&,
—

JAVA
DM550 / DM857

Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

ADVANCED
OBJECT-ORIENTATION

Object-Oriented Design

= classes often do not exist in isolation from each other
= a vehicle database might have classes for cars and trucks
" in such situation, having a common superclass useful
= Example:
public class Vehicle {

public String model;

public int year;

public Vehicle(String model, int year) {

this.model = model; this.year = year;

}

public String toString() {return this.model+" from "+this.year;}
}

Extending Classes

= Car and Truck then extend the Vehicle class
= Example:
public class Car extends Vehicle {
public String colour;
public Car(string model, int year, String colour) {
this.colour = colour; // this makes NO SENSE

}

public String toString() { return this.colour; }

}

public class Truck extends Vehicle {

public double maxLoad;

Class Hierarchy

= class hierarchies are parts of class diagrams

= for our example we have:

Object

Vehicle

Car Truck

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Abstract Classes

= often, superclasses should not have instances
" in our example, we want no objects of class Vehicle
= can be achieved by declaring the class to be abstract
= Example:
public abstract class Vehicle {

public String model;

public int year;

public Vehicle(String model, int year) {

this.model = model; this.year = year;
}
public String toString() {return this.model+" from "+this.year;}

Accessing Attributes

= attributes of superclasses can be accessed using “this”
= Example:
public class Car extends Vehicle {
public String colour;
public Car(string model, int year, String colour) {
this.model = model; this.year = year; this.colour = colour;
}
public String toString() {
return this.colour+" "+this.model+" from "+this.year;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Accessing Superclass

* methods of superclasses can be accessed using “super”
= Example:
public class Car extends Vehicle {
public String colour;
public Car(String model, int year, String colour) {
this.model = model; this.year = year; this.colour = colour;
}
public String toString() {
return this.colour+" "+super.toString();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Superclass Constructors

= constructors of superclasses can be accessed using “super”
= Example:
public class Car extends Vehicle {
public String colour;
public Car(string model, int year, String colour) {
super(model, year);
this.colour = colour;

}
public String toString() {

return this.colour+" "+super.toString();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Abstract Methods

= abstract method = method declared but not implemented
= useful in abstract classes (and later interfaces)
= Example:
public abstract class Vehicle {

public String model;

public int year;

public Vehicle(string model, int year) {

this.model = model; this.year = year;
}
public String toString() {return this.model+" from "+this.year;}

public abstract double computeResaleValue();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Implementing Abstract Methods

= abstract methods need to be implemented in concrete subclasses
= use same function signature, but without “abstract”
= Example:

public class Car extends Vehicle {

public double computeResaleValue() {
double value = 100000 * (this.model.startsWith("Audi") ? 6 : 4);

value *= (this.year-2000)/20;

return value;

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interfaces

= different superclasses could have different implementations

= to avoid conflicts, classes can only extend one (abstract) class

" interfaces = abstract classes without implementation
= only contain public abstract methods (abstract left out)
= no conflict possible with different interfaces
= Example:
public interface HasValueAddedTax {

public double getValueAddedTax(double percentage);
}

public class Car implements HasValueAddedTax {
public double getValueAddedTax(double p) { return 42000; }

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interfaces

= Example:
public interface HasValueAddedTax {
public double getValueAddedTax(double percentage);
}
public interface Destructible {

public void destroy();
}

public class Car implements HasValueAddedTax, Destructible {
public double getValueAddedTax(double p) { return 42000; }
public void destroy() { this.model = "BROKEN"; }

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interface and Class Hierarchy

* interfaces outside normal class hierarchy

[HasValueAddedTax J [Destructible J
A y 3

7 \
-

\
\
\
\ s \
\ ‘ \
/
\
\
\

y Vehicle v

/ \
/ \
\ \

Car Truck

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Inner Classes

= classes and interfaces can be nested
* inner class = class contained in another class
= Example:

public abstract class Vehicle {

public interface Destructible {

public void destroy();
}

public class Car extends Vehicle implements Destructible {

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Local Classes

= classes and interfaces can be declared in function bodies
" |ocal class = class contained in the body of a function or method

= Can obviously not be public

= Example:
public static void main(String[] args) {
class Bicycle implements Destructible {

public void destroy() { System.out.printin("Ouch!"); }
}

new Bicycle().destroy();

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Anonymous (Sub-)Classes

= possible to create anonymous classes
= often used to instantiate abstract classes or interfaces
" body of class defined after constructor call
= Example:
public class FarmVillain {
public static void main(String[] args) {
Vehicle x = new Vehicle("Volvo T230%,1971) {
public double computeResaleValue() {
return 25000;

J¢
’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Final Modifier

= variables only assigned once can be declared final
= multiple assighment to final variable results in compiler error

= Example:
final int x;
x =42;// ok
x = 23;// ERROR

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Local and Anonymous Classes

" |ocal and anonymous classes can access local variables and
parameters |F they are final

" Example:
public static makeTractor(String model, int year, final int base) {
final double factor = (year-1920)/100;
return new Vehicle(model,year) {
public int computeResaleValue() {
return base*factor;

}
5
}

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

