FOREIGN KEY(beer) REFERENCES

 Beers(name));

52

Enforcing Foreign-Key Constraints
§  If there is a foreign-key constraint

from relation R to relation S, two
violations are possible:

1.  An insert or update to R introduces
values not found in S

2.  A deletion or update to S causes some
tuples of R to “dangle”

53

Actions Taken

§  Example: suppose R = Sells, S = Beers
§  An insert or update to Sells that

introduces a non-existent beer must be
rejected

§  A deletion or update to Beers that
removes a beer value found in some
tuples of Sells can be handled in three
ways (next slide)

54

Actions Taken

1.  Default: Reject the modification
2.  Cascade: Make the same changes in

Sells
§  Deleted beer: delete Sells tuple
§  Updated beer: change value in Sells

3.  Set NULL: Change the beer to NULL

55

Example: Cascade

§  Delete the Od.Cl. tuple from Beers:
§  Then delete all tuples from Sells that have

beer = ’Od.Cl.’

§  Update the Od.Cl. tuple by changing
’Od.Cl.’ to ’Odense Classic’:
§  Then change all Sells tuples with beer =

’Od.Cl.’ to beer = ’Odense Classic’

56

Example: Set NULL

§  Delete the Od.Cl. tuple from Beers:
§  Change all tuples of Sells that have beer =

’Od.Cl.’ to have beer = NULL

§  Update the Od.Cl. tuple by changing
’Od.Cl.’ to ’Odense Classic’:
§  Same change as for deletion

57

Choosing a Policy

§  When we declare a foreign key, we may
choose policies SET NULL or CASCADE
independently for deletions and updates

§  Follow the foreign-key declaration by:
ON [UPDATE, DELETE][SET NULL CASCADE]
§  Two such clauses may be used
§  Otherwise, the default (reject) is used

58

Example: Setting Policy
CREATE TABLE Sells (
 bar CHAR(20),
 beer CHAR(20),
 price REAL,
 FOREIGN KEY(beer)
 REFERENCES Beers(name)
 ON DELETE SET NULL
 ON UPDATE CASCADE
);

59

Attribute-Based Checks

§  Constraints on the value of a particular
attribute

§  Add CHECK(<condition>) to the
declaration for the attribute

§  The condition may use the name of the
attribute, but any other relation or
attribute name must be in a subquery

60

Example: Attribute-Based Check

CREATE TABLE Sells (
 bar CHAR(20),

 beer CHAR(20) CHECK (beer IN

 (SELECT name FROM Beers)),

 price INT CHECK (price <= 100)

);

61

Timing of Checks

§  Attribute-based checks are performed
only when a value for that attribute is
inserted or updated
§  Example: CHECK (price <= 100) checks

every new price and rejects the modification
(for that tuple) if the price is more than 100

§  Example: CHECK (beer IN (SELECT
name FROM Beers)) not checked if a beer
is deleted from Beers (unlike foreign-keys)

62

Tuple-Based Checks

§  CHECK (<condition>) may be added as
a relation-schema element

§  The condition may refer to any attribute
of the relation
§  But other attributes or relations require a

subquery

§  Checked on insert or update only

63

Example: Tuple-Based Check

§  Only Carlsens Kvarter can sell beer for more
than 100:
 CREATE TABLE Sells (
 bar CHAR(20),

 beer CHAR(20),

 price REAL,

 CHECK (bar = ’C4’ OR

 price <= 100)

);

64

Assertions

§  These are database-schema elements,
like relations or views

§  Defined by:
 CREATE ASSERTION <name>
 CHECK (<condition>);

§  Condition may refer to any relation or
attribute in the database schema

65

Example: Assertion

§  In Sells(bar, beer, price), no bar may
charge an average of more than 100

CREATE ASSERTION NoRipoffBars CHECK (
 NOT EXISTS (
 SELECT bar FROM Sells
 GROUP BY bar
 HAVING 100 < AVG(price)
));

Bars with an
average price
above 100

66

Example: Assertion

§  In Drinkers(name, addr, phone) and
Bars(name, addr, license), there cannot be
more bars than drinkers

