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DM 509 Programming Languages
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Department of Mathematics and Computer Science
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This exam set consists of 7 pages (including this front page) and contains a
total of 5 problems. Each problem is weighted by the given percentage. The
individual questions of a problem are not necessarily weighted equally.

Most questions in a problem can be answered independently from the other
questions of the same problem.

All written aids are allowed. Answering questions by reference to material
not listed in the course curriculum is not acceptable.

You may answer the exam in English or in Danish.

This document contains the essential parts of the solutions to the exam set
identified above. Note that many times, there are several possible solutions,
and this document just lists one. Also, perfect answers to some of the exam
questions should contain explanations which are generally omitted in this doc-
ument. Finally, this document has not been scrutinized in the same meticu-
lous manner as an exam set and may contain typos, etc.
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Problem 1 (20%)

Question a: Implement a Prolog predicate dropFirst/3 such that
dropFirst(N, L, M) is true if, and only if, M is the list obtained by dropping
the first N elements of the list L.

For example, the query

?- dropFirst(2, [6,3,4,5,2,1], M).

should yield the answer M = [4,5,2,1]. Likewise, the query

?- dropFirst(4, [1,2,3], M).

should yield the answer M = [].

Possible Solution:

dropFirst(_,[],[]) :- !.

dropFirst(0,L,L).

dropFirst(N,[_|L],M) :- N > 0, N1 is N-1, dropFirst(N1,L,M).

Question b: Implement a Prolog predicate takeNth/3 such that
takeNth(N, L, M) is true if, and only if, M is the list obtained by taking
every N-th element from the list L.

For example, the query

?- takeNth(2, [6,3,4,5,2,1], M).

should yield the answer M = [6,4,2]. Likewise, the query

?- takeNth(3, [1,2,3,4], M).

should yield the answer M = [1,4].

Possible Solution:

takeNth(_,[],[]).

takeNth(N,[X|L],[X|M]) :- dropFirst(N,[_|L],L1), takeNth(N,L1,M).
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Question c: A fraction a
b

can be represented by the term a/b. Note that
instead of “/” one could also use “-” or “+”.

Implement a Prolog predicate add/3 such that add(X,Y,Z) is true if, and
only if, Z is the fraction obtained by adding X and Y.

For example, the query

?- add(1/6, 3/10, F).

should yield the answer F = 28/60. Likewise, the query

?- add(3/1, 1/2, F).

should yield the answer F = 7/2.

Possible Solution:

add(A/B,C/D,X/Y) :- X is A*D+C*B, Y is B*D.

Question d: A heterosquare is a matrix of dimension n× n containing all
numbers from 1 to n2 such that the sums of all rows and of all columns are
pairwise different.

The following is an example of a heterosquare of dimension 2× 2. Note that
1+2 = 3, 3+4 = 7, 1+3 = 4, and 2+4 = 6, i.e., we have the sums 3, 7, 4,
and 6, which are all pairwise different.

1 2
3 4

We represent such a square as a list of concatenated rows, i.e., the above
square would be represented as follows.

[1,2,3,4]

Implement a Prolog predicate hetero/1 such that the query ?- hetero(L).

has exactly those lists L as answers that represent heterosquares of dimension
2× 2.

You may (but do not have to) use constraint logic programming for your
implementation.
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Possible Solution:

hetero(L) :- L = [A,B,C,D],

S = [R1,R2,C1,C2],

fd_domain(L,1,4), fd_domain(S,1,7),

fd_all_different(L), fd_all_different(S),

A+B #= R1, C+D #= R2, A+C #= C1, B+D #= C2,

fd_labeling(L).
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Problem 2 (25%)

Question a: Consider the following Prolog program.

p(X,Y) :- q(X), s(Y), p(Y,X).

p(X,Y) :- r(X), s(Y), p(Y,X).

p(X,2).

q(1).

r(2).

s(3).

s(4).

Draw the SLD tree for the query ?- p(A,B). and list all answers with the
instantiations of A and B.

Possible Solution:

p(A, B)

{X/A,Y/B}
{X/A,Y/B}

{X/A,B/2}

q(A), s(B), p(B, A)

{A/1}

r(A), s(B), p(B, A)

{A/2}

�

s(B), p(B, 1)

{B/3}
{B/4}

s(B), p(B, 2)

{B/3}

{B/4}

p(3, 1)

{X/3,Y/1}

p(4, 1)

{X/4,Y/1}

p(3, 2)

{X/3,Y/2}
{X/3}

p(4, 2)

{X/4,Y/2}
{X/4}

q/r(3), s(1), p(1, 3) q/r(4), s(1), p(1, 4) q/r(3), s(2), p(2, 3) � q/r(4), s(2), p(2, 4) �

Here, q/r(...), ... represents the two nodes q(...), ... and r(...),

... obtained by unifying with the first two clauses from p.

