
1

Database-Connection Libraries

2

Host/SQL Interfaces Via
Libraries

§  The third approach to connecting
databases to conventional languages
is to use library calls

1.  C + CLI
2.  Java + JDBC
3.  Python + psycopg2

3

Three-Tier Architecture

§  A common environment for using a
database has three tiers of processors:

1. Web servers – talk to the user.
2.  Application servers – execute the business

logic
3.  Database servers – get what the app

servers need from the database

4

Example: Amazon

§  Database holds the information about
products, customers, etc.

§  Business logic includes things like “what
do I do after someone clicks
‘checkout’?”
§  Answer: Show the “how will you pay for

this?” screen

5

Environments, Connections, Queries

§  The database is, in many DB-access
languages, an environment

§  Database servers maintain some number
of connections, so app servers can ask
queries or perform modifications

§  The app server issues statements:
queries and modifications, usually

6

JDBC

§  Java Database Connectivity (JDBC) is a
library similar for accessing a DBMS
with Java as the host language

§  >200 drivers available: PostgreSQL,
MySQL, Oracle, ODBC, ...

§  http://jdbc.postgresql.org/

URL of the database
your name, and password
go here

The JDBC classes

The driver
for postgresql;
others exist

Loaded by
forName

import java.sql.*;
...

Class.forName(“org.postgresql.Driver”);

Connection myCon =

 DriverManager.getConnection(…);

...

7

Making a Connection

URL for PostgreSQL database
§  getConnection(jdbc:postgresql://
<host>[:<port>]/<database>?
user=<user>&password=<password>);

§  Alternatively use getConnection variant:
§  getConnection("jdbc:postgresql://
<host>[:<port>]/<database>",
<user>, <password>);

§  DriverManager.getConnection("jdbc
:postgresql://10.110.4.32:5434/
postgres", "petersk", "geheim");

8

9

Statements

§  JDBC provides two classes:
1.  Statement = an object that can accept a

string that is a SQL statement and can
execute such a string

2.  PreparedStatement = an object that has
an associated SQL statement ready to
execute

createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement 10

Creating Statements

§  The Connection class has methods to create
Statements and PreparedStatements

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

 myCon.createStatement(
 ”SELECT beer, price FROM Sells ” +
 ”WHERE bar = ’C.Ch.’ ”
);

11

Executing SQL Statements

§  JDBC distinguishes queries from
modifications, which it calls “updates”

§  Statement and PreparedStatement each
have methods executeQuery and
executeUpdate
§  For Statements: one argument – the query or

modification to be executed
§  For PreparedStatements: no argument

12

Example: Update

§  stat1 is a Statement
§  We can use it to insert a tuple as:
stat1.executeUpdate(

 ”INSERT INTO Sells ” +

 ”VALUES(’C.Ch.’,’Eventyr’,30)”

);

13

Example: Query

§  stat2 is a PreparedStatement holding
the query ”SELECT beer, price FROM
Sells WHERE bar = ’C.Ch.’ ”

§  executeQuery returns an object of class
ResultSet – we’ll examine it later

§  The query:
ResultSet menu = stat2.executeQuery();

14

Accessing the ResultSet

§  An object of type ResultSet is
something like a cursor

§  Method next() advances the “cursor” to
the next tuple
§  The first time next() is applied, it gets the

first tuple
§  If there are no more tuples, next() returns

the value false

15

Accessing Components of Tuples
§  When a ResultSet is referring to a tuple,

we can get the components of that
tuple by applying certain methods to
the ResultSet

§  Method getX (i), where X is some
type, and i is the component number,
returns the value of that component
§  The value must have type X

16

Example: Accessing Components

§  Menu = ResultSet for query “SELECT beer,
price FROM Sells WHERE bar = ’C.Ch.’ ”

§  Access beer and price from each tuple by:
while (menu.next()) {

 theBeer = menu.getString(1);

 thePrice = menu.getFloat(2);

 /*something with theBeer and
 thePrice*/

}

Important Details

§  Reusing a Statement object results in
the ResultSet being closed
§  Always create new Statement objects using

createStatement() or explicitly close
ResultSets using the close method

§  For transactions, for the Connection con
use con.setAutoCommit(false) and
explicitly con.commit() or con.rollback()
§  If AutoCommit is false and there is no

commit, closing the connection = rollback 17

18

Python and Databases

§  many different modules for accessing
databases

§  commercial: mxodbc, …
§  open source: pygresql, psycopg2, …
§  we use psycopg2