CREATE ASSERTION LessBars CHECK (

 (SELECT COUNT(*) FROM Bars) <=

 (SELECT COUNT(*) FROM Drinkers)

);

67

Timing of Assertion Checks

§  In principle, we must check every
assertion after every modification to any
relation of the database

§  A clever system can observe that only
certain changes could cause a given
assertion to be violated
§  Example: No change to Beers can affect

FewBar; neither can an insertion to Drinkers

68

Triggers

69

Triggers: Motivation

§  Assertions are powerful, but the DBMS
often cannot tell when they need to be
checked

§  Attribute- and tuple-based checks are
checked at known times, but are not
powerful

§  Triggers let the user decide when to
check for any condition

70

Event-Condition-Action Rules

§  Another name for “trigger” is ECA rule,
or event-condition-action rule

§  Event: typically a type of database
modification, e.g., “insert on Sells”

§  Condition: Any SQL boolean-valued
expression

§  Action: Any SQL statements

71

Preliminary Example: A Trigger

§  Instead of using a foreign-key
constraint and rejecting insertions into
Sells(bar, beer, price) with unknown
beers, a trigger can add that beer to
Beers, with a NULL manufacturer

72

Example: Trigger Definition

CREATE TRIGGER BeerTrig
 AFTER INSERT ON Sells
 REFERENCING NEW ROW AS NewTuple
 FOR EACH ROW
 WHEN (NewTuple.beer NOT IN
 (SELECT name FROM Beers))
 INSERT INTO Beers(name)
 VALUES(NewTuple.beer);

The event

The condition

The action

73

Options: CREATE TRIGGER

§  CREATE TRIGGER <name>
§  or CREATE OR REPLACE TRIGGER <name>

§  Useful if there is a trigger with that name and
you want to modify the trigger

74

Options: The Event

§  AFTER can be BEFORE
§  Also, INSTEAD OF, if the relation is a view

§ A clever way to execute view modifications:
have triggers translate them to appropriate
modifications on the base tables

§  INSERT can be DELETE or UPDATE
§  And UPDATE can be UPDATE . . . ON a

particular attribute

75

Options: FOR EACH ROW

§  Triggers are either “row-level” or
“statement-level”

§  FOR EACH ROW indicates row-level; its
absence indicates statement-level

§  Row level triggers: execute once for
each modified tuple

§  Statement-level triggers: execute once
for a SQL statement, regardless of how
many tuples are modified

76

Options: REFERENCING

§  INSERT statements imply a new tuple
(for row-level) or new table (for
statement-level)
§  The “table” is the set of inserted tuples

§  DELETE implies an old tuple or table
§  UPDATE implies both
§  Refer to these by
[NEW OLD][TUPLE TABLE] AS <name>

77

Options: The Condition

§  Any boolean-valued condition
§  Evaluated on the database as it would

exist before or after the triggering
event, depending on whether BEFORE
or AFTER is used
§  But always before the changes take effect

§  Access the new/old tuple/table through
the names in the REFERENCING clause

78

Options: The Action

§  There can be more than one SQL
statement in the action
§  Surround by BEGIN . . . END if there is

more than one

§  But queries make no sense in an action,
so we are really limited to modifications

79

Another Example

§  Using Sells(bar, beer, price) and a
unary relation RipoffBars(bar), maintain
a list of bars that raise the price of any
beer by more than 10

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > 10

When the price change
is great enough, add
the bar to RipoffBars

80

The Trigger

CREATE TRIGGER PriceTrig
 AFTER UPDATE OF price ON Sells
 REFERENCING
 OLD ROW AS ooo
 NEW ROW AS nnn
 FOR EACH ROW
 WHEN (nnn.price > ooo.price + 10)
 INSERT INTO RipoffBars
 VALUES (nnn.bar);

81

SQL vs PostgreSQL

Checks in PostgreSQL

§  Tuple-based checks may only refer to
attributes of that relation

§  Attribute-based checks may only refer
to the name of the attribute

§  No subqueries allowed!
§  Use triggers for more elaborate checks

82

Assertions in PostgreSQL

§  Assertions are not implemented!
§  Use attribute-based or tuple-based

checks where possible
§  Use triggers for more elaborate checks

83

Triggers in PostgreSQL

§  PostgreSQL does not allow events for
only certain columns

§  Rows and tables are called OLD and
NEW (no REFERENCING ... AS)

