
1

Views

2

Views

§  A view is a relation defined in terms
of stored tables (called base tables)
and other views

§  Two kinds:
1.  Virtual = not stored in the database; just

a query for constructing the relation
2. Materialized = actually constructed and

stored

3

Declaring Views

§  Declare by:
 CREATE [MATERIALIZED] VIEW

 <name> AS <query>;
§  Default is virtual
§  PostgreSQL has no direct support for

materialized views

4

Materialized Views

§  Problem: each time a base table
changes, the materialized view may
change
§  Cannot afford to recompute the view with

each change

§  Solution: Periodic reconstruction of the
materialized view, which is otherwise
“out of date”

5

Example: A Data Warehouse

§  Bilka stores every sale at every store in
a database

§  Overnight, the sales for the day are
used to update a data warehouse =
materialized views of the sales

§  The warehouse is used by analysts to
predict trends and move goods to
where they are selling best

6

Virtual Views

§  only a query is stored
§  no need to change the view when the

base table changes
§  expensive when accessing the view often

7

Example: View Definition

§  CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the beer:

 CREATE VIEW CanDrink AS
 SELECT drinker, beer

 FROM Frequents, Sells

 WHERE Frequents.bar = Sells.bar;

8

Example: View Definition

§  CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the beer:

 CREATE VIEW CanDrink AS
 SELECT drinker, beer

 FROM Frequents NATURAL JOIN Sells;

9

Example: View Definition

§  CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the beer:

 CREATE TABLE CanDrink

 (drinker TEXT, beer TEXT);

 CREATE RULE "_RETURN" AS ON SELECT

 TO CanDrink DO INSTEAD

 SELECT drinker, beer

 FROM Frequents NATURAL JOIN Sells;

10

Example: Accessing a View

§  Query a view as if it were a base table
§  Example query:

 SELECT beer FROM CanDrink
 WHERE drinker = ’Peter’;

§  The rule “_RETURN” will rewrite this to:
SELECT beer FROM (SELECT
drinker, beer FROM Frequents
NATURAL JOIN Sells) AS CanDrink
where drinker = ’Peter’;

11

Modifying Virtual Views

§  Generally, it is impossible to modify a
virtual view, because it does not exist

§  But a rule lets us interpret view
modifications in a way that makes sense

§  Example: the view Synergy has (drinker,
beer, bar) triples such that the bar serves
the beer, the drinker frequents the bar
and likes the beer

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

12

Example: The View

CREATE VIEW Synergy AS
 SELECT Likes.drinker, Likes.beer, Sells.bar
 FROM Likes, Sells, Frequents
 WHERE Likes.drinker = Frequents.drinker
 AND Likes.beer = Sells.beer
 AND Sells.bar = Frequents.bar;

13

Example: The View

CREATE VIEW Synergy AS
 SELECT drinker, beer, bar
 FROM Likes NATURAL JOIN Sells NATURAL
JOIN Frequents;

14

Interpreting a View Insertion

§  We cannot insert into Synergy – it is a
virtual view

§  But we can use a rule to turn a (drinker,
beer, bar) triple into three insertions of
projected pairs, one for each of Likes,
Sells, and Frequents
§  Sells.price will have to be NULL

15

The Rule

CREATE RULE ViewRule AS
 ON INSERT TO Synergy
 DO INSTEAD (
 INSERT INTO Likes VALUES
 (NEW.drinker, NEW.beer);
 INSERT INTO Sells(bar, beer) VALUES
 (NEW.bar, NEW.beer);
 INSERT INTO Frequents VALUES
 (NEW.drinker, NEW.bar);

);

16

Example: Assertion
CREATE FUNCTION CheckNumbers()
RETURNS TRIGGER AS $$BEGIN IF
(SELECT COUNT(*) FROM Bars) >
(SELECT COUNT(*) FROM Drinkers)
THEN RAISE EXCEPTION ‘2manybars’;
END IF; RETURN NEW; END$$
LANGUAGE plpgsql;