§  install using easy_install psycopg2
§  import with import psycopg2

Connection String

§  Database connection described by a
connection string

§  Example: con_str = """
host='10.110.4.32'

port=5434

dbname='postgres'

user='petersk'

password='geheim'

"""

19

§  With the DB library imported and the
connection string con_str available:

con = psycopg2.connect(con_str);

Function connect
in the DB API

Class is connection
because it is returned
by psycopg2.connect(…) 20

Making a Connection

21

Cursors in Python

§  Queries are executed for a cursor
§  A cursor is obtained from connection
§  Example:
cursor = con.cursor()

§  Queries or modifications are executed
using the execute(…) method

§  Cursors can then be used in a for-loop

§  Find all the bars that sell a beer given
by the variable beer

beer = 'Od.Cl.’

cursor = con.cursor()

cursor.execute(

 "SELECT bar FROM Sells" +

 “WHERE beer = '%s’;" % beer);
Remember this
variable is replaced
by the value of beer 22

Example: Executing a Query

23

Example: Tuple Cursors

bar = 'C.Ch.'
cur = con.cursor()

cur.execute("SELECT beer, price" +

" FROM Sells" +

" WHERE bar = " + bar + ";")

for row in cur:

 print row[0] + “ for “ + row[1]

24

An Aside: SQL Injection

§  SQL queries are often constructed by
programs

§  These queries may take constants from
user input

§  Careless code can allow rather
unexpected queries to be constructed
and executed

25

Example: SQL Injection

§  Relation Accounts(name, passwd, acct)
§  Web interface: get name and password from

user, store in strings n and p, issue query,
display account number

cur.execute("SELECT acct FROM " +

"Accounts WHERE name = '%s' " +

“AND passwd = '%s';" % (n,p))

26

User (Who Is Not Bill Gates) Types

Name:

Password:

Your account number is 1234-567

gates’ --

who cares?

Comment
in PostgreSQL

SELECT acct FROM Accounts
WHERE name = ’gates’ --’ AND

 passwd = ’who cares?’

All treated as a comment

27

The Query Executed

Summary 8

More things you should know:
§  Stored Procedures, PL/pgsql
§  Declarations, Statements, Loops,
§  Cursors, Tuple Variables
§  Three-Tier Approach, JDBC, psycopg2

28

29

Database Implementation

Database Implementation

Isn‘t implementing a database system easy?
§  Store relations
§  Parse statements
§  Print results
§  Change relations

30

31

Introducing the

Database Management System

•  The latest from DanLabs
•  Incorporates latest relational technology
•  Linux compatible

32

DanDB 3000
Implementation Details

§  Relations stored in files (ASCII)
§  Relation R is in /var/db/R
§  Example:

Peter # Erd.We.
Lars # Od.Cl.

. . .

33

DanDB 3000
Implementation Details

§  Directory file (ASCII) in /var/db/directory
§  For relation R(A,B) with A of type

VARCHAR(n) and B of type integer:
R # A # STR # B # INT

§  Example:

Favorite # drinker # STR # beer # STR
Sells # bar # STR # beer # STR # ...

. . .

34

DanDB 3000
Sample Sessions

% dandbsql
 Welcome to DanDB 3000!
>

> quit
%

. . .

35

DanDB 3000
Sample Sessions

> SELECT *
 FROM Favorite;

 drinker # beer
 ##################
 Peter # Erd.We.
 Lars # Od.Cl.
 (2 rows)

>

36

DanDB 3000
Sample Sessions

> SELECT drinker AS snob
 FROM Favorite, Sells
 WHERE Favorite.beer = Sells.beer
 AND price > 25;

 snob
 ######
 Peter
 (1 rows)

>

37

DanDB 3000
Sample Sessions

> CREATE TABLE expensive (bar TEXT);
> INSERT INTO expensive (SELECT bar
 FROM Sells
 WHERE price > 25);
>