§  PostgreSQL only allows to execute a
function as the action statement

84

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > 10

When the price change
is great enough, add
the bar to RipoffBars

85

The Trigger – SQL

CREATE TRIGGER PriceTrig
 AFTER UPDATE OF price ON Sells
 REFERENCING
 OLD ROW AS ooo
 NEW ROW AS nnn
 FOR EACH ROW
 WHEN (nnn.price > ooo.price + 10)
 INSERT INTO RipoffBars
 VALUES (nnn.bar);

The Trigger – PostgreSQL
The event –
any changes
to Sells

Updates have
fixed references
OLD and NEW

We need to consider
each price change

Conditions
moved into
function

Always check
for a ripoff
using a function

86

CREATE TRIGGER PriceTrigger
 AFTER UPDATE ON Sells

 FOR EACH ROW

 EXECUTE PROCEDURE

 checkRipoff();

Conditions
moved into
function

When the price change
is great enough, add
the bar to RipoffBars

The Function – PostgreSQL

CREATE FUNCTION CheckRipoff()
 RETURNS TRIGGER AS $$BEGIN
 IF NEW.price > OLD.price+10 THEN
 INSERT INTO RipoffBars
 VALUES (NEW.bar);
 END IF;
 RETURN NEW;
 END$$ LANGUAGE plpgsql;

87

Updates have
fixed references
OLD and NEW

Functions in PostgreSQL
§  CREATE FUNCTION name([arguments])

RETURNS [TRIGGER type] AS
$$function definition$$ LANGUAGE lang;

§  Example:
CREATE FUNCTION add(int,int)
RETURNS int AS $$select $1+$2;$$
LANGUAGE SQL;

§  CREATE FUNCTION add(i1 int,i2 int)
RETURNS int AS $$BEGIN RETURN
i1 + i2; END;$$ LANGUAGE plpgsql;

88

89

Example: Attribute-Based Check

CREATE TABLE Sells (
 bar CHAR(20),

 beer CHAR(20) CHECK (beer IN

 (SELECT name FROM Beers)),

 price INT CHECK (price <= 100)

);

90

Example: Attribute-Based Check
CREATE TABLE Sells (
bar CHAR(20), beer CHAR(20),
price INT CHECK (price <= 100));

CREATE FUNCTION CheckBeerName() RETURNS
TRIGGER AS $$BEGIN IF NOT NEW.beer IN
(SELECT name FROM Beers) THEN RAISE
EXCEPTION ‘no such beer in Beers’; END
IF; RETURN NEW; END$$ LANGUAGE
plpgsql;

CREATE TRIGGER BeerName AFTER UPDATE OR
INSERT ON Sells FOR EACH ROW
EXECUTE PROCEDURE CheckBeerName();

91

Example: Assertion

§  In Drinkers(name, addr, phone) and
Bars(name, addr, license), there cannot be
more bars than drinkers

CREATE ASSERTION LessBars CHECK (

 (SELECT COUNT(*) FROM Bars) <=

 (SELECT COUNT(*) FROM Drinkers)

);

92

Example: Assertion
CREATE FUNCTION CheckNumbers()
RETURNS TRIGGER AS $$BEGIN IF
(SELECT COUNT(*) FROM Bars) >
(SELECT COUNT(*) FROM Drinkers)
THEN RAISE EXCEPTION ‘2manybars’;
END IF; RETURN NEW; END$$
LANGUAGE plpgsql;

CREATE TRIGGER NumberBars AFTER
INSERT ON Bars EXECUTE PROCEDURE
CheckNumbers();

CREATE TRIGGER NumberDrinkers AFTER
DELETE ON Drinkers EXECUTE PROCEDURE
CheckNumbers();

