
Institut for Matematik og Datalogi
Syddansk Universitet

November 26, 2009
Peter Schneider-Kamp

Introduction to Computer Science
E09 – Week 11

Lecture: Monday, November 23

Jœrgen Bang-Jensen continued to lecture on combinatorial optimization based
on the notes of Bjarne Toft.

Lecture: Monday, November 30, 12-14 (U140)

Marco Chiarandini will start to lecture on artificial intelligence based on
Chapter 11.3.

Lecture, Wednesday, December 2, 14-16 (U28)

Marco Chiarandini will continue lecture on artificial intelligence based on
Chapters 11.1, 11.2, 11.6, and 11.7.

Lecture: Monday, December 7, 12-14

Marco Chiarandini will start to lecture on artificial intelligence based on
Chapters 11.4 and 11.5.

Discussion section: December 1, 10:15-12 (U37)

1. Exercise 36 on page 568 of the course book.

2. Scheduling jobs on a single machine.
We are given a set J of jobs {1, . . . , n} to be processed on a single
machine and for each job j ∈ J a processing time pj, a weight wj

stating its importance and a due date dj.

The task is to find a schedule, that is, an order for processing the jobs,
that optimizes some given criterion.

1



(a) The completion time Cj of a job j is the time elapsed when a job is
finished to be processed on the machine. Design an heuristic rule
for the case where the criterion is minimizing the total weighted
completion time, that is,

∑n
j=1wjCj.

(b) The lateness Lj of a job j is the difference of the completion time
from the due date, that is, Lj = Cj − dj. Design an heuristic
rule for the case where the criterion is minimizing the maximum
lateness Lmax = maxj∈J Lj.

Compute your heuristics on the data of Figure 1.

Job J1 J2 J3 J4 J5 J6

Processing Time 3 2 2 3 4 3
Weight 2 3 1 5 1 2
Due date 6 13 4 9 7 17

Job J3 J1 J5 J4 J1 J6

Cj 2 5 9 12 14 17
Lj -2 -1 2 3 8 0
wjCj 2 10 9 48 28 34

Figure 1: Data for the single machine scheduling problem and an example
of computation of the parameters introduced for a sequence of jobs φ =
J3, J1, J5, J4, J1, J6.

3. Packing bins. Given is a finite set U of items, a size s(u) ∈ Z+ for
each u ∈ U , and a positive integer bin capacity B. The task is to find
the minimal number of bins K for which there exits a partition of U
into disjoint sets U1, U2, . . . , Uk and the sum of the sizes of the items in
each Ui is B or less.

(a) You may have already encountered this problem during the course
in its online version. Here, you are asked to design heuristic rules
to fit the items in the bins for the offline version of the problem,
that is, when the information on all the items is available at once.

(b) A similar and related problem is the knapsack problem. Here,
we have only one bin available of size B and each item, beside its
size, has associated a weight w(u) ∈ Z+ indicating the profit it

2



Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Victoria

WA

NT

SA

Q

NSW

V

T

Figure 2: Coloring the states of Australia.

generates to place the item in the knapsack. The task is to decide
which item to include in the knapsack in such a way that the ca-
pacity constraint is not violated and the total profit is maximized.
Design heuristics rule to solve this problem.

4. Coloring the vertices of a graph. The graph (vertex) coloring
problem consists in finding an assignment of colors to vertices of a graph
in such a way that no adjacent vertices (that is, vertices connected by
an edge) receive the same color and the number of colors used is the
least possible.

Design an heuristic for coloring graphs and try it on the graph of Fig-
ure 2. How many colors do you need to color a map such that adjacent
states receives different colors?

Assignment due 14:15, December 10

Late assignments will not be accepted. Working together is not allowed. You
may write this either in English or Danish. Write clearly if you do it by hand.
Even better, use LATEX.

The Travelling Salesman Problem

In the Traveling Salesman problem (TSP) we are given a set of points, each
of them with coordinates x and y that identify their locations. The task is

3



to design a tour of minimal length that visits all the points exactly once and
returns at the starting point.