CREATE TRIGGER NumberBars AFTER
INSERT ON Bars EXECUTE PROCEDURE
CheckNumbers();

CREATE TRIGGER NumberDrinkers AFTER
DELETE ON Drinkers EXECUTE PROCEDURE
CheckNumbers();

17

Example: Assertion
CREATE FUNCTION CheckNumbers()
RETURNS TRIGGER AS $$BEGIN IF
(SELECT COUNT(*) FROM Bars) >
(SELECT COUNT(*) FROM Drinkers)
THEN RETURN NULL;
END IF; RETURN NEW; END$$
LANGUAGE plpgsql;

CREATE TRIGGER NumberBars AFTER
INSERT ON Bars EXECUTE PROCEDURE
CheckNumbers();

CREATE TRIGGER NumberDrinkers AFTER
DELETE ON Drinkers EXECUTE PROCEDURE
CheckNumbers();

18

Example: Assertion
CREATE RULE CheckBars AS

 ON INSERT TO Bars
WHEN (SELECT COUNT(*) FROM Bars) >=
(SELECT COUNT(*) FROM Drinkers)
 DO INSTEAD NOTHING;

CREATE RULE CheckDrinkers AS
 ON DELETE TO Drinkers

WHEN (SELECT COUNT(*) FROM Bars) >=
(SELECT COUNT(*) FROM Drinkers)
 DO INSTEAD NOTHING;

19

Transactions

20

Why Transactions?

§  Database systems are normally being
accessed by many users or processes at
the same time
§  Both queries and modifications

§  Unlike operating systems, which
support interaction of processes, a
DMBS needs to keep processes from
troublesome interactions

21

Example: Bad Interaction

§  You and your domestic partner each
take $100 from different ATM’s at
about the same time
§  The DBMS better make sure one account

deduction does not get lost

§  Compare: An OS allows two people to
edit a document at the same time; If
both write, one’s changes get lost

22

Transactions

§  Transaction = process involving
database queries and/or modification

§  Normally with some strong properties
regarding concurrency

§  Formed in SQL from single statements
or explicit programmer control

23

ACID Transactions

§  ACID transactions are:
§  Atomic: Whole transaction or none is done
§  Consistent: Database constraints preserved
§  Isolated: It appears to the user as if only one

process executes at a time
§  Durable: Effects of a process survive a crash

§  Optional: weaker forms of transactions are
often supported as well

24

COMMIT

§  The SQL statement COMMIT causes a
transaction to complete
§  database modifications are now permanent

in the database

25

ROLLBACK

§  The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting
§  No effects on the database

§  Failures like division by 0 or a
constraint violation can also cause
rollback, even if the programmer does
not request it

26

Example: Interacting Processes

§  Assume the usual Sells(bar,beer,price)
relation, and suppose that C.Ch. sells
only Od.Cl. for 20 and Er.We. for 30

§  Peter is querying Sells for the highest
and lowest price C.Ch. Charges

§  C.Ch. decides to stop selling Od.Cl. And
Er.We., but to sell only Tuborg at 35

27

Peter’s Program

§  Peter executes the following two SQL
statements called (min) and (max) to
help us remember what they do

(max) SELECT MAX(price) FROM Sells
 WHERE bar = ’C.Ch.’;

(min) SELECT MIN(price) FROM Sells
 WHERE bar = ’C.Ch.’;

28

Cafe Chino’s Program

§  At about the same time, C.Ch. executes the
following steps: (del) and (ins)

(del) DELETE FROM Sells
 WHERE bar = ’C.Ch.’;

(ins) INSERT INTO Sells
 VALUES(’C.Ch.’, ’Tuborg’, 35);

29

Interleaving of Statements

§  Although (max) must come before
(min), and (del) must come before
(ins), there are no other constraints on
the order of these statements, unless
we group Peter’s and/or Cafe Chino’s
statements into transactions

30

Example: Strange Interleaving

§  Suppose the steps execute in the order
(max)(del)(ins)(min)

C.Ch. Prices:
Statement:
Result:

§  Peter sees MAX < MIN!

