
DM519 Concurrent Programming

Chapter 7

Safety & Liveness
Properties

!1

DM519 Concurrent Programming

Chapter 6

Repetition: Deadlock

!2

DM519 Concurrent Programming

Concepts, Models, And Practice

uConcepts

l deadlock (no further progress)

l 4x necessary & sufficient conditions

!

uModels

l no eligible actions (analysis gives shortest path trace)

!

uPractice

l blocked threads

Aim - deadlock avoidance:

 “Break at least one of  
 the deadlock conditions”.

!3

DM519 Concurrent Programming

Deadlock: 4 Necessary And Sufficient Conditions

1. Mutual exclusion cond. (aka. “Serially reusable resources”):

 the processes involved share resources which they use under mutual  
 exclusion.

2. Hold-and-wait condition (aka. “Incremental acquisition”):

 processes hold on to resources already allocated to them while waiting  
 to acquire additional resources.

3. No pre-emption condition:

 once acquired by a process, resources cannot be “pre-empted” (forcibly  
 withdrawn) but are only released voluntarily.

4. Circular-wait condition (aka. “Wait-for cycle”):

 a circular chain (or cycle) of processes exists such that each process  
 holds a resource which its successor in the cycle is waiting to acquire.

!4

DM519 Concurrent Programming

uConcepts

Dining Philosophers (Concepts, Models And Practice)

0

1

23

4
0

1

2

3

4

uModels

uPractice

!5

DM519 Concurrent Programming

Chapter 7

Safety & Liveness
Properties

!6

DM519 Concurrent Programming

Safety & Liveness Properties

Concepts:
 Properties: true for every possible execution
 Safety: nothing bad ever happens
 Liveness: something good eventually happens
!
Models:
 Safety: no reachable ERROR/STOP state
 Progress: an action is eventually executed
 (fair choice and action priority)
!
Practice:
 Threads and monitors

Aim: property satisfaction.

!7

DM519 Concurrent Programming

Agenda

Part I / III
– Safety
!

Part II / III
– Liveness
!

Part III / III
– Example: Reader/Writer

!8

DM519 Concurrent Programming

Safety

Part I / III

!9

DM519 Concurrent Programming

♦ STOP or deadlocked state (no outgoing transitions)

♦ ERROR process (-1) to detect erroneous behaviour

7.1 Safety

RESOURCE =(acquire -> ACQUIRED),
ACQUIRED =(release -> RESOURCE
 |acquire -> ERROR).

Trace to property violation in RESOURCE:
 acquire
 acquire

♦ Analysis using LTSA:
 (shortest trace)

A safety property asserts that nothing bad happens.

!10

DM519 Concurrent Programming

Stop Vs. Error

STOP:
!
!
!
!
!
!
ERROR:

P = (p->P | stop->STOP).
Q = (q->Q).
!
||SYSv1 = (P || Q).

P = (p->P | error->ERROR).
Q = (q->Q).
!
||SYSv2 = (P || Q).

Trace: p
q
p
stop
q
q
…

Trace: p
q
p
error

SYSTEM
DEADLOCKED

LTSA:> No deadlocks detected

LTSA:> Trace to property violation  
 in P: error

!11

DM519 Concurrent Programming

Safety - Property Specification

♦ERROR conditions state what is not required (~ exceptions).

♦ In complex systems, it is usually better to specify 
 safety properties by stating directly what is required.

property SAFE_RESOURCE =
 (acquire ->
 release ->
 SAFE_RESOURCE).

RESOURCE =
 (acquire ->
 (release -> RESOURCE
 |acquire -> ERROR)
 |release -> ERROR).

!12

DM519 Concurrent Programming

Safety Properties

property POLITE
 = (knock -> enter -> POLITE).

Property that it is polite to knock before entering a room.

Note: In all states, all the actions in
the alphabet of a property are
eligible choices.

Traces:
 knock->enter J
 enter L
 knock->knock L

!13

DM519 Concurrent Programming

Safety Properties

Thus, if S is composed with P, then traces of actions in the
alphabet α(S) ∩ α(P) must also be valid traces of P,
otherwise ERROR is reachable.

Transparency of safety properties:

Since all actions in the alphabet of a property are eligible choices  
 => composition with S does not affect its correct behaviour.

However, if a bad behaviour can occur (violating the safety
property), then ERROR is reachable.

