&,
—

JAVA
DM550 / DM857

Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Arrays

= array = built-in, mutable list of fixed-length

= access using “[index]” notation (both read and write, 0-based)

" size available as attribute “.length”

= Example:

int[] speedDial = {65502327, 55555555};

for (inti = 0;i < speedDial.length; i++) {
System.out.println(speedDial[i]);
speedDial[i] += 100000000;

}

for (inti = 0;i < speedDial.length; i++) {
System.out.println(speedDialli]);

}



Command Line Arguments

* command line arguments given as array of strings

= Example:

public class PrintCommandLine {

public static void main(String[] args) {
int len = args.length;
System.out.printin("got "+len+" arguments");
for (inti=0;i <len;i++) {
System.out.printin("args["+i+"] = "+args[i]);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Reading from Files

= done the same way as reading from the user
" i.e., using the class java.util.Scanner
" instead of System.in we use an object of type java.io.File
= Example (reading a file given as first argument):
import java.util.Scanner; import java.io.File;
public class OpenFile {
public static void main(String[] args) {
File infile = new File(args[0]);
Scanner sc = new Scanner(infile);
while (sc.hasNext()) {

System.out.println(sc.nextLine());

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Reading from Files

* Example (reading a file given as first argument):
import java.util.Scanner; import java.io.*;
public class OpenFile {
public static void main(String[] args) {
File infile = new File(args[0]);
try {
Scanner sc = new Scanner(infile);
while (sc.hasNext()) { System.out.printin(sc.nextLine()); }
} catch (FileNotFoundException e) {
System.out.printin("Did not find your strange "+args[0]);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Writing to Files

= done the same way as writing to the screen

" i.e., using the class java.io.PrintStream

= System.out is a predefined java.io.PrintStream object
= Example (copying a file line by line):

import java.io.*; import java.util.Scanner;

public class CopyFile {

public static void main(String[] args) throws
FileNotFoundException {

Scanner sc = new Scanner(new File(args[0]));
PrintStream target = new PrintStream(new File(args[1]));
while (sc.hasNext()) { target.printin(sc.nextLine()); }
target.close(); } }

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Throwing Exceptions

= Java uses throw (comparable to raise in Python)
= Example (method that receives unacceptabe input):
static double power(double a, int b) {
if (b <0){
String msg = "natural number expected";

throw new lllegalArgumentException(msg);

}

result = |;
for ;b > 0;b--) { result *=a; }
return result;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



OBJECT ORIENTATION




Objects, Classes, and Instances

= class = description of a class of objects

= Example: a Car is defined by model, year, and colour

" object = concrete instance of a class
= Example: a silver Audi A4 from 2013 is an instance of Car
= Example (Car as Java class):
public class Car {
public String model, colour;
public int year;
public Car(String model, int year, String colour) {

this.model = model; this.year = year; this.colour = colour;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Attributes

= attributes belonging to each object are member variables
= they are declared by giving their types inside the class
= Example:
public class Car {
public String model, colour;

public int year;

}

= visibility can be public, protected, package or private
= for now only public or private:
= public = usable (read and write) for everyone

= private = usable (read and write) for the class

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Getters and Setters

= getter = return value of a private attribute
" setter = change value of a private attribute
= Example:

public class Car {
private String model;
public String getModel() {
return this.model;
}
public void setModel(String model) {

this.model = model;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Getters and Setters

= very useful to abstract from internal representation
= Example:
public class Car { // built after 1920
private byte year;
public int getYear() {
return this.year >= 20 ? this.year + 1900 : this.year + 2000;
}
public void setYear(int year) {
this.year = (byte) year % 100;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Static Attributes

= attributes belonging to the class are static attributes
= declaration by static and giving their types inside the class
= Example:
public class Car {
private static int number = 0;
public Car(String model, int year, String colour) {
this.model = model; this.year = year; this.colour = colour;
Car.number++;

}

public int getNumberOfCars() { return number; }

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Initializing Global and Local Variables

* |ocal variable = variable declared in a block
= global variable = member variable or static attribute
= all local and all global variables can be initialized
= Example:
public class Car {
private static int number = 0;
public String model = "Skoda Fabia";
public Car(String model, int year, String colour) {

boolean[] wheelOk = new boolean[4];

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Constructors

" objects are created by using “new”
= Example: Car mine = new Car("VW Passat", 2003, "black");
= Execution:

= Java Runtime Environment reserves memory for object

= constructor with matching parameter list is called
= constructor is a special method with no (given) return type
= Example:
public class Car {

public Car(String model, int year, String colour) {

this.model = model; this.year = year; this.colour = colour;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Constructors

" more than one constructor possible (different parameter lists)
= constructors can use each other in first line using “this(...);”
= Example:
public class Car {
public Car(String model, int year, String colour) {
this.model = model; this.year = year; this.colour = colour;
}
public Car(String model, byte year, String colour) {
this(model, year > 20 ? 1900+year : 2000+year, colour);

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Overloading

= overloading = more than one function of the same name
= allowed as long as parameter lists are different

= different return types is not sufficient!

= Example:

public class Car {

public void setColour(String colour) { this.colour = colour; }
public void setColour(String colour, boolean dark) {
if (dark) { colour = "dark"+colour; }

this.colour = colours;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



Printing Objects

= printing objects does not give the desired result
= Example:
System.out.printin(new Car("Audi Al", 2011, "red"));
* method “public String toString()” (like __str___ in Python)

= Example:
public class Car {

public String toString() {
return this.colour+" "+this.model+" from "+this.year;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK



