
DM 509 Programming Languages

Fall 2009 Project (Part 2)

Department of Mathematics and Computer Science
University of Southern Denmark

December 7, 2009

2

Introduction

The purpose of the project for DM509 is to try in practice the use of logic
and functional programming for small but non-trivial examples. The project
consists of two parts. The first deals with logic programming and the second
part with functional programming.

Please make sure to read this entire note before starting your work on
this part of the project. Pay close attention to the sections on deadlines,
deliverables, and exam rules.

Exam Rules

This second part of the project is a part of the final exam. Both parts of the
project have to be passed to pass the overall project and get access to the
final written exam.

Thus, the project must be done individually, and no cooperation is al-
lowed beyond what is explicitly stated in this document.

Each part is passed when its deliverables are rated at 50%. Any percent-
age above 50% can be transferred between the individual parts, i.e., with
40% in the first part and 80% in the second part, by transferring 10% from
the second part to the first part, both parts are passed.

Deliverables

There is one deliverable for this second part of the project:

• A short project report (2-4 pages) containing a description of your
approach, a short description of the main parts of your source code,
and a short documentation of the testing you have performed. You
have to include an electronic copy of your source code.

The deliverable has to be delivered using Blackboard’s Assignment Hand-
In functionality. Delivering by e-mail or to the teacher is only considered
acceptable in case Blackboard cannot be used.

Deadline

Deliverable: December 21, 12:00

3

The Problem

Your task in this part of the project is to work with a data structure for repre-
senting polynomial fractions, i.e., expressions built from variables, constants,
addition, subtraction, multiplication, and division.

The data structure is defined in the following way:

data Operator = Add | Sub | Mul | Div

data Poly = C Float | V String | Op Poly Operator Poly

Using this data structure, we can for example represent the polynomial
4− x + 3x2 by the following expression:

Op (Op (C 4) Sub (V "x")) Add (Op (C 3) Mul (Op (V "x") Mul (V "x")))

There is a template available from the course home page that defines this
data structure and binds this expression to the variable testpoly.

This template also contains an incomplete definition of a function for
evaluating variable-free polynomial fractions:

eval :: Poly -> Float

eval (Op p1 o p2) = interpret o val1 val2 where

val1 = eval p1

val2 = eval p2

The Tasks

Implement the following operations on polynomial fractions by implement-
ing the following functions (and any auxiliary functions you might consider
needed):

1. Implement the function interpret used in eval above to complete
the definition of our evaluation function. Use the form given in the
template.

2. Define a function derive :: String -> Poly -> Poly which com-
putes the (symbolic) derivation of a polynomial fraction with respect
to a given variable identified by its name. For example, the expression
derive "x" testpoly should return a polynomial which corresponds
to -1 + 6x.

4

3. Define a function simplify :: Poly -> Poly to simplify polynomial
fractions. You can use rules like 0 + x = x and 0 ∗ x = 0 as well as
the function eval. For example, simplify (derive "x" testpoly)

should return a result at least as simple as −1 + 3 ∗ (x + x). And
simplify (Op (V "x") Div (C 1.0)) should evaluate to V "x".

4. Define a data type Substitution that maps some variables to con-
stant values. Then define a function of the type instantiate ::

Substitution -> Poly -> Poly that takes a polynomial fraction and
instantiates all variables mentioned in the substitution by the corre-
sponding constant. After instantiating the variables, the resulting ex-
pression should be simplified. For example, if you call instantiate on
testpoly with a substitution that maps x to 1.0, the result should be
C 6.0.

Hint: By removing deriving Show behind the definitions of Operator and
Poly and uncommenting the show declarations at the bottom of the template,
you can view the polynomials in a more human-readable format.

