python

powered

DMb536
Introduction to Programming

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM536/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

SELECTING
DATA STRUCTURES

Reading and Cleaning Words

|. read file given as argument
break lines into words

strip whitespace & punctuation

O

convert to lower-case letters

" import module sys for command line arguments sys.argv

= Example: import sys; print sys.argv

" import module string for punctuation

= Example: import string; print string.punctuation
P P g P g-P

= use translate(None, deletechars) to remove punctuation

* Example: "Hello World!".translate(None, "ol")

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Word Frequency in E-Books

|. use program on Project Gutenberg e-book
skip over beginning & end of ebook (marked "**")
count total number of words

count number of times each word is used

o> W N

print 20 most frequently used words
= use Boolean flag to indicate when to start
= use list to gather all words (and count total number)

= use dictionary to count number of times each word is used

= use tuple comparison to sort words

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Optional Parameters

= have seen functions that take variable length argument list

= also possible to make some parameters optional
* in this case, default value has to be supplied by programmer
= Example:
def print_most_common(hist, num = 10):

t = most_common(hist)

print "The most common", num, "words are:"

for n, word in t[:num]:

print word, "\t", n

print_most_common(freq, 20)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Dictionary Subtraction

|. find all words that do NOT occur in other word list

= to this end, subtract dictionaries from each other
= ldea: new dictionary containing with keys only in first dict

= |Implementation:
def subtract(dl, d2):

d={
for key in dlI:
if key not in d2:
d[key] = None
return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Random Number Generation

= to work with random numbers, import module random

= Example: import random

= function random() returns random float from 0.0 to < 1.0

= Example: foriin range(10): print random.random()
* function randint(a, b) returns random integer in range(a,b+1)

= Example: foriin range(10): print random.randint(l,10)

= function choice(seq) returns random element of a sequence

= Example: random.choice("Slartibartfast")
random.choice([23, 42, -3.0])

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Random Words

|. choose random word from histogram according to frequency

* how to ensure random choice w.r.t. frequency!?
= ldea I: create list with n copies of word with frequency n
* |Implementation:
def random_word(h):

t=l

for word, n in h.items():

t.extend([word] * n)
return random.choice(t)

= works, but very inefficient!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Random Words

* ldea 2: use list with cumulative sum of frequencies
= |Implementation:

def random_word(h):
words = h.keys(); sum =0; cum =[]
for word in words: sum += h[word]; cum.append(sum)
num = random.randint(l, cum[-1]); low = 0; high = len(cum)-|
while low < high:
mid = (low+high) / 2
if num <= cum[mid]: high = mid
elif num > cum[mid]: low = mid+|

return words[low]

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Markov Analysis

|. generate more meaningful random texts

= word order in texts is not random

* markov analysis maps a finite number of words (prefix) to all
possible following words (suffix)

" how to represent the prefixes!?
= how to represent the collection of possible suffixes?

* how to represent the mapping from prefixes to suffixes?

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Data Structures

= for mapping, we clearly use a dictionary

= for prefixes, we need to be able to “shift” them (list?)
= we also need to use them as dictionary keys

= thus, we use tuples to present prefixes (+ slicing and “*”)

= for suffixes, we need to add elements (list! dictionary?)
= we also need to efficiently generate random word (list?)
= tradeoff space vs time

= dictionary uses less space and easy to add

= list uses less time for generating a word

= can change representation before generation

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Hard Bugs

= bugs can be hard to find

= four popular strategies
|. reading: re-read your code, check that it is right!
running; make changes, experiment with outcome

ruminating: take time to think it over (and over)

o

retreating: revert to a known-to-be-good version

= often combination of these strategies needed

= always good to view debugging as scientific experiment

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

FILE HANDLING

Persistence

= persistent = keeping (some) data stored during runs
" transient = beginning from input data each time over

" most programs so far have been transient

= examples of persistent programs:
" operating systems
= web servers

* most app(lication)s on recent Android, iOS, and Mac OS X

= text files are easiest way to save some program state

= alternatively, program states can be saved in databases

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