The answers returned by Prolog are:

A = 2, B = 3

A = 2, B = 4

B = 2
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Question b: We now introduce a cut into the body of the second clause
from Question a, i.e., we now have the following Prolog clauses for p/2.

p(X,Y) :- q(X), s(Y), p(Y,X).

p(X,Y) :- r(X), s(Y), p(Y,X), !.

p(X,2).

Indicate in the SLD tree of Question a which branches are cut and list all
remaining answers with the instantiations of A and B.

Possible Solution:

p(A, B)

{X/A,Y/B}
{X/A,Y/B}

{X/A,B/2}

�q(A), s(B), p(B, A)

{A/1}

r(A), s(B), p(B, A)

{A/2}

�

s(B), p(B, 1)

{B/3}
{B/4}

s(B), p(B, 2)

{B/3}

{B/4}

�
p(3, 1)

{X/3,Y/1}

p(4, 1)

{X/4,Y/1}

p(3, 2)

{X/3,Y/2}
{X/3}

p(4, 2)

{X/4,Y/2}
{X/4}

q/r(3), s(1), p(1, 3) q/r(4), s(1), p(1, 4) q/r(3), s(2), p(2, 3) � q/r(4), s(2), p(2, 4) �

The only answer returned by Prolog is:

A = 2, B = 3
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Question c: For the following pairs of Prolog terms, find a most general
unifier or argue that none exists. Show the steps of the algorithm. In case
of success, give the resulting substitution. In case of failure, state if it is an
occur failure or a clash failure.

1. p(f(b),a,Y) and p(f(Y),X,b)

2. q(g(X),g(Y),g(a)) and q(g(A),A,g(X))

3. r(a,Z,[X,Y]) and r(X,Y,[X|Z])

Possible Solution:

1. SUBSTITUTION {X/a, Y/b} {p(f(b), a, Y) ?
= p(f(Y), X, b)}

⇒ (DECOMPOSE) {f(b) ?
= f(Y), a

?
= X, Y

?
= b}

⇒ (DECOMPOSE) {b ?
= Y, a

?
= X, Y

?
= b}

⇒ (ELIMINATE) {b ?
= b, a

?
= X, Y

?
= b}

⇒ (DELETE) {a ?
= X, Y

?
= b}

⇒ (ORIENT ) {X ?
= a, Y

?
= b}

2. CLASH FAILURE {q(g(X), g(Y), g(a)) ?
= q(g(A), A, g(X))}

⇒ (DECOMPOSE) {g(X) ?
= g(A), g(Y)

?
= A, g(a)

?
= g(X)}

⇒ (DECOMPOSE) {X ?
= A, g(Y)

?
= A, g(a)

?
= g(X)}

⇒ (DECOMPOSE) {X ?
= A, g(Y)

?
= A, a

?
= X}

⇒ (ELIMINATE) {X ?
= A, g(Y)

?
= A, a

?
= A}

⇒ (ORIENT ) {X ?
= A, g(Y)

?
= A, A

?
= a)}

⇒ (ELIMINATE) {X ?
= A, g(Y)

?
= a, A

?
= a)}

3. OCCUR FAILURE

{r(a, Z, [X, Y]) ?
= r(X, Y, [X|Z])}

= {r(a, Z, .(X, .(Y, []))) =?r(X, Y, .(X, Z))}

⇒ (DECOMPOSE) {a ?
= X, Z

?
= Y, .(X, .(Y, []))

?
= .(X, Z)}

⇒ (DECOMPOSE) {a ?
= X, Z

?
= Y, X

?
= X, .(Y, [])

?
= Z}

⇒ (DELETE) {a ?
= X, Z

?
= Y, .(Y, [])

?
= Z}

⇒ (ELIMINATE) {a ?
= X, Z

?
= Y, .(Y, [])

?
= Y}

⇒ (ORIENT ) {a ?
= X, Z

?
= Y, .Y

?
= .(Y, [])}
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Problem 3 (15%)

Question a: Define a haskell function max which takes two non-negative
positive integers and determines the maximum of the two.

For example, max 2 3 = 3 and max 5 0 = 5.

Here, you may not use any pre-defined functions except for (+) and (-). In
particular, you may not use (>) or any other comparison operator.

Possible Solution:

max 0 y = y

max x 0 = x

max x y = 1 + max (x-1) (y-1)

Question b: Define a haskell function maxList which takes two lists of
non-negative integers of same length and builds a list, which at each position
contains the maximum of the elements of the two argument lists.

For example, maxList [1,6,3] [2,4,5] = [2,6,5].

You should use the function max from Question a.

Possible Solution:

maxList = zipWith max

Alternative Solution:

maxList [] [] = []

maxList (x:xs) (y:ys) = max x y : maxList xs ys
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Question c: Define a haskell function transpose which takes a matrix
of integers represented as a list of rows and computes the transposed matrix.