Create table with expensive bars

38

DanDB 3000
Implementation Details

§  To execute “SELECT * FROM R WHERE condition”:
1. Read /var/db/dictionary, find line starting with “R #”
2. Display rest of line
3. Read /var/db/R file, for each line:

a.  Check condition
b.  If OK, display line

39

DanDB 3000
Implementation Details

§  To execute “CREATE TABLE S (A1 t1, A2 t2);”:
1.  Map t1 and t2 to internal types T1 and T2
2.  Append new line “S # A1 # T1 # A2 # T2”

to /var/db/directory

§  To execute “INSERT INTO S (SELECT * FROM R
 WHERE condition);”:
1.  Process select as before
2.  Instead of displaying, append lines to file /var/db/S

40

DanDB 3000
Implementation Details

§  To execute “SELECT A,B FROM R,S WHERE condition;”:
1.  Read /var/db/dictionary to get schema for R and S
2.  Read /var/db/R file, for each line:

a.  Read /var/db/S file, for each line:
i.  Create join tuple
ii.  Check condition
iii.  Display if OK

41

DanDB 3000
Problems

§  Tuple layout on disk
§  Change string from ‘Od.Cl.’ to ‘Odense

Classic’ and we have to rewrite file
§  ASCII storage is expensive
§  Deletions are expensive

§  Search expensive – no indexes!
§  Cannot find tuple with given key quickly
§  Always have to read full relation

42

DanDB 3000
Problems

§  Brute force query processing
§  Example:
SELECT * FROM R,S WHERE R.A=S.A
AND S.B > 1000;

§  Do select first?
§  Natural join more efficient?

§  No concurrency control

43

DanDB 3000
Problems

§  No reliability
§  Can lose data
§  Can leave operations half done

§  No security
§  File system insecure
§  File system security is too coarse

§  No application program interface (API)
§  How to access the data from a real program?

44

DanDB 3000
Problems

§  Cannot interact with other DBMSs
§  Very limited support of SQL

§  No constraint handling etc.
§  No administration utilities, no web

frontend, no graphical user interface, ...
§  Lousy salesmen!

Data Storage

45

Computer System

46

CPU

RAM SATA

Secondary &
Tertiary
Storage

... ...

The Memory Hierarchy

Cache

RAM

Solid-State Disk

Harddisk

47

0.4/GB

8/GB

30/GB

a lot/MB 0.3 ns

1.5 ns

0.1 ms

7.5 ms

co
st

latency

primary

secondary

tertiary

DBMS and Storage

§  Databases typically too large to keep in
primary storage

§  Tables typically kept in secondary
storage

§  Large amounts of data that are only
accessed infrequently are stored in
tertiary storage (or even on tape robot)

§  Indexes and current tables cached in
primary storage

48

Harddisk

§  N rotating magenetic platters
§  2xN heads for reading and writing
§  track, cylinder, sector, gap

49

…

Harddisk Access

§  access time: how long does it take to
load a block from the harddisk?

§  seek time: how long does it take to
move the heads to the right cylinder?

§  rotational delay: how long does it take
until the head gets to the right sectors?

§  transfer time: how long does it take to
read the block?

§  access = seek + rotational + transfer
50

Seek Time

§  average seek time = ½ time to move
head from outermost to innermost
cylinder

51

…

Rotational Delay

§  average rotational delay = ½ rotation

52

head here

block to read

Transfer Time

§  Transfer time = 1/n rotation when
there are n blocks on one track

53

from here

to here

Access Time

§  Typical harddisk:
§ Maximal seek time: 10 ms
§  Rotational speed: 7200 rpm
§  Block size: 4096 bytes
§  Sectors (512 bytes) per track: 1600 (average)

§  Average access time:
§  Average seek time: 5 ms
§  Average rotational delay: 60/7200/2 = 4.17 ms
§  Average transfer time: 0.04 ms

54

9.21 ms

Random vs Sequential Access

§  Random access of blocks:
1/0.00921s * 4096 byte = 0.42 Mbyte/s

§  Sequential access of blocks:
120/s * 200 * 4096 byte = 94 Mbyte/s

§  Performance of the DBMS dominated by
number of random accesses

55

On Disk Cache

56

CPU

RAM SATA

Secondary &
Tertiary
Storage

... ...

cache

cache

Problems with Harddisks

§  Even with caches, harddisk remains
bottleneck for DBMS performance

§  Harddisks can fail:
§  Intermittent failure
§ Media decay
§ Write failure
§  Disk crash