Safety property P defines a deterministic process that asserts
that any trace including actions in the alphabet of P, is accepted by
P.

…and hence detectable through verification (using LTSA)!
!14

DM519 Concurrent Programming

Safety Properties

♦ How can we specify that some action, disaster, never occurs?

property CALM = STOP + {disaster}.

A safety property must be specified so as to include all the
acceptable, valid behaviours in its alphabet.

NO_DISASTER = (disaster->ERROR).

...or...

!15

DM519 Concurrent Programming

Models Vs. Properties:
Implementation Vs. Specification

The model is for the implementation
The property is for the specification

• ”The implementation is required to meet the specification”
Often:

• Operational model (M) ~ implementation
• Declarative formula (φ) ~ specification

!
However, in FSP(/LTSA) both models and properties are described
using the same language (namely FSP):

• Operational model: FSP process
• Operational property: FSP property (process)

They will be similar (because they are using the same language), but
they do not represent the same thing!

∀t,t”: acquire(t) ∧ acquire(t”) ∧ t<t” => ∃t’: t<t’<t” ∧ release(t’)

property P = (acquire -> release -> P).

!16

DM519 Concurrent Programming

Safety - Mutual Exclusion

LOOP =
 (mutex.down->read->mod->write-> mutex.up->LOOP). !
||SEMADEMO = (p[1..3]:LOOP ||
 {p[1..3]}::mutex:SEMAPHORE(1)).

How do we check that this does indeed ensure mutual exclusion in
the critical section (read/mod/write)?

property MUTEX =
 (p[i:1..3].read -> p[i].write -> MUTEX). !
||CHECK = (SEMADEMO || MUTEX).

Check safety using LTSA! Is this safe with SEMAPHORE(2)?

∀t,t’’: read(t) ∧ read(t’’) ∧ t<t’’ => ∃t’: t<t’<t’’ ∧ write(t’)

!17

DM519 Concurrent Programming

7.2 Example: Single Lane Bridge Problem

A bridge over a river is only wide enough to permit a single lane of
traffic. Consequently, cars can only move concurrently if they are
moving in the same direction. A safety violation occurs if two cars
moving in different directions enter the bridge at the same time.

!18

DM519 Concurrent Programming

Single Lane Bridge - Model

♦ Events or actions of interest?

 enter and exit

!
♦ Identify processes?

 car and bridge

!
♦ Identify properties?

 “oneway”
red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property
ONEWAY

CARS

Single
Lane
Bridge

Structure diagram:

Using an appropriate level of abstraction!

~ Verbs

~ Nouns

~ Adjectives

!19

DM519 Concurrent Programming

Single Lane Bridge - Cars Model

const N = 3 // #cars (of each colour)
range ID = 1..N // car identities
!
CAR = (enter->exit->CAR). // car process
||N_CARS = ([ID]:CAR). // N cars

!20

DM519 Concurrent Programming

Single Lane Bridge - Convoy Model

NOPASS_ENTER = SEQ[1], // preserves entry order
SEQ[i:ID] = ([i].enter -> SEQ[i%N+1]).
!
NOPASS_EXIT = SEQ[1], // preserves exit order
SEQ[i:ID] = ([i].exit -> SEQ[i%N+1]).
!
||CONVOY = ([ID]:CAR || NOPASS_ENTER || NOPASS_EXIT).

Permits: 1.enter ; 1.exit ; 2.enter ; 2.exit
1.enter ; 2.enter ; 1.exit ; 2.exit

1.enter ; 2.enter ; 2.exit ; 1.exitbut not:
i.e. “no overtaking”

!21

DM519 Concurrent Programming

Single Lane Bridge - Bridge Model

BRIDGE = BRIDGE[0][0], // initially empty bridge
BRIDGE[nr:T][nb:T] = // nr: #red; nb: #blue
 (when (nb==0) red[ID].enter -> BRIDGE[nr+1][nb]
 | red[ID].exit -> BRIDGE[nr-1][nb]
 |when (nr==0) blue[ID].enter-> BRIDGE[nr][nb+1]
 | blue[ID].exit -> BRIDGE[nr][nb-1]
).

Cars can move concurrently on bridge, but only as a  
oneway street (=> controller)!

The bridge maintains a count of blue and red cars on it.