The problem has many real life applications. It arises, of course, in trans-
portation problems where by minimizing travel distances we save scarce re-
sources and minimize environmental impact like CO2 emissions. Postal de-
liveries is just one of such examples. Another application is when we are
routing an autonomous guided vehicle (AGV) within some environment or
sequencing drilling, welding or soldering tasks. In the industry we encounter
at least two occurrences of this latter example: in a printed circuit board
manufacturing process when masks for the production have to be drawn;
and in a car manufacturing process when a robot has to weld certain parts.
In both these cases an automatic system has to move through points in a
plane, perform some operations at them and finally returning at the staring
point. Other applications of the TSP are in scheduling jobs that are to be
processed on a machine, in genome sequencing and in statistics for combi-
natorial data analysis, e.g., reordering rows and columns of data matrices to
identify clusters.

In the case of n points, a brute force approach would enumerate all (n −
1)! possible different tours and choose the one of minimal length. For the
applications above mentioned n might be very large and hence this solution
approach is computationally prohibitive. However, the problem is known to
be NP-complete, hence we do not know any algorithm that would solve this
problem in a time bounded by a polynomial in n.

At the course web page you will find an tar.gz archive with some instances
of the TSP and a Java code:

http://imada.sdu.dk/~petersk/DM526/TSP.tar.gz

The instances have varying size and geography. The small instance ulysses16.tsp
provides the coordinates of the locations on the Mediterranean see visited by
Ulysses in Homer’s Odyssey (see Figure 3). The other instances have 1000
points. The instances E1k.0 E1k.1 E1k.2 are points uniformly distributed
in the plane, instances C1k.0 C1k.1 C1k.2 are points located in clusters
that are uniformly distributed in the plane.

The Java code implements some methods to read these instances, store the
coordinate and distance of points, parse a command line, call to the program,
compute a random tour and output its length and its sequence of points. It
is also possible to plot the tour.

4

http://imada.sdu.dk/~petersk/DM526/TSP.tar.gz


Figure 3: The legendary Ulysses was almost hopelessly lost on the two-
dimensional sea surface and he did not choose the shortest way home. The
solid line and arrows indicate the sequence in which Ulysses supposedly vis-
ited the 16 locations. The dashed lines indicate the optimal tour.

What you are required to do

Implement one heuristic algorithm to find the minimum cost tour. More
specifically, you should find a low cost solution for E1k.1 in the least
amount of computation time.

You should briefly describe in a short report (handwritten or type edited
in Latex) your solution algorithm and report the results for some of the
instances. For each instance you should report the length of the tour found
by your algorithm and the time needed1. In addition, you must include a
plot of your shortest tour found on the instance E1k.1. Write in the caption
of this plot the length of the corresponding tour.

If you encounter problems in using the code made available and explained
below, you can still pass the assignment by describing the heuristic you would
implement in a report and showing its application carried out manually on
the instance ulysses16.tsp. The description should be at a level of detail

1Hence, you should use the machines in IMADA terminal room. This will also guarantee
that the code made available and everything explained in this text is installed and working
correctly.

5



enough to allow a direct Java implementation.

You can write either in Danish or English. It makes no difference.

Possible ways to go

The code delivered will read a TSP instance and identify the points with the
numbers 0, 1, 2, . . . , n− 1. It will then create a symmetric matrix storing the
distance between any pair of points (ignore entries in the diagonal). This is
done in the class Problem. A solution to the TSP is a tour and it can be
represented as a permutation of the points 0, 1, 2, . . . , n−1. This permutation
is stored in an array and it represents the sequence with which points are
to be visited2. This is stored in the class Tour representing the state of the
search. The following approaches might be explored:

1. Generate a random tour by means of a random permutation. This is
already implemented in the class TourRandom and can be used as a
reference solution against which comparing your algorithms.

2. Use a greedy heuristic algorithm. For example, always moving to the
nearest neighboring city.

3. Use an insertion heuristic algorithm that incrementally adds missing
points to a growing tour inserting them in a clever position.

4. Restart the construction from different starting points chosen at ran-
dom.

Implementation instructions

Download the archive TSP.tar.gz and uncompress it by typing:

~$ tar xzvf DM526-TSP.tar.gz

2Note, after visiting the point in the last position of the array we come back to the
point in the first position, thus closing the trip

6

http://www.imada.sdu.dk/~petersk/DM526/TSP.tar.gz


This will create a directory called TSP-java-framework and containing some
Java files, a README file (with the same instructions reproduced here), a
Makefile, two scripts tsp and tsp-view and a directory data containing the
TSP instances. In addition, you will also have two directories META-INF and
lib that you may ignore.

