
DM519 Concurrent Programming

Chapter 9

Dynamic Systems

1
1

DM519 Concurrent Programming

Repetition: Chapter 8
Model-Based Design

2

Requirements

Model

Java

2

DM519 Concurrent Programming

Repetition: Chapter 8
Model-Based Design

2

Requirements

Model

Java

2

DM519 Concurrent Programming

Repetition: Chapter 8
Model-Based Design

2

Requirements

Model

Java

2

DM519 Concurrent Programming

Course Outline
2. Processes and Threads

3. Concurrent Execution

4. Shared Objects & Interference

5. Monitors & Condition Synchronization

6. Deadlock

7. Safety and Liveness Properties

8. Model-based Design

9. Dynamic systems

10. Message Passing

11. Concurrent Software Architectures

Concepts
Models
Practice

12. Timed Systems

13. Program Verification

14. Logical Properties

The main basic

Advanced topics …

3
3

DM519 Concurrent Programming

Dynamic Systems

4
4

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

4
4

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

Models: static - fixed populations with cyclic behavior

interaction

4
4

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

Models: static - fixed populations with cyclic behavior

interaction

Practice: dynamic creation and deletion of threads
 (# active threads varies during execution)

Resource allocation algorithms
Java join() method

4
4

DM519 Concurrent Programming

9.1 Golf Club Program

Player
d4 is
waiting
for four
balls

Players at a Golf Club hire golf balls and then return them after use.

5
5

DM519 Concurrent Programming

9.1 Golf Club Program

Expert players tend not to lose any golf balls and only hire one or two.
Novice players hire more balls, so that they have spares during the
game in case of loss. However, they buy replacements for lost balls so
that they return the same number that they originally hired.

Player
d4 is
waiting
for four
balls

Players at a Golf Club hire golf balls and then return them after use.

5
5

DM519 Concurrent Programming

Golf Club - Java Implementation

6
6

DM519 Concurrent Programming

Golf Club - Java Implementation

The Java interface
Allocator permits us
to develop a few
implementations of the
golf ball allocator
without modifying the
rest of the program.

public interface Allocator {
 public void get(int n) throws InterruptedException;
 public void put(int n);
}

6
6

DM519 Concurrent Programming

Golf Club - Java Implementation

The Java interface
Allocator permits us
to develop a few
implementations of the
golf ball allocator
without modifying the
rest of the program.

DisplayAllocator
class implements this
interface and delegates
calls to get and put to
SimpleAllocator.

public interface Allocator {
 public void get(int n) throws InterruptedException;
 public void put(int n);
}

6
6

DM519 Concurrent Programming

Java Implementation - SimpleAllocator Monitor

7
7

DM519 Concurrent Programming

Java Implementation - SimpleAllocator Monitor

public class SimpleAllocator implements Allocator {
 private int available;

 public SimpleAllocator(int n)
 { available = n; }

7
7

DM519 Concurrent Programming

Java Implementation - SimpleAllocator Monitor

public class SimpleAllocator implements Allocator {
 private int available;

 public SimpleAllocator(int n)
 { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 while (n>available) wait();
 available -= n;
 }

7
7

DM519 Concurrent Programming

Java Implementation - SimpleAllocator Monitor

get blocks a
calling thread until
sufficient golf
balls are
available.

public class SimpleAllocator implements Allocator {
 private int available;

 public SimpleAllocator(int n)
 { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 while (n>available) wait();
 available -= n;
 }

7
7

DM519 Concurrent Programming

Java Implementation - SimpleAllocator Monitor

get blocks a
calling thread until
sufficient golf
balls are
available.

public class SimpleAllocator implements Allocator {
 private int available;

 public SimpleAllocator(int n)
 { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 while (n>available) wait();
 available -= n;
 }

 synchronized public void put(int n) {
 available += n;
 notifyAll();
 }
}

7
7

DM519 Concurrent Programming

Java Implementation - SimpleAllocator Monitor

get blocks a
calling thread until
sufficient golf
balls are
available.

public class SimpleAllocator implements Allocator {
 private int available;

 public SimpleAllocator(int n)
 { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 while (n>available) wait();
 available -= n;
 }

 synchronized public void put(int n) {
 available += n;
 notifyAll();
 }
}

A novice thread
requesting a large
number of balls may
be overtaken and
remain blocked!