Red cars are only allowed to enter when the blue count is 0

(and vice-versa).

How ; ideas?

range T = 0..N

!22

DM519 Concurrent Programming

Single Lane Bridge - Bridge Model

Warning - BRIDGE.-1.0 defined to be ERROR
Warning - BRIDGE.0.-1 defined to be ERROR
Warning - BRIDGE.-1.1 defined to be ERROR
Warning - BRIDGE.-1.2 defined to be ERROR
Warning - BRIDGE.-1.3 defined to be ERROR
Warning - BRIDGE.0.4 defined to be ERROR
Warning - BRIDGE.1.-1 defined to be ERROR
Warning - BRIDGE.2.-1 defined to be ERROR
Warning - BRIDGE.4.0 defined to be ERROR
Warning - BRIDGE.3.-1 defined to be ERROR
Compiled: BRIDGE

“Sloppy controller”:  
 Even when 0, exit actions permit the car counts to  
 be decremented (i.e. unguarded exit actions) (similar with enter)
Recall that LTSA maps such undefined states to ERROR.

Is it a problem?
No, because cars are well-behaved  
(i.e. “they never exit before enter” and there
are only three cars of each colour) !23

DM519 Concurrent Programming

Single Lane Bridge - Safety Property “Oneway”

property ONEWAY = EMPTY,
EMPTY = (red[ID].enter -> ONLY_RED[1]
 |blue[ID].enter -> ONLY_BLUE[1]), !
ONLY_RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when (i==1) red[ID].exit -> EMPTY
 |when (i>1) red[ID].exit -> RED[i-1]), !
ONLY_BLUE[j:ID] = (blue[ID].enter -> BLUE[j+1]
 |when (j==1) blue[ID].exit -> EMPTY
 |when (j>1) blue[ID].exit -> BLUE[j-1]).

We now specify a safety property to check that cars only drive in
one way at a time (i.e. no collisions occur)!:

When the bridge is empty, either a red or a blue car may enter.
While red cars are on the bridge only red cars can enter; 
similarly for blue cars.

!24

DM519 Concurrent Programming

Model / Property: Implementation / Specification?

property ONEWAY = EMPTY,
EMPTY = (red[ID].enter -> RED[1]
 |blue[ID].enter -> BLUE[1]), !
RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when (i==1) red[ID].exit -> EMPTY
 |when (i>1) red[ID].exit -> RED[i-1]), !
BLUE[j:ID]= (blue[ID].enter -> BLUE[j+1]
 |when (j==1) blue[ID].exit -> EMPTY
 |when (j>1) blue[ID].exit -> BLUE[j-1]).

BRIDGE = BRIDGE[0][0], // initially empty bridge
BRIDGE[nr:T][nb:T] = // nr: #red; nb: #blue
 (when (nb==0) red[ID].enter -> BRIDGE[nr+1][nb]
 | red[ID].exit -> BRIDGE[nr-1][nb]
 |when (nr==0) blue[ID].enter -> BRIDGE[nr][nb+1]
 | blue[ID].exit -> BRIDGE[nr][nb-1]).

Model (~ implementation):

Property (~ specification):

!25

DM519 Concurrent Programming

Model / Property: Implementation / Specification?

Controller model (~ implementation):
– Behaviour (which actions are permitted)

Property “observer” (~ specification):
– All legal traces over (often smaller) alphabet

– May be many properties checking different aspects of an impl.
!

Our controller meets its specification (i.e. “no errors/deadlocks”).
– although “sloppy” (e.g. unguarded exits)

!
You cannot “cheat” here and use the controller as your
specification (by prefixing it with property)

!26

DM519 Concurrent Programming

Single Lane Bridge - Model Analysis

Is the safety property
“ONEWAY” violated?

||SingleLaneBridge = (CARS||BRIDGE||ONEWAY).

No deadlocks/errors

Trace to property violation
 in ONEWAY:
 red.1.enter
 blue.1.enter

||SingleLaneBridge = (CARS||BRIDGE||ONEWAY).

Is the safety property
“ONEWAY” violated?

…And without the BRIDGE (controller):

A red and a blue convoy of N cars for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

!27

DM519 Concurrent Programming

Single Lane Bridge - Implementation In Java

BridgeCanvas enforces no overtaking (~ NOPASS_ENTER).

CAR (active => thread) ; BRIDGE (passive => monitor)

!28

DM519 Concurrent Programming

Single Lane Bridge - Bridgecanvas

An instance of BridgeCanvas class is created by the
SingleLaneBridge applet.

class BridgeCanvas extends Canvas {
 public void init(int ncars) {…} // set #cars
!
 public boolean moveRed(int i) throws Int’Exc’{…}
 // moves red car #i a step (if possible)
 // returns 'true' if on bridge
!
 public boolean moveBlue(int i) throws Int’Exc’{…}
 // moves blue car #i a step (if possible)
 // returns 'true' if on bridge

}

Each Car object is passed a reference to the BridgeCanvas.

!29

DM519 Concurrent Programming

Single Lane Bridge - Redcar

class RedCar implements Runnable {
 Bridge control; BridgeCanvas display; int id;
!
 RedCar(Bridge b, BridgeCanvas d, int i) {
 control = b; display = d; id = i;
 }
!
 public void run() {
 try {
 while (true) {
 while (!display.moveRed(id)) ; // not on br.
 control.redEnter(); // req access to br.
 while (display.moveRed(id)) ; // move on br
 control.redExit(); // release access to br.
 }
 } catch (InterruptedException _) {}
 }
}

Similarly for the BlueCar...

!30

DM519 Concurrent Programming

Single Lane Bridge - Class Bridge

class Bridge {
 synchronized void redEnter() throws Int’Exc’ {}
 synchronized void redExit() {}
 synchronized void blueEnter() throws Int’Exc’ {}
 synchronized void blueExit() {}
}

Class Bridge provides a null implementation of the access methods
i.e. no constraints on the access to the bridge.

 Result………… ?

!31

DM519 Concurrent Programming

Single Lane Bridge

8 people dead!

!32

DM519 Concurrent Programming

Single Lane Bridge - Safebridge

class SafeBridge extends Bridge {
 protected int nred = 0; // #red cars on br.
 protected int nblue = 0; // #blue cars on br. !
 // monitor invariant: nred≥0 ∧ nblue≥0 ∧
 // ¬(nred>0 ∧ nblue>0) !
 synchronized void redEnter() throws Int’Exc’ {
 while (!(nblue==0)) wait();
 ++nred;
 }
!
 synchronized void redExit() {
 --nred;
 if (nred==0) notifyAll();
 }
}

BRIDGE[nr:T][nb:T] = // nr: #red; nb: #blue
… (when (nb==0) red[ID].enter -> BRIDGE[nr+1][nb]
 | red[ID].exit -> BRIDGE[nr-1][nb]

!33

DM519 Concurrent Programming

synchronized void blueEnter() throws Int’Exc’ {
 while (!(nred==0)) wait();
 ++nblue;
}
!
synchronized void blueExit() {
 --nblue;
 if (nblue==0) notifyAll();
}

Single Lane Bridge – Similarly For Blue

To avoid (potentially) unnecessary thread switches, we use conditional
notification to wake up waiting threads only when the number of cars
on the bridge is zero (i.e., when the last car leaves the bridge).

But does every car eventually get an opportunity to cross the
bridge...? This is a liveness property.

!34

DM519 Concurrent Programming

Single Lane Bridge

To ensure safety, the “safe” check box must be chosen in order to
select the SafeBridge implementation.

!35

DM519 Concurrent Programming

Liveness

Part II / III

!36

DM519 Concurrent Programming

7.3 Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good eventually happens.

Does every car eventually get an opportunity to cross the bridge,
i.e., make progress?

A progress property asserts that it is always the case that an action is
eventually executed.

Progress is the opposite of starvation (= the name given to a
concurrent programming situation in which an action is never executed).

!37

DM519 Concurrent Programming

Progress Properties - Fair Choice

COIN = (toss->heads->COIN  
 |toss->tails->COIN).

Fair Choice: If a choice over a set of transitions is executed
infinitely often, then every transition in the set will be executed
infinitely often.

How about if we “choose”: 
 toss(1) 100.000x; then  
 toss(2) 1x; then 
 toss(1) 100.000x; then  
 toss(2) 1x; then …

 Fair? Let’s assume Fair Choice...

!38

DM519 Concurrent Programming

Progress Properties

progress HEADS = {heads} ?

progress TAILS = {tails} ?