The Java files in TSP-java-framework implement two code frameworks: TSP
and TSPView. The most important is the first, the second is for tour visu-
alization and may be also ignored, if you decide to use gnuplot (see below).

The TSP framework comprises the following files: RandomArray.java, Problem.java,
Tour.java, TourSearch.java, TourRandom.java, TourYourAlg.java, TSP.java
to use in the implementation of the heuristics. It provides:

• utilities in RandomArray.java to generate random vectors and for pars-
ing the command line in lib/commons-cli-1.2.jar

• a class Problem for reading the instance and storing data (Problem.java)

• a class Tour for maintaining the state of a solution (Tour.java)

• a class TourSearch for implementing algorithms to find tours (TourSearch.java)
and two classes that extend this class, TourRandom and TourYourAlg

(TourRandom.java and TourYourAlg.java);

• a class TSP to parse the command line, and call the procedures in
Problem, Tour and TourSearch. (TSP.java)

In order to solve the assignment, it is in principle enough to implement
the function:

public void construct(Tour t, Random r) {

//TODO: Implement here your heuristic

}

that you find in TourYourAlg.java together with some further pieces of
information.

Note that internally, in the Java program, points are represented by numbers
from 0 to n − 1. Externally, (eg, in the instance file and in the solution file
that is produced) they are represented with numbers from 1 to n.

7



TSPView is a small program to visualize the solutions found. You can call
it from the TSP framework as you are constructing the tour to see how your
technique progresses. The class TourView (TourView.java) provides the
methods to make the plots while TSPView.java gives an example of how to
call the methods.

To compile the programs type:

~$ make all

This will compile the Java files with

~$ javac -cp .:lib/commons-cli-1.2.jar *.java

(the -cp part is for importing the libraries needed by the command line
parser) and create a jar archive with:

~$ jar cmf META-INF/manifest.mf tsp.jar *.class

Then to run the program call, as usual, java TSP or use the tsp wrapper:

~$ ./tsp -i data/E1k.1 -o E1k.1.sln -ch Random -t 10 -s 6

This will run the program with the Random heuristic and random seed 6.
The time limit is not implemented because the heuristic is in any case very
fast. If the -ch flag is omitted then by default the Random heuristic is used.
When it finishes the program will output:

TIMELIMIT: 10

INSTANCE: data/E1k.1

SEED: 6

OUTPUTFILE: sol

HEURISTIC: Random

TOURLENGTH: 332717

TIME: 0.0020

where the relevant data are TOURLENGTH and TIME (in seconds). Moreover,
it will print the solution in E1k.1.sln

8



~$ head E1k.1.sln

852 80464.0 9585.0

576 192626.0 548478.0

77 351091.0 714240.0

257 39478.0 623807.0

802 930104.0 252332.0

808 212948.0 691584.0

590 726971.0 805267.0

738 266706.0 438713.0

71 606244.0 240744.0

837 89413.0 532908.0

indicating that the tour will start at point 852, visits 576, etc. The third
and second columns give the coordinates of the points. This information is
useful for plotting the tour.

There are two ways you can plot a tour. You can use TSPView or gnuplot.
TSPView is compiled with make all and can be invoked as follows:

~$ ./tsp-view <instance_file> <solution_file>

To use gnuplot you should first start the program from the shell typing
gnuplot and then:

gnuplot> plot ’E1k.1’ using 2:3 with linespoints

The advantage of using gnuplot is that you can print the plot in a postscript
file and thus include it in a Latex document. To do this, after having made
the plot as indicated above, type:

gnuplot> set term postscript (will produce postscript output)

gnuplot> set output "printme.ps" (output to any filename you use)

gnuplot> replot (recreates plot, goes directly to file)

Then if you want a pdf you can run ps2pdf printme.ps printme.pdf (or
similarly with pstopdf). Alternatively, if you want an image file:

gnuplot> set term png (will produce .png output)

gnuplot> set output "printme.png" (output to any filename you use)

gnuplot> replot

9