7
7

DM519 Concurrent Programming

Java Implementation - Player Thread

class Player extends Thread {
 private GolfClub gc;
 private String name;
 private int nballs;

 Player(GolfClub g, int n, String s) {
 gc = g; name = s; nballs =n;
 }

 public void run() {
 try {
 gc.getGolfBalls(nballs,name);
 Thread.sleep(gc.playTime);
 gc.relGolfBalls(nballs,name);
 } catch (InterruptedException e){}
 }
}

8
8

DM519 Concurrent Programming

Java Implementation - Player Thread

class Player extends Thread {
 private GolfClub gc;
 private String name;
 private int nballs;

 Player(GolfClub g, int n, String s) {
 gc = g; name = s; nballs =n;
 }

 public void run() {
 try {
 gc.getGolfBalls(nballs,name);
 Thread.sleep(gc.playTime);
 gc.relGolfBalls(nballs,name);
 } catch (InterruptedException e){}
 }
}

The run() method
terminates after
releasing golf balls.
New player threads
are created
dynamically.

8
8

DM519 Concurrent Programming

Dynamic Systems In Java

9
9

DM519 Concurrent Programming

Dynamic Systems In Java

Approach 1: explicitly create threads,
• Create one thread for each player

9

new Thread(new Player(...)).start()

9

DM519 Concurrent Programming

Dynamic Systems In Java

Approach 1: explicitly create threads,
• Create one thread for each player

• Drawbacks:
– thread life cycle overhead
– resources consumption, especially memory
– Stability: no controlled limits on #threads that can be created,

OutOfMemoryError

9

new Thread(new Player(...)).start()

9

DM519 Concurrent Programming

Dynamic Systems In Java

10
10

DM519 Concurrent Programming

Dynamic Systems In Java

Approach 2: Executor framework

10

interface Executor{
void execute(Runnable command);

}

10

DM519 Concurrent Programming

Dynamic Systems In Java

Approach 2: Executor framework

10

interface Executor{
void execute(Runnable command);

}

Executor exec = Executors.newFixedThreadPool(NTHREADS);
exec.execute(new Player(...));

10

DM519 Concurrent Programming

Dynamic Systems In Java

Approach 2: Executor framework

– By decoupling the task submission from execution, we can easily
change or specify execution policies, such as

• execution order, how many tasks are allowed to run
concurrently and how many are queued, etc.

10

interface Executor{
void execute(Runnable command);

}

Executor exec = Executors.newFixedThreadPool(NTHREADS);
exec.execute(new Player(...));

10

DM519 Concurrent Programming

9.2 Golf Club Model

11
11

DM519 Concurrent Programming

9.2 Golf Club Model

const N=5 // maximum #golf balls
range B=0..N // available range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]
 |put[j:1..N] ->BALL[b+j]
).

Allocator:

11
11

DM519 Concurrent Programming

9.2 Golf Club Model

const N=5 // maximum #golf balls
range B=0..N // available range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]
 |put[j:1..N] ->BALL[b+j]
).

Allocator: Allocator will accept
requests for up to b
balls, and block
requests for more
than b balls.

11
11

DM519 Concurrent Programming

9.2 Golf Club Model

const N=5 // maximum #golf balls
range B=0..N // available range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]
 |put[j:1..N] ->BALL[b+j]
).

How do we model the potentially infinite stream of
dynamically created player threads?

Allocator: Allocator will accept
requests for up to b
balls, and block
requests for more
than b balls.

Players:

11
11

DM519 Concurrent Programming

9.2 Golf Club Model

const N=5 // maximum #golf balls
range B=0..N // available range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]
 |put[j:1..N] ->BALL[b+j]
).

How do we model the potentially infinite stream of
dynamically created player threads?

Allocator: Allocator will accept
requests for up to b
balls, and block
requests for more
than b balls.

Players: Cannot model
infinite state
spaces, but can
model infinite
(repetitive)
behaviors.

11
11

DM519 Concurrent Programming

Golf Club Model

12
12

DM519 Concurrent Programming

Golf Club Model

Players:

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

Players:

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

Players: Fixed population of
golfers: infinite
stream of
requests.

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

Players: Fixed population of
golfers: infinite
stream of
requests.