LTSA check progress: No progress violations detected

progress P = {a1, a2, …, an}

This defines a progress property, P, which asserts that in an infinite
execution, at least one of the actions  
a1, a2, …, an will be executed infinitely often.

COIN = (toss->heads->COIN | toss->tails->COIN).

J
J

!39

DM519 Concurrent Programming

Progress Properties

Suppose that there were two possible coins that could be picked up: 
a regular coin and a trick coin

TWOCOIN = (pick->COIN | pick->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN),
TRICK = (toss->heads->TRICK).

progress HEADS = {heads} ?

progress TAILS = {tails} ?
J

L

!40

DM519 Concurrent Programming

Progress Properties

progress P = {heads,tails} ?

progress HEADS = {heads}

progress TAILS = {tails}

Progress violation: TAILS
Trace to terminal set of states:  
 pick
Cycle in terminal set:
 toss heads
Actions in terminal set:
 {heads, toss}

J

!41

DM519 Concurrent Programming

Progress Analysis

A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions, and there is no
transition from within the set to any state outside the set.

Terminal sets for
TWOCOIN:

 ♦ {1,2} and

 ♦ {3,4,5}

Given fair choice, each terminal set represents an execution in which each
action used in a transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not used in
the set cannot occur infinitely often in all executions of the system - and
hence represents a potential progress violation!

!42

DM519 Concurrent Programming

Progress Analysis

A progress property is violated if analysis finds a terminal set of
states in which none of the progress set actions appear.

progress TAILS

 = {tails}

 in {1,2} L

Default progress: for every action in the alphabet, that action will be
executed infinitely often. This is equivalent to specifying a separate
progress property for every action.

!43

DM519 Concurrent Programming

Progress Analysis – Default Progress

Progress violation for actions:
 {pick}
Path to terminal set of states:
 pick
Actions in terminal set:
 {toss, heads, tails}

Progress violation for actions:
 {pick, tails}
Path to terminal set of states:
 pick
Actions in terminal set:
 {toss, heads}

Note: default holds => every other progress property holds (i.e., every
action is executed infinitely often and the system consists of a single
terminal set of states).

Default progress:

!44

DM519 Concurrent Programming

Progress - Action Priority

Action priority expressions describe scheduling properties:

||C = (P||Q)<<{a1,…,an} specifies a composition in
which the actions a1,..,an have higher priority than any
other action in the alphabet of P||Q including the silent
action tau. In any choice in this system which has one or
more of the actions a1,..,an labelling a transition, the
transitions labeled with lower priority actions are discarded.

High
Priority
(“<<”)

||C = (P||Q)>>{a1,…,an} specifies a composition in
which the actions a1,..,an have lower priority than any
other action in the alphabet of P||Q including the silent
action tau. In any choice in this system which has one or
more transitions not labeled by a1,..,an, the transitions
labeled by a1,..,an are discarded.

Low
Priority
(“>>”)

!45

DM519 Concurrent Programming

Progress - Action Priority Example

NORMAL =(work->play->NORMAL
 |sleep->play->NORMAL).

||HIGH =(NORMAL)<<{work}. ||LOW =(NORMAL)>>{work}.

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

!46

DM519 Concurrent Programming

7.4 Congested Single Lane Bridge

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

BLUECROSS - eventually one of the blue cars will be able to enter

REDCROSS - eventually one of the red cars will be able to enter

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

Congestion using action priority?

Could give red cars priority over blue (or vice versa) ?
In practice neither has priority over the other.

Instead we merely “encourage congestion” by lowering the
priority of the exit actions of both cars from the bridge.

!47

DM519 Concurrent Programming

Congested Single Lane Bridge Model

Progress violation: BLUECROSS
Path to terminal set of states:
 red.1.enter
 red.2.enter
Actions in terminal set:
{red.1.enter, red.1.exit, red.2.enter, red.
2.exit, red.3.enter, red.3.exit}
!
Progress violation: REDCROSS
Path to terminal set of states:
 blue.1.enter
 blue.2.enter
Actions in terminal set:
{blue.1.enter, blue.1.exit, blue.2.enter, blue.
2.exit, blue.3.enter, blue.3.exit}

This corresponds with
the observation that,
with more than one
car, it is possible that
whichever colour car
enters the bridge
first will continuously
occupy the bridge
preventing the other
colour from ever
crossing.