{20,30}

(del) (ins)

{35}

(min)

 35

 {20, 30}

(max)

30

31

Fixing the Problem
§  If we group Peter’s statements (max)

(min) into one transaction, then he
cannot see this inconsistency

§  He sees C.Ch.’s prices at some fixed
time
§  Either before or after they changes prices,

or in the middle, but the MAX and MIN are
computed from the same prices

32

Another Problem: Rollback

§  Suppose C.Ch. executes (del)(ins), not
as a transaction, but after executing
these statements, thinks better of it and
issues a ROLLBACK statement

§  If Peter executes his statements after
(ins) but before the rollback, he sees a
value, 35, that never existed in the
database

33

Solution

§  If Cafe Chino executes (del)(ins) as a
transaction, its effect cannot be seen by
others until the transaction executes
COMMIT
§  If the transaction executes ROLLBACK

instead, then its effects can never be seen

34

Isolation Levels

§  SQL defines four isolation levels =
choices about what interactions are
allowed by transactions that execute at
about the same time

§  Only one level (“serializable”) = ACID
transactions

§  Each DBMS implements transactions in
its own way

35

Choosing the Isolation Level

§  Within a transaction, we can say:
SET TRANSACTION ISOLATION LEVEL X

 where X =
1.  SERIALIZABLE
2.  REPEATABLE READ
3.  READ COMMITTED
4.  READ UNCOMMITTED

36

Serializable Transactions

§  If Peter = (max)(min) and C.Ch. =
(del)(ins) are each transactions, and
Peter runs with isolation level
SERIALIZABLE, then he will see the
database either before or after C.Ch.
runs, but not in the middle

37

Isolation Level Is Personal Choice

§  Your choice, e.g., run serializable,
affects only how you see the database,
not how others see it

§  Example: If Cafe Chino Runs
serializable, but Peter does not, then
Peter might see no prices for Cafe Chino
§  i.e., it looks to Peter as if he ran in the

middle of Cafe Chino’s transaction

38

Read-Commited Transactions

§  If Peter runs with isolation level READ
COMMITTED, then he can see only
committed data, but not necessarily the
same data each time.

§  Example: Under READ COMMITTED, the
interleaving (max)(del)(ins)(min) is
allowed, as long as Cafe Chino commits
§  Peter sees MAX < MIN

39

Repeatable-Read Transactions

§  Requirement is like read-committed,
plus: if data is read again, then
everything seen the first time will be
seen the second time
§  But the second and subsequent reads may

see more tuples as well

40

Example: Repeatable Read

§  Suppose Peter runs under REPEATABLE
READ, and the order of execution is
(max)(del)(ins)(min)
§  (max) sees prices 20 and 30
§  (min) can see 35, but must also see 20 and

30, because they were seen on the earlier
read by (max)

41

Read Uncommitted

§  A transaction running under READ
UNCOMMITTED can see data in the
database, even if it was written by a
transaction that has not committed (and
may never)

§  Example: If Peter runs under READ
UNCOMMITTED, he could see a price 35
even if Cafe Chino later aborts

42

Indexes

43

Indexes

§  Index = data structure used to speed
access to tuples of a relation, given
values of one or more attributes

§  Could be a hash table, but in a DBMS it
is always a balanced search tree with
giant nodes (a full disk page) called a
B-tree

44

Declaring Indexes

§  No standard!
§  Typical syntax (also PostgreSQL):
CREATE INDEX BeerInd ON
Beers(manf);

CREATE INDEX SellInd ON
Sells(bar, beer);

45

Using Indexes

§  Given a value v, the index takes us to
only those tuples that have v in the
attribute(s) of the index

§  Example: use BeerInd and SellInd to
find the prices of beers manufactured
by Albani and sold by Cafe Chino
(next slide)

46

Using Indexes

SELECT price FROM Beers, Sells
WHERE manf = ’Albani’ AND

 Beers.name = Sells.beer AND

 bar = ’C.Ch.’;

1.  Use BeerInd to get all the beers made
by Albani

2.  Then use SellInd to get prices of those
beers, with bar = ’C.Ch.’

47

Database Tuning

§  A major problem in making a database
run fast is deciding which indexes to
create

§  Pro: An index speeds up queries that can
use it

§  Con: An index slows down all
modifications on its relation because the
index must be modified too

48

Example: Tuning

§  Suppose the only things we did with
our beers database was:

1.  Insert new facts into a relation (10%)
2.  Find the price of a given beer at a given

bar (90%)

§  Then SellInd on Sells(bar, beer) would
be wonderful, but BeerInd on
Beers(manf) would be harmful

49

Tuning Advisors

§  A major research area
§  Because hand tuning is so hard

§  An advisor gets a query load, e.g.:
1.  Choose random queries from the history

of queries run on the database, or
2.  Designer provides a sample workload

50

Tuning Advisors

§  The advisor generates candidate
indexes and evaluates each on the
workload
§  Feed each sample query to the query

optimizer, which assumes only this one
index is available

§ Measure the improvement/degradation in
the average running time of the queries

Summary 7

More things you should know:
§  Constraints, Cascading, Assertions
§  Triggers, Event-Condition-Action
§  Triggers in PostgreSQL, Functions
§  Views, Rules
§  Transactions

51

52

Real SQL Programming

53

SQL in Real Programs

§  We have seen only how SQL is used at
the generic query interface – an
environment where we sit at a terminal
and ask queries of a database

§  Reality is almost always different:
conventional programs interacting with
SQL

54

Options

1.  Code in a specialized language is
stored in the database itself (e.g.,
PSM, PL/pgsql)

2.  SQL statements are embedded in a
host language (e.g., C)

3.  Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, psycopg2)

55

Stored Procedures

§  PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements

§  PSM = a mixture of conventional
statements (if, while, etc.) and SQL

§  Lets us do things we cannot do in SQL
alone

56

Procedures in PostgreSQL

CREATE PROCEDURE <name>
([<arguments>]) AS $$
<program>$$ LANGUAGE <lang>;

§  PostgreSQL only supports functions:
CREATE FUNCTION <name>

([<arguments>]) RETURNS VOID AS $$
<program>$$ LANGUAGE <lang>;

57

Parameters for Procedures

§  Unlike the usual name-type pairs in
languages like Java, procedures use mode-
name-type triples, where the mode can be:
§  IN = function uses value, does not change
§ OUT = function changes, does not use
§  INOUT = both

58

Example: Stored Procedure

§  Let’s write a procedure that takes two
arguments b and p, and adds a tuple
to Sells(bar, beer, price) that has bar =
’C.Ch.’, beer = b, and price = p
§  Used by Cafe Chino to add to their menu

more easily

Parameters are both
read-only, not changed

The body ---
a single insertion

59

The Procedure

CREATE FUNCTION ChinoMenu (
 IN b CHAR(20),
 IN p REAL

) RETURNS VOID AS $$
INSERT INTO Sells
VALUES(’C.Ch.’, b, p);
$$ LANGUAGE plpgsql;

60

Invoking Procedures

§  Use SQL/PSM statement CALL, with the name
of the desired procedure and arguments

§  Example:
 CALL ChinoMenu(’Eventyr’, 50);

§  Functions used in SQL expressions wherever
a value of their return type is appropriate

§  No CALL in PostgreSQL:
 SELECT ChinoMenu(’Eventyr’, 50);

