python

powered

DMb536
Introduction to Programming

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM536/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

VARIABLES, EXPRESSIONS
& STATEMENTS

Values and Types

= Values = basic data objects 4) 23.0 "Hello!"
= Types = classes of values integer float string

= Values can be printed:

= print <value> print "Hello!"

= Types can be determined:
= type(<value>) type(23.0)

" Values and types can be compared:
" <value> == <value> type(3) == type(3.0)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Variables

= variable = name that refers to a value

" program state mapping from variables to values

G,

= values are assigned to variables using “=""

I
-

= <var> = <value> b

= the value referred to by a variable can be printed:

= print <var> print b

= the type of a variable is the type of the value it refers to:
* type(b) == type(4)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Variable Names

= start with a letter (convention: a-z)

(T B

= contain letters a-z and A-Z, digits 0-9, and underscore

= can be any such name except for 3| reserved names:

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Multiple Assighment

= variables can be assigned to different values at different times:
= Example: x =3
x =4

* |nstructions are executed top-to bottom => x refers to 4

" be careful, e.g., when exchanging values serially:
= Example: X =y
y =X
= later x and y refer to the same value
= Solution | (new variable): Z=Y;Yy = XX =Z

= Solution 2 (parallel assign.): x,y =y,x

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Operators & Operands

= Operators represent computations: + K o) K
= Example: 23+19 day+month*30 2+%6-22

Addition “+”, Multiplication ““*”’, Subtraction “-” as usual

= Exponentiation ‘¥ Xy means X’

= Division “/” rounds down integers:
= Example I: 21/42 hasvalue 0, NOT 0.5
= Example 2: 21.0/42 has value 0.5
= Example 3: 21/42.0 has value 0.5

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Expressions

= Expressions can be:

* Values: 42 23.0 "Hej med dig!"
= Variables: X y namel234
" built from operators: 19+23.0 XHH2+y*Q

= grammar rule:
= <expr> => <value>

<var>

<expr=> <operator=> <expr=>
(<expr>)
= every expression has a value:
= replace variables by their values

= perform operations

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Operator Precedence

= expressions are evaluated left-to-right
= Example: 64-24+2 == 42

= BUT: like in mathematics,“*”” binds more strongly than “+”
= Example: 2+8*%5 == 42

= parentheses have highest precedence: 64 - (24 + 2) == 38

= PEMDAS rule:
= Parentheses “(<expr>)”
= Exponentiation “**”
= Multiplication “*”’ and Division “/”
= Addition “+” and Subtraction “-”

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

String Operations

= Addition “+” works on strings:
= Example I: print "Hello w" + "orld!"
= Example 2: print "4" + "2"

= Multiplication “*” works on strings, if 2"¢ operands is integer:

= Example: print "Hej!" * 10

= Subtraction “-”, Division “/”, and Exponentiation “**” do NOT
work on strings

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Expressions

" most beginners struggle with common Syntax Errors:
= check that all parentheses and quotes are closed

= check that operators have two operands

= sequential instruction should start on the same column or

TR

be separated by a semicolon ;

= common Runtime Error due to misspelling variable names:
= Example:
a = input(); b = input()
reslut = a™*b+b**a

print result

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Statements

= instructions in Python are called statements

= so far we know 2 different statements:
= print statement: print "Ciao!"

= assignments “="" c = a**2+b**2

" asagrammar rule:
<stmt> => print <expr> |
<var> = <expr> |

<expr=

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Comments

= programs are not only written, they are also read

* document program to provide intuition:
= Example I: c = sqrt(a**2+b**2) # use Pythagoras

= Example 2: X, Y =Y, X # swap x and y
= all characters after the comment symbol “#” are ignored

= Example: X =23 #+19

results in x referring to the value 23

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

CALLING & DEFINING
FUNCTIONS

Calling Functions

= so far we have seen three different function calls:
* input(): reads a value from the keyboard
= sqrt(x): computes the square root of x
= type(x): returns the type of the value of x

" in general, a function call is also an expression:

= <expr> => ... | <function>(<arg,>,...,<arg >)
= Example I: X = input()

print type(x)
= Example 2: from math import log

print log(43980465 1 1104, 2)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Importing Modules