!48

DM519 Concurrent Programming

Congested Single Lane Bridge Model

||CongestedBridge = (SingleLaneBridge)
 >>{red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving car entry
to the bridge high priority?

Can congestion occur if there is only one car moving in each direction?

with 2 cars
of each colour

!49

DM519 Concurrent Programming

Progress - Revised Single Lane Bridge Model

The bridge needs to know whether or not cars are waiting to cross.

Modify CAR:

CAR = (request -> enter -> exit -> CAR).

Modify BRIDGE:

Red cars are only allowed to enter the bridge if there are no blue
cars on the bridge and there are no blue cars waiting to enter
the bridge.

...and vice-versa for blue cars.

The car “signals” bridge that it has arrived & wants to enter.

!50

DM519 Concurrent Programming

Progress - Revised Single Lane Bridge Model

// nr: #red cars on br.; wr: #red cars waiting to enter
// nb: #blue cars on br.; wb: #blue cars waiting to enter
!
BRIDGE = BRIDGE[0][0][0][0],
BRIDGE[nr:T][nb:T][wr:T][wb:T] = (
 red[ID].request -> BRIDGE[nr][nb][wr+1][wb]
 |when (nb==0 && wb==0)
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]
 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]
 |when (nr==0 && wr==0)
 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]
 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb]
).

OK now?

CAR = (request -> enter -> exit -> CAR).

!51

DM519 Concurrent Programming

Progress - Analysis Of Revised Single Lane Bridge
Model

Trace to DEADLOCK:
 red.1.request
 red.2.request
 red.3.request
 blue.1.request
 blue.2.request
 blue.3.request

The trace is the scenario in
wh ich there are cars
waiting at both ends, and
consequently, the bridge
does not allow either red or
blue cars to enter.

Solution?

Acquire resources in the same global order! But how?

This takes the form of a boolean variable (bt) which breaks the
deadlock by indicating whether it is the turn of blue cars or red cars
to enter the bridge.

Arbitrarily initialise bt to true initially giving blue initial precedence.

!52

DM519 Concurrent Programming

Revised Single Lane Bridge Implementation -
Fairbridge

class FairBridge extends Bridge {

 …
!
 synchronized void redExit(){
 --nred;
 blueturn = true;
 if (nred==0) notifyAll();
 }
}

BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] = (
 red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
 |when (nb==0 && (wb==0||!bt))
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]

!53

DM519 Concurrent Programming

Progress - 2Nd Revision Of Single Lane Bridge Model

const True = 1 const False = 0 range B = False..True !
 // bt: true ~ blue turn;
 // false ~ red turn
!
BRIDGE = BRIDGE[0][0][0][0][True],
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] = (
 red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
 |when (nb==0 && (wb==0||!bt))
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
 |red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]
 |blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]
 |when (nr==0 && (wr==0||bt))
 blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
 |blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False]
).

Analysis ?
No progress
violations  
detected. J

!54

DM519 Concurrent Programming

Revised Single Lane Bridge Implementation -
Fairbridge

class FairBridge extends Bridge {
 protected int nred, nblue, wblue, wred;
 protected boolean blueturn = true;
!
 synchronized void redRequest() {
 ++wred;
 }
!
 synchronized void redEnter() throws Int’Exc’ {
 while (!(nblue==0 && (waitblue==0 || !blueturn)))
 wait();
 --wred;
 ++nred;
 }

BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] = (
 red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
 |when (nb==0 && (wb==0||!bt))
 red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]

!55

DM519 Concurrent Programming

Revised Single Lane Bridge Implementation - Fairbridge

Note: we do not need to introduce a new request monitor method. The
existing enter methods can be modified to increment a wait count
before testing whether or not the caller can access the bridge... [see
next slide]

Use
FairBridge
monitor

!56

DM519 Concurrent Programming

Implementation Short-Cut: Implicit “Request”

synchronized void redRequest() {
 ++wred;
} !
synchronized void redEnter() throws Int’Exc’ {
 while (!(nblue==0 && (waitblue==0 || !blueturn))) wait();
 --wred;
 ++nred;
}

synchronized void redEnter() throws Int’Exc’ {
 // request:
 ++wred; !
 // enter:
 while (!(nblue==0 && (waitblue==0 || !blueturn))) wait();
 --wred;
 ++nred;
}