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

set Experts = {alice,bob,chris}
set Novices = {dave,eve}
set Players = {Experts,Novices}

Players: Fixed population of
golfers: infinite
stream of
requests.

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

set Experts = {alice,bob,chris}
set Novices = {dave,eve}
set Players = {Experts,Novices}

Players: Fixed population of
golfers: infinite
stream of
requests.

Players is the
union of Experts
and Novices.

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

set Experts = {alice,bob,chris}
set Novices = {dave,eve}
set Players = {Experts,Novices}

HANDICAP =
 ({Novices.{need[3..N]},Experts.need[1..2]}
 -> HANDICAP
) +{Players.need[R]}.

Players: Fixed population of
golfers: infinite
stream of
requests.

Players is the
union of Experts
and Novices.

12
12

DM519 Concurrent Programming

Golf Club Model

range R=1..N //request range

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

set Experts = {alice,bob,chris}
set Novices = {dave,eve}
set Players = {Experts,Novices}

HANDICAP =
 ({Novices.{need[3..N]},Experts.need[1..2]}
 -> HANDICAP
) +{Players.need[R]}.

Players: Fixed population of
golfers: infinite
stream of
requests.

Players is the
union of Experts
and Novices.

Constraint on
need action of
each player.

12
12

DM519 Concurrent Programming

Golf Club Model - Analysis

||GOLFCLUB =(Players:PLAYER
 ||Players::ALLOCATOR
 ||HANDICAP).

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

ALLOCATOR
get
put

get
need

Players:PLAYER

put

HANDICAP

Players.need

GOLFCLUB

13
13

DM519 Concurrent Programming

Golf Club Model - Analysis

||GOLFCLUB =(Players:PLAYER
 ||Players::ALLOCATOR
 ||HANDICAP).

Safety? Do players
return the right number of
balls?

Liveness? Are players
eventually allocated balls ?

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

ALLOCATOR
get
put

get
need

Players:PLAYER

put

HANDICAP

Players.need

GOLFCLUB

13
13

DM519 Concurrent Programming

Golf Club Model - Liveness

progress NOVICE = {Novices.get[R]}
progress EXPERT = {Experts.get[R]}
||ProgressCheck = GOLFCLUB >>{Players.put[R]}.

14
14

DM519 Concurrent Programming

Golf Club Model - Liveness

progress NOVICE = {Novices.get[R]}
progress EXPERT = {Experts.get[R]}
||ProgressCheck = GOLFCLUB >>{Players.put[R]}.

Progress violation: NOVICE
Trace to terminal set of states:
 alice.need.2
 bob.need.2
 chris.need.2
 chris.get.2
 dave.need.5
 eve.need.5
Cycle in terminal set:
 alice.get.2
 alice.put.2
Actions in terminal set:
 {alice, bob, chris}.{get, put}[2]

14
14

DM519 Concurrent Programming

Golf Club Model - Liveness

progress NOVICE = {Novices.get[R]}
progress EXPERT = {Experts.get[R]}
||ProgressCheck = GOLFCLUB >>{Players.put[R]}.

Progress violation: NOVICE
Trace to terminal set of states:
 alice.need.2
 bob.need.2
 chris.need.2
 chris.get.2
 dave.need.5
 eve.need.5
Cycle in terminal set:
 alice.get.2
 alice.put.2
Actions in terminal set:
 {alice, bob, chris}.{get, put}[2]

Novice players
dave and eve
suffer starvation.
They are
continually
overtaken by
experts alice,
bob and chris.

14
14

DM519 Concurrent Programming

9.3 Fair Allocation

const TM = 5 // maximum ticket
range T = 1..TM // ticket values

TICKET = NEXT[1],
NEXT[t:T] = (ticket[t]->NEXT[t%TM+1]).

Allocation in arrival order, using tickets:

15
15

DM519 Concurrent Programming

9.3 Fair Allocation

const TM = 5 // maximum ticket
range T = 1..TM // ticket values

TICKET = NEXT[1],
NEXT[t:T] = (ticket[t]->NEXT[t%TM+1]).

Allocation in arrival order, using tickets:

Players and Allocator:

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R]= (ticket[t:T]->get[b][t]->put[b]
 ->PLAYER[b]).

ALLOCATOR = BALL[N][1],
BALL[b:B][t:T] =
 (when (b>0) get[i:1..b][t]->BALL[b-i][t%TM+1]
 |put[j:1..N] ->BALL[b+j][t]
).

15
15

DM519 Concurrent Programming

Fair Allocation - Analysis

HANDICAP =
 ({Novices.{need[4]},Experts.need[1]}-> HANDICAP
) +{Players.need[R]}.

Ticketing increases the size of the model for analysis. We
compensate by modifying the HANDICAP constraint:

||GOLFCLUB =(Players:PLAYER
 ||Players::(ALLOCATOR||TICKET)
 ||HANDICAP).

Experts use 1 ball,
Novices use 4 balls.

16
16

DM519 Concurrent Programming

Fair Allocation - Analysis

HANDICAP =
 ({Novices.{need[4]},Experts.need[1]}-> HANDICAP
) +{Players.need[R]}.

Ticketing increases the size of the model for analysis. We
compensate by modifying the HANDICAP constraint:

||GOLFCLUB =(Players:PLAYER
 ||Players::(ALLOCATOR||TICKET)
 ||HANDICAP).

Safety?

Liveness?
progress NOVICE = {Novices.get[R][T]}
progress EXPERT = {Experts.get[R][T]}

Experts use 1 ball,
Novices use 4 balls.

16
16

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 long myturn = turn; ++turn;

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

Block calling
thread until
sufficient balls
and next turn.

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 long myturn = turn; ++turn;
 while (n>available || myturn != next) wait();

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

Block calling
thread until
sufficient balls
and next turn.

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 long myturn = turn; ++turn;
 while (n>available || myturn != next) wait();
 ++next; available -= n;
 notifyAll();
 }

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

Block calling
thread until
sufficient balls
and next turn.

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 long myturn = turn; ++turn;
 while (n>available || myturn != next) wait();
 ++next; available -= n;
 notifyAll();
 }

 synchronized public void put(int n) {
 available += n;
 notifyAll();
 }
}

17
17

DM519 Concurrent Programming

9.4 Revised Golf Club Program - FairAllocator Monitor

Block calling
thread until
sufficient balls
and next turn.

public class FairAllocator implements Allocator {
 private int available;
 private long turn = 0; // next ticket to be dispensed
 private long next = 0; // next ticket to be served

 public FairAllocator(int n) { available = n; }

 synchronized public void get(int n)
 throws InterruptedException {
 long myturn = turn; ++turn;
 while (n>available || myturn != next) wait();
 ++next; available -= n;
 notifyAll();
 }

 synchronized public void put(int n) {
 available += n;
 notifyAll();
 }
}

Why is it
necessary for
get to include
notifyAll()?

17
17

DM519 Concurrent Programming

Revised Golf Club Program - FairAllocator

18
18

DM519 Concurrent Programming

Revised Golf Club Program - FairAllocator

Players g1 and h1 are waiting. Even though two
balls are available, they cannot overtake player f4.

18
18

DM519 Concurrent Programming

Revised Golf Club Program - FairAllocator

Players g1 and h1 are waiting. Even though two
balls are available, they cannot overtake player f4.

What happens
if c, d and e all
return their
golf balls?

18
18

DM519 Concurrent Programming

9.5 Bounded Allocation

Allocation in arrival order is not efficient. A bounded allocation
scheme allows experts to overtake novices but denies starvation by
setting an upper bound on the number of times a novice can be
overtaken.

19
19

DM519 Concurrent Programming

9.5 Bounded Allocation

Allocation in arrival order is not efficient. A bounded allocation
scheme allows experts to overtake novices but denies starvation by
setting an upper bound on the number of times a novice can be
overtaken.

We model players who have overtaken others as a set.

19
19

DM519 Concurrent Programming

9.5 Bounded Allocation

Allocation in arrival order is not efficient. A bounded allocation
scheme allows experts to overtake novices but denies starvation by
setting an upper bound on the number of times a novice can be
overtaken.

We model players who have overtaken others as a set.

const False = 0
const True = 1
range Bool = 0..1

ELEMENT(Id=0) = IN[False],
IN[b:Bool] = (add[Id] -> IN[True]
 | remove[Id] -> IN[False]
 | contains[Id][b] -> IN[b]
).
||SET = (forall[i:T] (ELEMENT(i))).

19
19

DM519 Concurrent Programming

9.5 Bounded Allocation

Allocation in arrival order is not efficient. A bounded allocation
scheme allows experts to overtake novices but denies starvation by
setting an upper bound on the number of times a novice can be
overtaken.

A SET is
modeled as
the parallel
composition
of elements

We model players who have overtaken others as a set.

const False = 0
const True = 1
range Bool = 0..1

ELEMENT(Id=0) = IN[False],
IN[b:Bool] = (add[Id] -> IN[True]
 | remove[Id] -> IN[False]
 | contains[Id][b] -> IN[b]
).
||SET = (forall[i:T] (ELEMENT(i))).

19
19

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

20
20

DM519 Concurrent Programming

Bounded Allocation - Allocator Model
We model bounded overtaking using tickets, where ticket numbers
indicate the order in which players make their requests. The
allocator records which ticket number is next.

20
20

DM519 Concurrent Programming

Bounded Allocation - Allocator Model
We model bounded overtaking using tickets, where ticket numbers
indicate the order in which players make their requests. The
allocator records which ticket number is next.

Overtaking occurs when we allocate balls to a player whose turn -
indicated by his/her ticket number – is subsequent to a waiting
player with the next ticket. The overtaking player is added to the
overtaking set, and a count ot is incremented to indicate the number
of times next has been overtaken.

20
20

DM519 Concurrent Programming

Bounded Allocation - Allocator Model
We model bounded overtaking using tickets, where ticket numbers
indicate the order in which players make their requests. The
allocator records which ticket number is next.

Overtaking occurs when we allocate balls to a player whose turn -
indicated by his/her ticket number – is subsequent to a waiting
player with the next ticket. The overtaking player is added to the
overtaking set, and a count ot is incremented to indicate the number
of times next has been overtaken.

When the count equals the bound, we allow allocation to the next
player only. When allocation is made to the next player, we update
next to indicate the next (waiting) player. We skip the ticket
numbers of overtaking players who already received their allocation,
remove each of these intervening players from the overtaking set
and decrement the overtaking count ot accordingly. (This is achieved
in the local process, WHILE, in the ALLOCATOR model.)

20
20

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =
 (when (b>0 && ot<Bd) get[i:1..b][turn:T] ->

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =
 (when (b>0 && ot<Bd) get[i:1..b][turn:T] ->
 if (turn!=next) then
 (add[turn] -> BALL[b-i][next][ot+1])
 else
 WHILE[b-i][next%TM+1][ot]

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =
 (when (b>0 && ot<Bd) get[i:1..b][turn:T] ->
 if (turn!=next) then
 (add[turn] -> BALL[b-i][next][ot+1])
 else
 WHILE[b-i][next%TM+1][ot]
 |when (b>0 && ot==Bd) get[i:1..b][next] ->
 WHILE[b-i][next%TM+1][ot]

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =
 (when (b>0 && ot<Bd) get[i:1..b][turn:T] ->
 if (turn!=next) then
 (add[turn] -> BALL[b-i][next][ot+1])
 else
 WHILE[b-i][next%TM+1][ot]
 |when (b>0 && ot==Bd) get[i:1..b][next] ->
 WHILE[b-i][next%TM+1][ot]
 |put[j:1..N] -> BALL[b+j][next][ot]
),

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =
 (when (b>0 && ot<Bd) get[i:1..b][turn:T] ->
 if (turn!=next) then
 (add[turn] -> BALL[b-i][next][ot+1])
 else
 WHILE[b-i][next%TM+1][ot]
 |when (b>0 && ot==Bd) get[i:1..b][next] ->
 WHILE[b-i][next%TM+1][ot]
 |put[j:1..N] -> BALL[b+j][next][ot]
),
WHILE[b:B][next:T][ot:0..Bd] =
 (contains[next][yes:Bool] ->

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

ALLOCATOR = BALL[N][1][0], //initially N balls, 1 is next, empty set
BALL[b:B][next:T][ot:0..Bd] =
 (when (b>0 && ot<Bd) get[i:1..b][turn:T] ->
 if (turn!=next) then
 (add[turn] -> BALL[b-i][next][ot+1])
 else
 WHILE[b-i][next%TM+1][ot]
 |when (b>0 && ot==Bd) get[i:1..b][next] ->
 WHILE[b-i][next%TM+1][ot]
 |put[j:1..N] -> BALL[b+j][next][ot]
),
WHILE[b:B][next:T][ot:0..Bd] =
 (contains[next][yes:Bool] ->
 if (yes) then
 (remove[next] -> WHILE[b][next%TM+1][ot-1])
 else BALL[b][next][ot]
).

21
21

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

const N = 5 // maximum #golf balls
const Bd = 2 // bound on overtaking
range B = 0..N // available range

const TM = N + Bd // maximum ticket
range T = 1..TM // ticket values

where

22
22

DM519 Concurrent Programming

Bounded Allocation - Allocator Model

const N = 5 // maximum #golf balls
const Bd = 2 // bound on overtaking
range B = 0..N // available range

const TM = N + Bd // maximum ticket
range T = 1..TM // ticket values

where

||GOLFCLUB = (Players:PLAYER
 || ALLOCATOR || TICKET || SET
 || HANDICAP
)/ {Players.get/get, Players.put/put,
 Players.ticket/ticket}.

22
22

DM519 Concurrent Programming

Bounded Allocation - An Explanatory Trace

 eve.need.4 Experts Eve and Dave
 dave.need.4
 chris.need.1 Novices Alice, Bob and Chris
 alice.need.1
 bob.need.1
 alice.ticket.1
 alice.get.1.1 Alice gets 1 ball, ticket 1
 contains.2.0 Ticket 2 is next
 bob.ticket.2
 bob.get.1.2 Two allocated, three available
 contains.3.0 Ticket 3 is next
 dave.ticket.3 Dave needs four balls: waits
 chris.ticket.4
 chris.get.1.4 Chris overtakes
 add.4
 eve.ticket.5 Eve needs four balls: waits
 alice.put.1
 alice.ticket.6
 alice.get.1.6 Alice overtakes
 add.6
 bob.put.1
 bob.ticket.7
 bob.get.1.7 Bob overtakes: bound reached
 add.7

Using
animation, we
can perform a
scenario and
produce a
trace.

23
23

DM519 Concurrent Programming

Bounded Allocation - An Explanatory Trace

 chris.put.1
 chris.ticket.8 Chris waits: three available
 alice.put.1
 alice.ticket.1 Alice waits: four available
 dave.get.4.3 Dave gets four balls
 contains.4.1 remove intervening overtaker
 remove.4
 contains.5.0 Ticket 5 (Eve) is next
 dave.put.4
 dave.ticket.2
 alice.get.1.1 Alice overtakes: bound reached
 add.1
 bob.put.1
 bob.ticket.3
 eve.get.4.5 Eve gets four balls
 contains.6.1 remove intervening overtakers
 remove.6
 contains.7.1
 remove.7
 contains.8.0 Ticket 8 (Chris) is next
 . . .

24
24

DM519 Concurrent Programming

Bounded Allocation - An Explanatory Trace

 chris.put.1
 chris.ticket.8 Chris waits: three available
 alice.put.1
 alice.ticket.1 Alice waits: four available
 dave.get.4.3 Dave gets four balls
 contains.4.1 remove intervening overtaker
 remove.4
 contains.5.0 Ticket 5 (Eve) is next
 dave.put.4
 dave.ticket.2
 alice.get.1.1 Alice overtakes: bound reached
 add.1
 bob.put.1
 bob.ticket.3
 eve.get.4.5 Eve gets four balls
 contains.6.1 remove intervening overtakers
 remove.6
 contains.7.1
 remove.7
 contains.8.0 Ticket 8 (Chris) is next
 . . .

Exhaustive
checking:

Safety?

Liveness?
Can we also
specify the
bounded nature
of this allocator
as a safety
property?

24
24

DM519 Concurrent Programming

Bounded Allocation – Safety Property

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =
 ([P].ticket[t:T] -> WAITING[t][0]
 |[Players].get[R][T] -> BOUND
),

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =
 ([P].ticket[t:T] -> WAITING[t][0]
 |[Players].get[R][T] -> BOUND
),
WAITING[ticket:T][overtaken:0..Bd] =

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =
 ([P].ticket[t:T] -> WAITING[t][0]
 |[Players].get[R][T] -> BOUND
),
WAITING[ticket:T][overtaken:0..Bd] =
 ([P].get[b:R][ticket] -> BOUND

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =
 ([P].ticket[t:T] -> WAITING[t][0]
 |[Players].get[R][T] -> BOUND
),
WAITING[ticket:T][overtaken:0..Bd] =
 ([P].get[b:R][ticket] -> BOUND
 |{Players\{[P]}}.get[b:R][t:T] ->

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =
 ([P].ticket[t:T] -> WAITING[t][0]
 |[Players].get[R][T] -> BOUND
),
WAITING[ticket:T][overtaken:0..Bd] =
 ([P].get[b:R][ticket] -> BOUND
 |{Players\{[P]}}.get[b:R][t:T] ->
 if (t>ticket)
 then WAITING[ticket][overtaken+1]
 else WAITING[ticket][overtaken]

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

Bounded Allocation – Safety Property

property BOUND(P='alice) =
 ([P].ticket[t:T] -> WAITING[t][0]
 |[Players].get[R][T] -> BOUND
),
WAITING[ticket:T][overtaken:0..Bd] =
 ([P].get[b:R][ticket] -> BOUND
 |{Players\{[P]}}.get[b:R][t:T] ->
 if (t>ticket)
 then WAITING[ticket][overtaken+1]
 else WAITING[ticket][overtaken]
 |Players.ticket[last:T] ->WAITING[ticket][overtaken]
).

For each player, check that he/she is not overtaken more than bound
times. Overtaking is indicated by an allocation to another player whose
ticket t lies between the turn of the player and the latest ticket.

Action labels used in
expressions or as
parameter values
must be prefixed
with a single quote.

25
25

DM519 Concurrent Programming

9.6 Bounded Overtaking Allocator - Implementation

Implementation of the BoundedOvertakingAllocator
monitor follows the algorithm in the model.

26
26

DM519 Concurrent Programming

9.6 Bounded Overtaking Allocator - Implementation

Novice player f4 has been overtaken by expert players g1, h1 and
i1. Since the overtaking bound of three has been exceeded, players
j1 and k1 are blocked although there are two golf balls available.

Implementation of the BoundedOvertakingAllocator
monitor follows the algorithm in the model.

26
26

DM519 Concurrent Programming

9.7 Master-Slave Program

27
27

DM519 Concurrent Programming

9.7 Master-Slave Program

A Master thread creates a
Slave thread to perform some
task (eg. I/O) and continues.

27
27

DM519 Concurrent Programming

9.7 Master-Slave Program

A Master thread creates a
Slave thread to perform some
task (eg. I/O) and continues.

Later, the Master
synchronizes with the Slave
to collect the result.

27
27

DM519 Concurrent Programming

9.7 Master-Slave Program

A Master thread creates a
Slave thread to perform some
task (eg. I/O) and continues.

Later, the Master
synchronizes with the Slave
to collect the result.

How can we avoid busy
waiting for the Master?

27
27

DM519 Concurrent Programming

9.7 Master-Slave Program

A Master thread creates a
Slave thread to perform some
task (eg. I/O) and continues.

Later, the Master
synchronizes with the Slave
to collect the result.

How can we avoid busy
waiting for the Master?

Java class Thread provides
method join() which waits
for the thread to die, i.e.,
by returning from run() or
as a result of stop().

27
27

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Master implements Runnable {
 ThreadPanel slaveDisplay;
 SlotCanvas resultDisplay;

 Master(ThreadPanel tp, SlotCanvas sc)
 {slaveDisplay=tp; resultDisplay=sc;}

 public void run() {
 try {
 String res=null;
 while(true) {
 while (!ThreadPanel.rotate());

28
28

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Master implements Runnable {
 ThreadPanel slaveDisplay;
 SlotCanvas resultDisplay;

 Master(ThreadPanel tp, SlotCanvas sc)
 {slaveDisplay=tp; resultDisplay=sc;}

 public void run() {
 try {
 String res=null;
 while(true) {
 while (!ThreadPanel.rotate());
 if (res!=null) resultDisplay.leave(res);

28
28

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Master implements Runnable {
 ThreadPanel slaveDisplay;
 SlotCanvas resultDisplay;

 Master(ThreadPanel tp, SlotCanvas sc)
 {slaveDisplay=tp; resultDisplay=sc;}

 public void run() {
 try {
 String res=null;
 while(true) {
 while (!ThreadPanel.rotate());
 if (res!=null) resultDisplay.leave(res);
 Slave s = new Slave(); // create new slave thread
 Thread st = slaveDisplay.start(s,false);

Slave thread is
created and
started using the
ThreadPanel
method start.

28
28

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Master implements Runnable {
 ThreadPanel slaveDisplay;
 SlotCanvas resultDisplay;

 Master(ThreadPanel tp, SlotCanvas sc)
 {slaveDisplay=tp; resultDisplay=sc;}

 public void run() {
 try {
 String res=null;
 while(true) {
 while (!ThreadPanel.rotate());
 if (res!=null) resultDisplay.leave(res);
 Slave s = new Slave(); // create new slave thread
 Thread st = slaveDisplay.start(s,false);
 while (ThreadPanel.rotate()); // continue execution

Slave thread is
created and
started using the
ThreadPanel
method start.

28
28

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Master implements Runnable {
 ThreadPanel slaveDisplay;
 SlotCanvas resultDisplay;

 Master(ThreadPanel tp, SlotCanvas sc)
 {slaveDisplay=tp; resultDisplay=sc;}

 public void run() {
 try {
 String res=null;
 while(true) {
 while (!ThreadPanel.rotate());
 if (res!=null) resultDisplay.leave(res);
 Slave s = new Slave(); // create new slave thread
 Thread st = slaveDisplay.start(s,false);
 while (ThreadPanel.rotate()); // continue execution
 st.join(); // wait for slave termination

Slave thread is
created and
started using the
ThreadPanel
method start.

28
28

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Master implements Runnable {
 ThreadPanel slaveDisplay;
 SlotCanvas resultDisplay;

 Master(ThreadPanel tp, SlotCanvas sc)
 {slaveDisplay=tp; resultDisplay=sc;}

 public void run() {
 try {
 String res=null;
 while(true) {
 while (!ThreadPanel.rotate());
 if (res!=null) resultDisplay.leave(res);
 Slave s = new Slave(); // create new slave thread
 Thread st = slaveDisplay.start(s,false);
 while (ThreadPanel.rotate()); // continue execution
 st.join(); // wait for slave termination
 res = String.valueOf(s.result()); //get and display result from slave
 resultDisplay.enter(res);
 }
 } catch (InterruptedException e){}
 }
}

Slave thread is
created and
started using the
ThreadPanel
method start.

28
28

DM519 Concurrent Programming

Java Implementation - Master-Slave

class Slave implements Runnable {
 int rotations = 0;

 public void run() {
 try {
 while (!ThreadPanel.rotate()) ++rotations;
 } catch (InterruptedException e){}
 }

 int result(){
 return rotations;
 }
} Slave method result need not be

synchronized to avoid interference with
the Master thread. Why not?

29
29

DM519 Concurrent Programming

9.8 Master-Slave Model

SLAVE = (start->rotate->join->SLAVE).

MASTER = (slave.start->rotate
 ->slave.join->rotate->MASTER).

||MASTER_SLAVE = (MASTER || slave:SLAVE).

join is
modeled by a
synchronized
action.

30
30

DM519 Concurrent Programming

9.8 Master-Slave Model

SLAVE = (start->rotate->join->SLAVE).

MASTER = (slave.start->rotate
 ->slave.join->rotate->MASTER).

||MASTER_SLAVE = (MASTER || slave:SLAVE).

join is
modeled by a
synchronized
action.

slave.rotate and
rotate are
interleaved, i.e.,
concurrent

30
30

DM519 Concurrent Programming

Dynamic Systems

31
31

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

31
31

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

Models: static - fixed populations with cyclic behavior

interaction

31
31

DM519 Concurrent Programming

Dynamic Systems

Concepts: dynamic creation and deletion of processes
Resource allocation example – varying number of users
and resources.

master-slave interaction

Models: static - fixed populations with cyclic behavior

interaction

Practice: dynamic creation and deletion of threads
 (# active threads varies during execution)

Resource allocation algorithms
Java join() method

31
31

