
Written Examination
DM 509 Programming Languages

Department of Mathematics and Computer Science
University of Southern Denmark

Tuesday, January 12, 2010, 09:00 – 13:00

This exam set consists of 7 pages (including this front page) and contains a
total of 5 problems. Each problem is weighted by the given percentage. The
individual questions of a problem are not necessarily weighted equally.

Most questions in a problem can be answered independently from the other
questions of the same problem.

All written aids are allowed. Answering questions by reference to material
not listed in the course curriculum is not acceptable.

You may answer the exam in English or in Danish.

1



Problem 1 (20%)

Question a: Implement a Prolog predicate take/3 such that take(N,L,M)
is true if, and only if, M is the longest prefix of length at most N of the list L.

For example, the query

?- take(2, [6,3,4], M).

should yield the answer M / [6,3]. Likewise, the query

?- take(4, [6,3,4], M).

should yield the answer M / [6,3,4].

Question b: Implement a Prolog predicate firstHalf/2 such that
firstHalf(L, M) is true if, and only if, M is the list that contains exactly
the first half of the elements of the list L.

For example, the query

?- firstHalf([6,3,4,5], M).

should yield the answer M / [6,3]. Likewise, the query

?- firstHalf([6,3,4], M).

should yield the answer M / [6].

2



Question c: Implement a Prolog predicate fib/4 such that fib(A,B,N,M)
is true if, and only if, M is the N-th number of the Fibonacci sequence starting
with the numbers A and B.

For example, the query

?- fib(0,1,3,M).

should yield the answer M / 2 and the query

?- fib(0,1,7,M).

should yield the answer M / 13.

Your implementation should return the answer in time linear in N. You may
assume that built-in addition has constant time complexity.

Question d: A magic square is a matrix of dimension n×n containing all
numbers from 1 to n2 such that the sum of each row and of each column is
exactly n(n2+1)

2
.

The following is an example of a square of dimension 3× 3.

4 9 2
3 5 7
8 1 6

We represent such a square as a list of the concatenated rows. I.e., the above
square would be represented as follows.

[4,9,2,3,5,7,8,1,6]

Implement a Prolog predicate magic/1 such that the query ?- magic(L). has
exactly those lists L as answers that represent a magic square of dimension
3× 3.

You may (but do not have to) use constraint logic programming for your
implementation.

3



Problem 2 (25%)

Question a: Consider the following Prolog program.

p(X,Y) :- q(X), r(Y), p(Y,X).

p(3,Y).

q(1).

q(2).

r(3).

r(4).

Draw the SLD tree for the query ?- p(A,B). and list all answers with the
instantiations of A and B.

Question b: We now introduce a cut into the body of the third clause
from Question a, i.e., we now have the following Prolog clauses for q/1.

q(1) :- !.

q(2).

Indicate in the SLD tree of Question a which branches are cut and list all
remaining answers with the instantiations of A and B.

Question c: For the following pairs of Prolog terms, find a most general
unifier or argue that none exists. Show the steps of the algorithm. In case
of success, give the resulting substitution. In case of failure, state if it is an
occur failure or a clash failure.

1. p(f(X),a,Y) and p(f(Y),X,b)

2. q(g(X),g(Y),Y) and q(g(A),A,g(X))

3. r(a,0,[X,Y]) and r(X,Y,[X|Xs])

4



Problem 3 (15%)

Question a: Define a haskell function divisibleByTwo which takes a
positive integer and determines if it is divisible by 2.

For example, divisibleByTwo 3 = False and divisibleByTwo 2 = true.

Here, you may not use any pre-defined functions except for (+) and (-).

Question b: Define a haskell function divisibleByTwoList which takes
a list of positive integers and determines if at least one of the elements is
divisible by 2.

For example, divisibleByTwoList [1,2,3] = True.

You should use the function divisibleByTwo from Part a.

Question c: Define a haskell function productPairs which takes a pos-
itive integer n and computes the list of all pairs (x,y) of natural numbers
such that their product is exactly n.

For example, productPairs 4 should return the following list.

[(1,4), (2,2), (4,1)]

Question d: The sequence of Fibonacci words is defined as the w0, w1, w2, . . .
such that w0 = "a", w1 = "ab", and wn+2 = wn+1wn. Thus, w2 = "aba",
w3 = "abaab" etc.

Give a haskell declaration for the infinite list fibWord of all Fibonacci
words as defined above.

For example, take 4 fibWord should return the following list.

["a", "ab", "aba", "abaab"]

5



Problem 4 (20%)

Question a: Consider the following data type for binary trees.

data Tree a = Leaf | Node (Tree a) a (Tree a)

Thus, the expression ex = Node (Node Leaf 2 (Node Leaf 3 Leaf)) 3 (Node

Leaf 4 Leaf) corresponds to the following tree (with leaves marked by x).

3

wwpppppppppppppp

��>>>>>>>>

2

����������

��>>>>>>>> 4

����������

��>>>>>>>>

x 3

����������

��???????? x x

x x

Define a haskell function paths which takes a Tree a and produces the
list of paths from the root to a Node that has two Leaf children.

For example, paths ex should return [[3,2,3], [3,4]].

Question b: Consider the following tree that contains elements of type
String and of type Int.

"abc"

ttjjjjjjjjjjjjjjjjjjj

##FFFFFFFFF

2

����������

##FFFFFFFFF 4

{{xxxxxxxxxx

��>>>>>>>>

x "def"

{{wwwwwwwww

%%LLLLLLLLLLL x x

x x

Declare a haskell data type LevelTree a b using a data declaration that
on the first level of the tree contains elements of type a, on the second level
elements of type b, on the third level again elements of type a etc.

The tree above would be of type LevelTree String Int.

6



Problem 5 (20%)

Question a: Find the most general type for each of the following two
haskell functions.

• f x y z = f y z x

• g (x:xs) = \x -> [xs]

Explain your reasoning.

Question b: Consider the two following ways of defining haskell func-
tions for computing the length of a list.

length1 [] = 0

length1 (x:xs) = 1 + length1 xs

length2 = len 0 where

len n [] = n

len n (x:xs) = len (n+1) xs

Prove by induction that for all ys of type [a], these two definitions yield the
same result, i.e., length1 ys = length2 ys.

You may assume the following lemma about len for all n and m of type Int

and all zs of type [a].

n + len m zs = len (n+m) zs

7