...is equivalent to...: (for the problem at hand)

!57

DM519 Concurrent Programming

Repetition: Chapter 7
Safety & Liveness

!58

property ONEWAY = EMPTY,
EMPTY = (red[ID].enter -> RED[1]
 |blue[ID].enter -> BLUE[1]), !
RED[i:ID] = (red[ID].enter -> RED[i+1]
 |when (i==1) red[ID].exit -> EMPTY
 |when (i>1) red[ID].exit -> RED[i-1]), !
BLUE[j:ID]= (blue[ID].enter -> BLUE[j+1]
 |when (j==1) blue[ID].exit -> EMPTY
 |when (j>1) blue[ID].exit -> BLUE[j-1]).

A safety property asserts that nothing bad happens.

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

A liveness property asserts that something good eventually happens.

DM519 Concurrent Programming

Example: Readers/Writers 

Part III / III

!59

DM519 Concurrent Programming

7.5 Readers And Writers

A shared database is accessed by two kinds of processes. Readers
execute transactions that examine the database while Writers both
examine and update the database. A Writer must have exclusive access
to the database; any number of Readers may concurrently access it.

Light blue
indicates
database
access.

!60

DM519 Concurrent Programming

Readers And Writers Model

♦ Events or actions of interest?

 acquireRead, releaseRead, acquireWrite, releaseWrite
♦ Identify processes.

 Readers, Writers & the RW_Lock
♦ Identify properties.

 RW_Safe

 RW_Progress
♦Structure diagram:

!61

DM519 Concurrent Programming

Readers/Writers Model - Reader & Writer

READER = (acquireRead ->
 examine ->
 releaseRead ->
 READER) \ {examine}.
!
WRITER = (acquireWrite ->
 modify ->
 releaseWrite ->
 WRITER) \ {modify}.

Action hiding is used as actions examine and modify are not
relevant for access synchronisation.

!62

DM519 Concurrent Programming

Readers/Writers Model - Rw_Lock

const Nread = 2 // #readers
const Nwrite= 2 // #writers
!
RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool] = (
 when (!writing)
 acquireRead -> RW[readers+1][writing]
 | releaseRead -> RW[readers-1][writing]
 |when (readers==0 && !writing)
 acquireWrite -> RW[readers][True]
 | releaseWrite -> RW[readers][False]
).

The lock maintains a count of the number of readers, and a boolean for the
writers.

!63

DM519 Concurrent Programming

Readers/Writers Model - Safety

property SAFE_RW = NO_ONE,
NO_ONE = (acquireRead -> ONLY_READERS[1]
 |acquireWrite -> ONLY_WRITERS),
!
ONLY_READERS[i:1..Nread] =
 (acquireRead -> ONLY_READERS[i+1]
 |when (i>1) releaseRead -> ONLY_READERS[i-1]
 |when (i==1) releaseRead -> NO_ONE
),
!
ONLY_WRITERS = (releaseWrite -> NO_ONE).

We can check that RW_LOCK satisfies the safety property……

||READWRITELOCK = (RW_LOCK || SAFE_RW).

!64

DM519 Concurrent Programming

Readers/Writers Model

We can now compose the
RW_LOCK with READER and
WRITER processes according
to our structure…

||READERS_WRITERS
 = (reader[1..Nread]:READER
 || writer[1..Nwrite]:WRITER
 || {reader[1..Nread],
 writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

No deadlocks/errors. J
!65

DM519 Concurrent Programming

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

Readers/Writers Model - Progress

WRITE - eventually one of the writers will acquireWrite

READ - eventually one of the readers will acquireRead

||RW_PROGRESS = READERS_WRITERS
 >>{reader[1..Nread].releaseRead,
 writer[1..Nread].releaseWrite}.

Progress Analysis ? LTS?

Action priority (to “simulate intensive use”)?

we lower the priority of the release actions for both
readers and writers.

No progress violations detected. J

!66

DM519 Concurrent Programming

Readers/Writers Model - Progress

Progress violation: WRITE
Path to terminal set of states:
 reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead, reader.1.releaseRead,
 reader.2.acquireRead, reader.2.releaseRead}

Writer
starvation:
The number
of readers
never drops
to zero.