= we imported the sqrt function from the math module:
from math import sqrt

= alternatively, we can import the whole module:
import math

= using the built-in function “dir(x)”’ we see math’s functions:

acos cos floor log sin
asin cosh fmod log10 sinh
atan degrees frexp modf sqrt
atan2 exp hypot pow tan
ceil fabs |dexp radians tanh

= access using “math.<function>": ¢ = math.sqrt(a**2+b**2)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

The Math Module

= contains 25 functions (trigonometric, logarithmic, ...):
= Example: X = input()

print math.sin(x)**2+math.cos(x)**2

= contains 2 constants (math.e and math.pi):

= Example: print math.sin(math.pi / 2)

= contains 3 metadata (__doc_ , file , name):

= print math._ doc

= print math.frexp. doc

= print type. doc

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Type Conversion Functions

Python has pre-defined functions for converting values

" int(x): converts x into an integer
= Example I: int("1234") ==int(1234.9999)
= Example 2: int(-3.999) == -

float(x): converts x into a float
= Example I: float(42) == float("42")

= Example 2: float("Hej!") results in Runtime Error

" str(x): converts X into a string
= Example I: str(23+19) == "42"
= Example 2: str(type(42)) == "<type 'int'>"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

DEFINING FUNCTIONS

Function Definitions

= functions are defined using the following grammar rule:
<func.def> => def <function>(<arg,>, ..., <arg >):

<instr,>; ...; <instr, >

= can be used to reuse code:
= Example: def pythagoras():
¢ = math.sqrt(a™*2+b**2)
print "Result:", c
a = 3; b = 4; pythagoras()
a = 7;b = |5; pythagoras()

" functions are values: type(pythagoras)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
def black():
print "#" * 8
def all():
white(); black(); white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Executing Programs (Revisited)

* Program stored in a file (source code file)
= [nstructions in this file executed top-to-bottom

= Interpreter executes each instruction

AN

Source
Code S
| —] Interpreter >

v

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

* Example: pummp def white():

print " #" * 8
def black():
{create new function print "# " * 8
variable “white” def all():

white(); black(); white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
wep def black():
print "#" * 8
def all():
white(); black(); white(); black()
white(); black(); white(); black()

all()

create new function
variable “black”

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
def black():
print "#" * 8
wem) def all():
white(); black(); white(); black()
white(); black(); white(); black()

all()

create new function
variable “all”

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
def black():
print "#" * 8
def all():
white(); black(); white(); black()
white(); black(); white(); black()

) all()

[call function “all”

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
. def black():
call function o
“white” print "#" * 8
def all():

white(); black(); white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
. def black():
Prlnt o " n *
def all():

white(); black(); white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8

def black():
{call function “black” print "# " * 8

def all():
black(); white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
def black():
print "#" * 8
def all():
print white(); black(); white(); black()
"HHEHHBHEHH" ’ ’ ’

white(); black(); white(); black()
all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8

def black():

print "#" * 8

call function
“white”

white(); bla white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
. def black():
Prlnt o " n *
def all():

white(); black(); white(); black()
white(); black(); white(); black()

all()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Functions Calling Functions

= functions can call other functions

= Example: def white():
print " #" * 8
def black():
################ print "# " * 8
AR def all():
################ | white(); black(); white(); black()
################ - a”(\)/vhlte(); black(); white(); black()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Parameters and Arguments

= we have seen functions that need arguments:

* math.sqrt(x) computes square root of x

* math.log(x, base) computes logarithm of x w.r.t. base

= arguments are assigned to parameters of the function
= Example: def pythagoras():
¢ = math.sqrt(a**2+b**2)
print "Result:", c
a = 3; b = 4; pythagoras()
a = 7;b = |5; pythagoras()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Parameters and Arguments

= we have seen functions that need arguments:

* math.sqrt(x) computes square root of x

* math.log(x, base) computes logarithm of x w.r.t. base

= arguments are assigned to parameters of the function
= Example: def pythagoras(a, b):
¢ = math.sqrt(a**2+b**2)
print "Result:", c
a = 3; b = 4; pythagoras(a, b)
a = 7;b = |5; pythagoras(a, b)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Parameters and Arguments

= we have seen functions that need arguments:

* math.sqrt(x) computes square root of x

* math.log(x, base) computes logarithm of x w.r.t. base

= arguments are assigned to parameters of the function
= Example: def pythagoras(a, b):
¢ = math.sqrt(a**2+b**2)
print "Result:", c
pythagoras(3, 4)
pythagoras(7, |5)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Parameters and Arguments

= we have seen functions that need arguments:

* math.sqrt(x) computes square root of x

* math.log(x, base) computes logarithm of x w.r.t. base

= arguments are assigned to parameters of the function
= Example: def pythagoras(a, b):
¢ = math.sqrt(a**2+b**2)
print "Result:", c
pythagoras(3, 4)
pythagoras(2**3-1, 2%%4-1)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Parameters and Arguments

= we have seen functions that need arguments:

* math.sqrt(x) computes square root of x

* math.log(x, base) computes logarithm of x w.r.t. base

= arguments are assigned to parameters of the function
= Example: def pythagoras(a, b):
¢ = math.sqrt(a**2+b**2)
print "Result:", c
pythagoras(3, 4)
X = 2%3-];y = 24|
pythagoras(x, y)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Variables are Local

= parameters and variables are local

" |ocal = only available in the function defining them
= Example: in module math: x local to
def sqrt(x): math.sqrt
a local to ef sqre(x) A
thagoras
Pythag b local to
IN"Ou._"rogram: pythagoras
¢ local to def pythagoras(a, b):
pythagoras

¢ = math.sqrt(a**2+b**2)

print "Result:", c
x,y local to

__main__

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

X = 3; y =4; pythagoras(x, y)

Stack Diagrams

__main__ X > 3
y > 4
pythagoras a > 3
b > 4
math.sqrt X > 25

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Tracebacks

= stack structure printed on runtime error
= Example:

def broken(x):

print x / 0
def caller(a, b): Traceback (I lasg
raceback (most recent call last):
ok
broken(a™*b) File "test.py”, line 5, in <module>
caller(2,5) caller(2,5)
File "test.py", line 4, in caller
broken(a™*b)
File "test.py", line 2, in broken
print x/0

ZeroDivisionError: integer division or modulo by zero

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Return Values

= we have seen functions that return values:

* math.sqrt(x) returns the square root of x

* math.log(x, base) returns the logarithm of x w.r.t. base

* What is the return value of our function pythagoras(a, b)?

= special value None returned, if no return value given (void)

= declare return value using return statement: return <expr>
= Example: def pythagoras(a, b):
¢ = math.sqrt(a**2+b**2)
return c

print pythagoras(3, 4)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Motivation for Functions

= functions give names to blocks of code
= easier to read
= easier to debug
= avoid repetition
= easier to make changes
= functions can be debugged separately
" easier to test
= easier to find errors
= functions can be reused (for other programs)

" easier to write new programs

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Function Definitions

* make sure you are using latest files (save, then run python -i)

= biggest problem for beginners is indentation
= all lines on the same level must have the same indentation
" mixing spaces and tabs is very dangerous
" try to use only spaces — a good editor helps!

* do not forget to use “:” at end of first line

* indent body of function definition by e.g. 4 spaces

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

TURTLE WORLD &
INTERFACE DESIGN

Turtle World

= available from
= http://www.greenteapress.com/thinkpython/swampy/install.html

= basic elements of the library
= can be imported using from TurtleWorld import *
= w =TurtleWorld() creates new world w
= t =Turtle() creates new turtle t
= wait_for_user() can be used at the end of the program

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Simple Repetition

= two basic commands to the turtle
= fd(t, 100) advances turtle t by 100
= lt(t) turns turtle t 90 degrees to the left

= drawing a square requires 4x drawing a line and turning left
= fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); It(t); fd(t,100); lt(t)

= simple repetition using for-loop for <var> in range(<expr>):
<instr,>; <instr,>
= Example: for i in range(4):

print i

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Simple Repetition

= two basic commands to the turtle
= fd(t, 100) advances turtle t by 100
= lt(t) turns turtle t 90 degrees to the left

= drawing a square requires 4x drawing a line and turning left
= fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); It(t); fd(t,100); lt(t)

= simple repetition using for-loop for <var> in range(<expr>):
<instr,>; <instr,>
= Example: for i in range(4):
fd(t, 100)
It(t)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