For example, transpose [[1,2],[3,4]] = [[1,3],[2,4]] and transpose

[[1,2,3,4],[5,6,7,8]] = [[1,5],[2,6],[3,7],[4,8]].

Possible Solution:

transpose [] = []

transpose ([]:mss) = transpose mss

transpose mss = map (\x:xs) -> x) mss : transpose (map (\(x:xs) -> xs))

Question d: Give a haskell declaration for the infinite list powersOf2

of all strings consisting of just “*” with a length that is a power of 2, i.e., a
declaration of the form “powersOf2 = ...”.

For example, take 5 powersOf2 should return the following list.

["*","**","****","********","****************"]

for the following (standard definition) of take:

take 0 _ = []

take _ [] = []

take (n+1) (x:xs) = x : take n xs

Possible Solution:

powersOf2 = "*" : map (\x -> x++x) powersOf2
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Problem 4 (20%)

Question a: Consider the following data type for multisets, i.e., for sets
that can contain an element multiple times.

data MultiSet a = a -> Integer

Thus, the expression \x -> 0 represents the empty multiset {} while the ex-
pression \x -> if x == 4 then 1 else if x == 1 then 3 else 0 repre-
sents the multiset {1, 1, 1, 4}.

Functions that work on these multisets need to create, apply, or modify
functions. The following declarations for emptyMS, frequency, and insert

define the empty multiset, a function returning the multiplicity of an element,
and insert an element into a multiset, respectively:

emptyMS = \x -> 0

frequency x ms = ms x

insert x ms = \y -> ms y + if x == y then 1 else 0

Define a haskell function union which takes two MultiSet a and produces
the union of the two multisets.

For example,
union (insert 1 (insert 1 emptyMS)) (insert 4 (insert 1 emptyMS))

should return a function representing the multiset {1, 1, 1, 4}.

Possible Solution:

union ms1 ms2 = \x -> ms1 x + ms2 x
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Question b: Consider an alternative representation of multisets as lists of
pairs where [(4, 1), (1, 3)] represents the multiset {1, 1, 1, 4}.

Define a haskell function toList which takes a multiset represented by a
value of type [(a,Integer)] and returns a list of type [a] that contains
each element of the multiset as many times as specified.

For example, toList [(4,1),(1,3)] could return [4,1,1,1] or [1,1,1,4].
Note that the order is not important.

Possible Solution:

toList = foldr (\(x,n) xs -> replicate n x ++ xs) []

Alternative Solution:

toList [] = []

toList ((_,0):xs) = toList xs

toList ((x,n):xs) = x : toList ((x,n-1):xs)

Question c: Declare a haskell data type MSList a using a data decla-
ration to represent values of type [(a,Integer)] by self-defined data con-
structors.

Possible Solution:

data MSList a = EmptyMS | Insert a Integer (MSList a)
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Problem 5 (20%)

Question a: Find the most general type for each of the following two
haskell functions. You may assume that False,True::Bool, 1::Int, and
(:)::a -> [a] -> [a].

• f = \x -> if x 1 then False else True

• g (x:xs) y = x (g xs y)

Explain your reasoning.

Possible Solution:

• Assume f::a and x::b. As x is applied to 1 and must return a value
of type Bool, we have that b unifies with Int -> Bool. The value of
the if ...then ...else ... has the same type as True and False,
i.e, Bool. Thus a has to unify with (Int -> Bool) -> Bool.

f::(Int -> Bool) -> Bool

• Assume g::c -> d -> a, x::h, xs::i, and y::b. Because of the
subexpression (x:xs) we need to unify k -> [k] -> [k] with h ->

i -> c and obtain x::k, xs::[k], and g::[k] -> d -> a. By the
second argument of g we obtain g::[k] -> b -> a. As x is applied to
g xs y, we need to unify k with l -> m, l with a, and m with a.

g::[a -> a] -> b -> a
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Question b: Consider the two following ways of defining haskell func-
tions for mapping a function to all elements of a list.

map1 f [] = []

map1 f (x:xs) = f x : map1 f xs

map2 f = foldr help [] where

help x xs = f x : xs

foldr g h [] = h

foldr g h (x:xs) = g x (foldr g h xs)

Prove by induction that for all f of type [a -> b] and ys of type [a], these
two definitions yield the same result, i.e., map1 f ys = map2 f ys.

Possible Solution:

• base case (ys = [])

map1 f [] = [] = foldr help [] [] = map2 f []

• step case (assume theorem holds for ys, show it holds for y:ys)
Using the definition of map1 and the induction hypothesis we obtain:

map1 f (y:ys) = f y : map1 f ys = f y : map2 f ys

Next, we use the definition of map2 and the definition of help:

f y : map2 f ys = f y : foldr help [] ys = help y (foldr help [] ys)

Now, we use the definitions of foldr and map 2 backwards:

help y (foldr help [] ys) = foldr help [] (y:ys) = map2 f (y:ys)

Thus, we have shown that map1 f ys = map2 f ys.
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