Checks in PostgreSQL

§  Tuple-based checks may only refer to
attributes of that relation

§  Attribute-based checks may only refer
to the name of the attribute

§  No subqueries allowed!
§  Use triggers for more elaborate checks

93

Assertions in PostgreSQL

§  Assertions are not implemented!
§  Use attribute-based or tuple-based

checks where possible
§  Use triggers for more elaborate checks

94

Triggers in PostgreSQL

§  PostgreSQL does not allow events for
only certain columns

§  Rows and tables are called OLD and
NEW (no REFERENCING ... AS)

§  PostgreSQL only allows to execute a
function as the action statement

95

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > 10

When the price change
is great enough, add
the bar to RipoffBars

96

The Trigger – SQL

CREATE TRIGGER PriceTrig
 AFTER UPDATE OF price ON Sells
 REFERENCING
 OLD ROW AS ooo
 NEW ROW AS nnn
 FOR EACH ROW
 WHEN (nnn.price > ooo.price + 10)
 INSERT INTO RipoffBars
 VALUES (nnn.bar);

The Trigger – PostgreSQL
The event –
any changes
to Sells

Updates have
fixed references
OLD and NEW

We need to consider
each price change

Conditions
moved into
function

Always check
for a ripoff
using a function

97

CREATE TRIGGER PriceTrigger
 AFTER UPDATE ON Sells

 FOR EACH ROW

 EXECUTE PROCEDURE

 checkRipoff();

Conditions
moved into
function

When the price change
is great enough, add
the bar to RipoffBars

The Function – PostgreSQL

CREATE FUNCTION CheckRipoff()
 RETURNS TRIGGER AS $$BEGIN
 IF NEW.price > OLD.price+10 THEN
 INSERT INTO RipoffBars
 VALUES (NEW.bar);
 END IF;
 RETURN NEW;
 END$$ LANGUAGE plpgsql;

98

Updates have
fixed references
OLD and NEW

Functions in PostgreSQL
§  CREATE FUNCTION name([arguments])

RETURNS [TRIGGER type] AS
$$function definition$$ LANGUAGE lang;

§  Example:
CREATE FUNCTION add(int,int)
RETURNS int AS $$select $1+$2;$$
LANGUAGE SQL;

§  CREATE FUNCTION add(i1 int,i2 int)
RETURNS int AS $$BEGIN RETURN
i1 + i2; END;$$ LANGUAGE plpgsql;

99

100

Example: Attribute-Based Check

CREATE TABLE Sells (
 bar CHAR(20),

 beer CHAR(20) CHECK (beer IN

 (SELECT name FROM Beers)),

 price INT CHECK (price <= 100)

);

101

Example: Attribute-Based Check
CREATE TABLE Sells (
bar CHAR(20), beer CHAR(20),
price INT CHECK (price <= 100));

CREATE FUNCTION CheckBeerName() RETURNS
TRIGGER AS $$BEGIN IF NOT NEW.beer IN
(SELECT name FROM Beers) THEN RAISE
EXCEPTION ‘no such beer in Beers’; END
IF; RETURN NEW; END$$ LANGUAGE
plpgsql;

CREATE TRIGGER BeerName AFTER UPDATE OR
INSERT ON Sells FOR EACH ROW
EXECUTE PROCEDURE CheckBeerName();

102

Example: Assertion

§  In Drinkers(name, addr, phone) and
Bars(name, addr, license), there cannot be
more bars than drinkers

CREATE ASSERTION LessBars CHECK (

 (SELECT COUNT(*) FROM Bars) <=

 (SELECT COUNT(*) FROM Drinkers)

);

103

Example: Assertion
CREATE FUNCTION CheckNumbers()
RETURNS TRIGGER AS $$BEGIN IF
(SELECT COUNT(*) FROM Bars) >
(SELECT COUNT(*) FROM Drinkers)
THEN RAISE EXCEPTION ‘2manybars’;
END IF; RETURN NEW; END$$
LANGUAGE plpgsql;

CREATE TRIGGER NumberBars AFTER
INSERT ON Bars EXECUTE PROCEDURE
CheckNumbers();

CREATE TRIGGER NumberDrinkers AFTER
DELETE ON Drinkers EXECUTE PROCEDURE
CheckNumbers();