§  Handle intermittent failures by
rereading the block in question

57

Detecting Read Failures

§  Use checksums to detect failures
§  Simplest form is parity bit:

§  0 if number of ones in the block is even
§  1 if number of ones in the block is odd
§  Detects all 1-bit failures
§  Detects 50% of many-bit failures
§  By using n bits, we can reduce the chance

of missing an error to 1/2^n

58

Disk Arrays

§  Use more than one disk for higher
reliability and/or performance

§  RAID (Redundant Arrays of
Independent Disks)

59

logically one disk

RAID 0

§  Alternate blocks between two or more
disks (“Striping“)

§  Increases performance both for writing
and reading

§  No increase in reliability

60

0

Disk 1 2

1
2 3
4 5

Storing blocks 0-5
in the first three
blocks of disk 1 & 2

RAID 1

§  Duplicate blocks on two or more disks
(“Mirroring“)

§  Increases performance for reading
§  Increases reliability significantly

61

0

Disk 1 2

0
1 1
2 2

Storing blocks 0-2
in the first three
blocks of disk 1 & 2

RAID 5

§  Stripe blocks on n+1 disks where for each
block, one disk stores parity information

§  More performant when writing than RAID 1
§  Increased reliability compared to RAID 0

62

0

Disk 1 2 3

1
P 2
5 P

Storing blocks 0-5
in the first three
blocks of disk 1, 2 & 3

P
3
4

RAID Capacity

§  Assume disks with capacity 1 TByte
§  RAID 0: N disks = N TByte
§  RAID 1: N disks = 1 TByte
§  RAID 5: N disks = (N-1) TByte
§  RAID 6: N disks = (N-M) TByte
§  ...

63

Storage of Values

§  Basic unit of storage: Byte
§  Integer: 4 bytes

Example: 42 is

§  Real: n bits for mantissa, m for exponent
§  Characters: ASCII, UTF8, ...
§  Boolean: and

64

8
bits

00000000 00000000 00000000 00101010

00000000 11111111

Storage of Values

§  Dates:
§  Days since January 1, 1900
§  DDMMYYYY (not DDMMYY)

§  Time:
§  Seconds since midnight
§  HHMMSS

§  Strings:
§  Null terminated
§  Length given

65

L r a s

4 a L r s

DBMS Storage Overview

66

Values

Records

Blocks

Files

Memory

Record

§  Collection of related data items (called
Fields)

§  Typically used to store one tuple
§  Example: Sells record consisting of

§  bar field
§  beer field
§  price field

67

Record Metadata

§  For fixed-length records, schema
contains the following information:
§  Number of fields
§  Type of each field
§ Order in record

§  For variable-length records, every
record contains this information in its
header

68

Record Header

§  Reserved part at the beginning of a
record

§  Typically contains:
§  Record type (which Schema?)
§  Record length (for skipping)
§  Time stamp (last access)

69

Files

§  Files consist of blocks containing records
§  How to place records into blocks?

70

assume fixed
length blocks

assume a single file

Files

§  Options for storing records in blocks:
1.  Separating records
2.  Spanned vs. unspanned
3.  Sequencing
4.  Indirection

71

1. Separating Records

Block

a. no need to separate - fixed size recs.
b. special marker
c. give record lengths (or offsets)

i.  within each record
ii.  in block header

72

R2 R1 R3

2. Spanned vs Unspanned

§  Unspanned: records must be in one block

§  Spanned: one record in two or more blocks

§  Unspanned much simpler, but wastes space
§  Spanned essential if record size > block size

73

R1 R2 R3 R4 R5

R1 R2 R3
(a)

R3
(b) R6 R5 R4 R7

(a)

3. Sequencing

§  Ordering records in a file (and in the blocks)
by some key value

§  Can be used for binary search
§  Options:

a.  Next record is physically contiguous

b.  Records are linked

74

Next (R1) R1 ...

R1 Next (R1)

4. Indirection
§  How does one refer to records?

a.  Physical address (disk id, cylinder, head,
sector, offset in block)

b.  Logical record ids and a mapping table

§  Tradeoff between flexibility and cost

75

Physical
addr. Rec ID

Indirection map

17 2:34:5:742:2340