!67

DM519 Concurrent Programming

Readers/Writers Implementation - Monitor Interface

interface ReadWrite {
 void acquireRead() throws Int’Exc’;
 void releaseRead();
 void acquireWrite() throws Int’Exc’;
 void releaseWrite();
}

We define an interface that identifies the monitor methods that must
be implemented, and develop a number of alternative implementations
of this interface.

 Firstly, the safe READWRITELOCK.

We concentrate on the monitor implementation:

!68

DM519 Concurrent Programming

Readers/Writers Implementation - Readwritesafe

class ReadWriteSafe implements ReadWrite {
 protected int readers = 0;
 protected boolean writing = false;
!
 synchronized void acquireRead() throws Int’Exc’ {
 while (writing) wait();
 ++readers;
 }
!
 synchronized void releaseRead() {
 --readers;
 if(readers==0) notify();
 }
}

Unblock a single writer when no more readers.
when (!writing) acquireRead -> RW[readers+1][writing]
| releaseRead -> RW[readers-1][writing]

!69

DM519 Concurrent Programming

Readers/Writers Implementation - Readwritesafe

synchronized void acquireWrite() throws Int’Exc’ {
 while (readers>0 || writing) wait();
 writing = true;
} !
synchronized void releaseWrite() {
 writing = false;
 notifyAll();
}

Unblock all readers (and maybe other writers)

However, this monitor implementation suffers from the WRITE
progress problem: possible writer starvation if the number of
readers never drops to zero. Solution?

|when (readers==0 && !writing) acquireWrite -> RW[readers][True]
| releaseWrite -> RW[readers][False]

!70

DM519 Concurrent Programming

Readers/Writers - Writer Priority

Strategy: Block readers if there is a writer waiting.

WRITER = (
 acquireWrite ->
 modify ->
 releaseWrite -> WRITER) \{modify}.

requestWrite ->

!71

DM519 Concurrent Programming

Readers/Writers Model - Writer Priority

RW_LOCK = RW[0][False][0],
RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite] = (
!
 when (!writing && waitingW==0)
 acquireRead -> RW[readers+1][writing][waitingW]
 |releaseRead -> RW[readers-1][writing][waitingW]
!
 |when (readers==0 && !writing)
 acquireWrite -> RW[readers][True][waitingW-1]
 |releaseWrite -> RW[readers][False][waitingW]
 |requestWrite -> RW[readers][writing][waitingW+1]
).

Safety and Progress Analysis ?

|| RW_P = R_W >>{*.release*}. // simulate Intensive usage

!72

DM519 Concurrent Programming

Readers/Writers Model - Writer Priority

Progress violation: READ
Path to terminal set of states:
 writer.1.requestWrite
 writer.2.requestWrite
Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
 writer.1.releaseWrite, writer.2.requestWrite,
 writer.2.acquireWrite, writer.2.releaseWrite}

Reader
starvation:
if always a
writer
waiting.

No deadlocks/errors

property RW_SAFE:

progress READ and WRITE:

In practice: this may be satisfactory as is usually more read access
than write, and readers generally want the most up to date information.

!73

DM519 Concurrent Programming

Readers/Writers Implementation - Readwritepriority

class ReadWritePriority implements ReadWrite {
 protected int readers = 0;
 protected boolean writing = false;
 protected int waitingW = 0; // #waiting writers
!
 synchronized void acquireRead() throws Int’Exc’ {
 while (writing || waitingW>0) wait();
 ++readers;
 }
!
 synchronized void releaseRead() {
 --readers;
 if (readers==0) notify();
 }
}

!74

DM519 Concurrent Programming

Readers/Writers Implementation - Readwritepriority

synchronized void acquireWrite() throws Int’Exc’ {
 // request write:
 ++waitingW;
 // acquire write:
 while (readers>0 || writing) wait();
 --waitingW;
 writing = true;
} !
synchronized void releaseWrite() {
 writing = false;
 notifyAll();
}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

!75

DM519 Concurrent Programming

Summary

uConcepts
l properties: true for every possible execution
l safety: nothing bad ever happens
l liveness: something good eventually happens

uModels
l safety: no reachable ERROR/STOP state

 compose safety properties at appropriate stages

l progress: an action is eventually executed

 fair choice and action priority

 apply progress check on the final target system model

uPractice
l threads and monitors Aim: property satisfaction

!76