61

Kinds of PL/pgsql statements

§  Return statement: RETURN <expression>
returns value of a function
§  Like in Java, RETURN terminates the

function execution

§  Declare block: DECLARE <name> <type>
used to declare local variables

§  Groups of Statements: BEGIN . . . END
§  Separate statements by semicolons

62

Kinds of PL/pgsql statements
§  Assignment statements:

 <variable> := <expression>;
§  Example: b := ’Od.Cl.’;

§  Statement labels: give a statement a
label by prefixing a name and a colon

63

IF Statements

§  Simplest form:
 IF <condition> THEN
 <statements(s)>
 END IF;

§  Add ELSE <statement(s)> if desired, as
 IF . . . THEN . . . ELSE . . . END IF;

§  Add additional cases by ELSEIF
<statements(s)>: IF … THEN … ELSEIF …
THEN … ELSEIF … THEN … ELSE … END IF;

64

Example: IF

§  Let’s rate bars by how many customers
they have, based on Frequents(drinker,bar)
§ <100 customers: ‘unpopular’
§  100-199 customers: ‘average’
§ >= 200 customers: ‘popular’

§  Function Rate(b) rates bar b

Number of
customers of
bar b

Nested
IF statement

65

Example: IF

CREATE FUNCTION Rate (IN b CHAR(20))
 RETURNS CHAR(10) AS $$
 DECLARE cust INTEGER;
 BEGIN
 cust := (SELECT COUNT(*) FROM Frequents
 WHERE bar = b);
 IF cust < 100 THEN RETURN ’unpopular’;
 ELSEIF cust < 200 THEN RETURN ’average’;
 ELSE RETURN ’popular’;
 END IF;
 END;

66

Loops

§  Basic form:
 <<<label>>> LOOP

 <statements>
END LOOP;

§  Exit from a loop by:
 EXIT <label> WHEN <condition>

67

Example: Exiting a Loop

<<loop1>> LOOP
 . . .
 EXIT loop1 WHEN ...;
 . . .

END LOOP;
If this statement is executed and
the condition holds ...

... control winds up here

68

Other Loop Forms

§  WHILE <condition> LOOP
 <statements>

END LOOP;
§  Equivalent to the following LOOP:
 LOOP

 EXIT WHEN NOT <condition>;
 <statements> END

LOOP;

69

Other Loop Forms

§  FOR <name> IN <start> TO <end>
LOOP

 <statements>
END LOOP;

§  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> > <end>;

 <statements>
 <name> := <name>+1; END

LOOP;

70

Other Loop Forms

§  FOR <name> IN REVERSE <start> TO
<end> LOOP

 <statements>
END LOOP;

§  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> < <end>;

 <statements>
 <name> := <name> - 1;

END LOOP;

71

Other Loop Forms

§  FOR <name> IN <start> TO <end>
BY <step> LOOP

 <statements>
END LOOP;

§  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> > <end>;

 <statements>
 <name> := <name>+<step>;
 END LOOP;

72

Queries

§  General SELECT-FROM-WHERE
queries are not permitted in PL/pgsql

§  There are three ways to get the effect
of a query:

1.  Queries producing one value can be the
expression in an assignment

2.  Single-row SELECT ... INTO
3.  Cursors

73

Example: Assignment/Query

§  Using local variable p and Sells(bar, beer,
price), we can get the price Cafe Chino
charges for Odense Classic by:
 p := (SELECT price FROM Sells
 WHERE bar = ’C.Ch’ AND

 beer = ’Od.Cl.’);

74

SELECT ... INTO

§  Another way to get the value of a query
that returns one tuple is by placing INTO
<variable> after the SELECT clause

§  Example:
 SELECT price INTO p FROM Sells
 WHERE bar = ’C.Ch.’ AND

 beer = ’Od.Cl.’;

75

Cursors

§  A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query

§  Declare a cursor c by:
DECLARE c CURSOR FOR <query>;

76

Opening and Closing Cursors

§  To use cursor c, we must issue the
command:
 OPEN c;
§  The query of c is evaluated, and c is set

to point to the first tuple of the result

§  When finished with c, issue command:
 CLOSE c;

77

Fetching Tuples From a Cursor

§  To get the next tuple from cursor c,
issue command:
 FETCH FROM c INTO x1, x2,…,xn ;

§  The x ’s are a list of variables, one for
each component of the tuples referred
to by c

§  c is moved automatically to the next
tuple

78

Breaking Cursor Loops – (1)

§  The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple
fetched

§  A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver

79

Breaking Cursor Loops – (2)

§  Many operations return if a row has
been found, changed, inserted, or
deleted (SELECT INTO, UPDATE,
INSERT, DELETE, FETCH)

§  In plpgsql, we can get the value of the
status in a variable called FOUND

80

Breaking Cursor Loops – (3)

§  The structure of a cursor loop is thus:
<<cursorLoop>> LOOP

 …

 FETCH c INTO … ;

 IF NOT FOUND THEN EXIT cursorLoop;

 END IF;

 …

END LOOP;

81

Example: Cursor

§  Let us write a procedure that examines
Sells(bar, beer, price), and raises by 10
the price of all beers at Cafe Chino that
are under 30

§  Yes, we could write this as a simple
UPDATE, but the details are instructive
anyway

Returns Cafe Chino’s
price list

Used to hold
beer-price pairs
when fetching
through cursor c

82

The Needed Declarations

CREATE FUNCTION RaisePrices()
 RETURNS VOID AS $$
 DECLARE theBeer CHAR(20);
 thePrice REAL;
 c CURSOR FOR
 (SELECT beer, price FROM Sells
 WHERE bar = ’C.Ch.’);

Check if the recent
FETCH failed to
get a tuple

If Cafe Chino charges less than
30 for the beer, raise its price at
at Cafe Chino by 10

83

The Procedure Body
BEGIN

 OPEN c;
 <<menuLoop>> LOOP
 FETCH c INTO theBeer, thePrice;
 EXIT menuLoop WHEN NOT FOUND;
 IF thePrice < 30 THEN
 UPDATE Sells SET price = thePrice + 10
 WHERE bar = ’C.Ch.’ AND beer = theBeer;
 END IF;
 END LOOP;
 CLOSE c;

END;$$ LANGUAGE plpgsql;

84

Tuple-Valued Variables

§  PL/pgsql allows a variable x to have a
tuple type

§  x R%ROWTYPE gives x the type of R’s
tuples

§  R could be either a relation or a cursor
§  x.a gives the value of the component

for attribute a in the tuple x

85

Example: Tuple Type
§  Repeat of RaisePrices() declarations with

variable bp of type beer-price pairs
CREATE FUNCTION RaisePrices()
RETURNS VOID AS $$

 DECLARE CURSOR c IS
 SELECT beer, price FROM Sells
 WHERE bar = ’C.Ch.’;
 bp c%ROWTYPE;

Components of bp are
obtained with a dot and
the attribute name

86

RaisePrices() Body Using bp

BEGIN
 OPEN c;
 LOOP
 FETCH c INTO bp;
 EXIT WHEN NOT FOUND;
 IF bp.price < 30 THEN
 UPDATE Sells SET price = bp.price + 10
 WHERE bar = ’C.Ch.’ AND beer = bp.beer;
 END IF;
 END LOOP;
 CLOSE c;

END;

87

Database-Connection Libraries

88

Host/SQL Interfaces Via
Libraries

§  The third approach to connecting
databases to conventional languages
is to use library calls

1.  C + CLI
2.  Java + JDBC
3.  Python + psycopg2

89

Three-Tier Architecture

§  A common environment for using a
database has three tiers of processors:

1. Web servers – talk to the user.
2.  Application servers – execute the business

logic
3.  Database servers – get what the app

servers need from the database

90

Example: Amazon

§  Database holds the information about
products, customers, etc.

§  Business logic includes things like “what
do I do after someone clicks
‘checkout’?”
§  Answer: Show the “how will you pay for

this?” screen

91

Environments, Connections, Queries

§  The database is, in many DB-access
languages, an environment

§  Database servers maintain some number
of connections, so app servers can ask
queries or perform modifications

§  The app server issues statements:
queries and modifications, usually

92

JDBC

§  Java Database Connectivity (JDBC) is a
library similar for accessing a DBMS
with Java as the host language

§  >200 drivers available: PostgreSQL,
MySQL, Oracle, ODBC, ...

§  http://jdbc.postgresql.org/

URL of the database
your name, and password
go here

The JDBC classes

The driver
for postgresql;
others exist

Loaded by
forName

import java.sql.*;
...

Class.forName(“org.postgresql.Driver”);

Connection myCon =

 DriverManager.getConnection(…);

...

93

Making a Connection

URL for PostgreSQL database
§  jdbc:postgresql://<host>[:<port>]/

<database>?user=<user>&
password=<password>

§  Alternatively use getConnection variant:
§  getConnection(“jdbc:postgresql://

<host>[:<port>]/<database>“,
<user>, <password>);

§  DriverManager.getConnection(“jdbc:pos
tgresql://10.110.4.32:5434/postgres“,
“petersk“, “geheim“);

94

95

Statements

§  JDBC provides two classes:
1.  Statement = an object that can accept a

string that is a SQL statement and can
execute such a string

2.  PreparedStatement = an object that has
an associated SQL statement ready to
execute

createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement 96

Creating Statements

§  The Connection class has methods to create
Statements and PreparedStatements

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

 myCon.createStatement(
 ”SELECT beer, price FROM Sells ” +
 ”WHERE bar = ’C.Ch.’ ”
);

97

Executing SQL Statements

§  JDBC distinguishes queries from
modifications, which it calls “updates”

§  Statement and PreparedStatement each
have methods executeQuery and
executeUpdate
§  For Statements: one argument – the query or

modification to be executed
§  For PreparedStatements: no argument

98

Example: Update

§  stat1 is a Statement
§  We can use it to insert a tuple as:
stat1.executeUpdate(

 ”INSERT INTO Sells ” +

 ”VALUES(’C.Ch.’,’Eventyr’,30)”

);

99

Example: Query

§  stat2 is a PreparedStatement holding
the query ”SELECT beer, price FROM
Sells WHERE bar = ’C.Ch.’ ”

§  executeQuery returns an object of class
ResultSet – we’ll examine it later

§  The query:
ResultSet menu = stat2.executeQuery();

100

Accessing the ResultSet

§  An object of type ResultSet is
something like a cursor

§  Method next() advances the “cursor” to
the next tuple
§  The first time next() is applied, it gets the

first tuple
§  If there are no more tuples, next() returns

the value false

101

Accessing Components of Tuples
§  When a ResultSet is referring to a tuple,

we can get the components of that
tuple by applying certain methods to
the ResultSet

§  Method getX (i), where X is some
type, and i is the component number,
returns the value of that component
§  The value must have type X

102

Example: Accessing Components

§  Menu = ResultSet for query “SELECT beer,
price FROM Sells WHERE bar = ’C.Ch.’ ”

§  Access beer and price from each tuple by:
while (menu.next()) {

 theBeer = menu.getString(1);

 thePrice = menu.getFloat(2);

 /*something with theBeer and
 thePrice*/

}

Important Details

§  Reusing a Statement object results in
the ResultSet being closed
§  Always create new Statement objects using

createStatement() or explicitly close
ResultSets using the close method

§  For transactions, for the Connection con
use con.setAutoCommit(false) and
explicitly con.commit() or con.rollback()
§  If AutoCommit is false and there is no

commit, closing the connection = rollback 103

