
DM536
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

SELECTING
DATA STRUCTURES

June 2009 2

Reading and Cleaning Words

1.  read file given as argument
2.  break lines into words
3.  strip whitespace & punctuation
4.  convert to lower-case letters

§  import module sys for command line arguments sys.argv
§  Example: import sys; print sys.argv

§  import module string for punctuation
§  Example: import string; print string.punctuation

§  use translate(None, deletechars) to remove punctuation
§  Example: "Hello World!".translate(None, "ol")

June 2009 3

Word Frequency in E-Books

1.  use program on Project Gutenberg e-book
2.  skip over beginning & end of ebook (marked "***")
3.  count total number of words
4.  count number of times each word is used
5.  print 20 most frequently used words

§  use Boolean flag to indicate when to start

§  use list to gather all words (and count total number)

§  use dictionary to count number of times each word is used

§  use tuple comparison to sort words

June 2009 4

Optional Parameters

§  have seen functions that take variable length argument list

§  also possible to make some parameters optional
§  in this case, default value has to be supplied by programmer
§  Example:
def print_most_common(hist, num = 10):
 t = most_common(hist)
 print "The most common", num, "words are:"
 for n, word in t[:num]:
 print word, "\t", n
print_most_common(freq, 20)

June 2009 5

Dictionary Subtraction

1.  find all words that do NOT occur in other word list

§  to this end, subtract dictionaries from each other
§  Idea: new dictionary containing with keys only in first dict
§  Implementation:
def subtract(d1, d2):
 d = {}
 for key in d1:
 if key not in d2:
 d[key] = None
 return d

June 2009 6

Random Number Generation

§  to work with random numbers, import module random
§  Example: import random

§  function random() returns random float from 0.0 to < 1.0
§  Example: for i in range(10): print random.random()

§  function randint(a, b) returns random integer in range(a,b+1)
§  Example: for i in range(10): print random.randint(1,10)

§  function choice(seq) returns random element of a sequence
§  Example: random.choice("Slartibartfast")

 random.choice([23, 42, -3.0])

June 2009 7

Random Words

1.  choose random word from histogram according to frequency

§  how to ensure random choice w.r.t. frequency?
§  Idea 1: create list with n copies of word with frequency n
§  Implementation:
def random_word(h):
 t = []
 for word, n in h.items():
 t.extend([word] * n)
 return random.choice(t)
§  works, but very inefficient!

June 2009 8

Random Words

§  Idea 2: use list with cumulative sum of frequencies
§  Implementation:
def random_word(h):
 words = h.keys(); sum = 0; cum = []
 for word in words: sum += h[word]; cum.append(sum)
 num = random.randint(1, cum[-1]); low = 0; high = len(cum)-1
 while low < high:
 mid = (low+high) / 2
 if num <= cum[mid]: high = mid
 elif num > cum[mid]: low = mid+1
 return words[low]

June 2009 9

Markov Analysis

1.  generate more meaningful random texts

§  word order in texts is not random
§  markov analysis maps a finite number of words (prefix) to all

possible following words (suffix)

§  how to represent the prefixes?

§  how to represent the collection of possible suffixes?

§  how to represent the mapping from prefixes to suffixes?

June 2009 10

Data Structures

§  for mapping, we clearly use a dictionary

§  for prefixes, we need to be able to “shift” them (list?)
§  we also need to use them as dictionary keys
§  thus, we use tuples to present prefixes (+ slicing and “*”)

§  for suffixes, we need to add elements (list? dictionary?)
§  we also need to efficiently generate random word (list?)
§  tradeoff space vs time

§  dictionary uses less space and easy to add
§  list uses less time for generating a word
§  can change representation before generation

June 2009 11

Debugging Hard Bugs

§  bugs can be hard to find

§  four popular strategies
1.  reading: re-read your code, check that it is right!
2.  running: make changes, experiment with outcome
3.  ruminating: take time to think it over (and over)
4.  retreating: revert to a known-to-be-good version

§  often combination of these strategies needed
§  always good to view debugging as scientific experiment

June 2009 12

FILE HANDLING

June 2009 13

Persistence

§  persistent = keeping (some) data stored during runs
§  transient = beginning from input data each time over

§  most programs so far have been transient

§  examples of persistent programs:
§  operating systems
§  web servers
§  most app(lication)s on recent Android, iOS, and Mac OS X

§  text files are easiest way to save some program state
§  alternatively, program states can be saved in databases

June 2009 14

