
DM550/DM857
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk

http://imada.sdu.dk/~petersk/DM550/
http://imada.sdu.dk/~petersk/DM857/

HANDLING TEXT FILES

June 20092

Reading Files

§ open files for reading using the open(name) built-in function
§ Example: f = open("anna_karenina.txt")

§ return value is file object in reading mode (mode 'r')

§ we can read all content into string using the read() method
§ Example: content = f.read()

print(content[:60])
print(content[3000:3137])

§ contains line endings (here “\r\n”)

June 20093

Reading Lines from a File

§ instead of reading all content, we can use method readline()
§ Example: print(f.readline())

next = f.readline().strip()
print(next)

§ the method strip() removes all leading and trailing whitespace
§ whitespace = \n, \r, or \t (new line, carriage return, tab)

§ we can also iterate through all lines using a for loop
§ Example: for line in f:

line = line.strip()
print(line)

June 20094

Reading Words from a File

§ often a line consists of many words
§ no direct support to read words
§ string method split() can be used with for loop

§ Example:
def print_all_words(f):

for line in f:
for word in line.split():

print(word)
§ variant split(sep) using sep instead of whitespace

§ Example: for part in "Slartibartfast".split("a"):
print(part)

June 20095

Analyzing Words

§ Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):

return word[0].upper() == word[0]

June 20096

Analyzing Words

§ Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):

return word[0].upper() == word[0] and word[-1] == "a"

June 20097

Analyzing Words

§ Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):

return word[0].isupper() and word[-1] == "a"

§ Example 2: words that contain a double letter
def contains_double_letter(word):

last = word[0]
for letter in word[1:]

if last == letter:
return True

last = letter
return False

June 20098

Analyzing Words

§ Example 1: words beginning with capital letter ending in “a”
def cap_end_a(word):

return word[0].isupper() and word[-1] == "a"

§ Example 2: words that contain a double letter
def contains_double_letter(word):

for i in range(len(word)-1):
if word[i] == word[i+1]:

return True
return False

June 20099

Adding Statistics

§ Example: let’s count our special words
def count_words(f):

count = count_cap_end_a = count_double_letter = 0
for line in f:

for word in line.split():
count = count + 1
if cap_end_a(word):

count_cap_end_a = count_cap_end_a + 1
if contains_double_letter(word):

count_double_letter = count_double_letter + 1
print(count, count_cap_end_a, count_double_letter)
print(count_double_letter * 100 / count, "%")

June 200910

Adding Statistics

§ Example: let’s count our special words
def count_words(f):

count = count_cap_end_a = count_double_letter = 0
for line in f:

for word in line.split():
count += 1
if cap_end_a(word):

count_cap_end_a += 1
if contains_double_letter(word):

count_double_letter += 1
print(count, count_cap_end_a, count_double_letter)
print(count_double_letter * 100 / count, "%")

June 200911

Debugging by Testing Functions

§ correct selection of tests important
§ check obviously different cases for correct return value
§ check corner cases (here: first letter, last letter etc.)
§ Example:
def contains_double_letter(word):

for i in range(len(word)-1):
if word[i] == word[i+1]:

return True
return False

§ test "mallorca" and "ibiza"
§ test "llamada" and "bell"

June 200912

LIST PROCESSING

June 200913

Lists as Sequences

§ lists are sequences of values
§ lists can be constructed using “[” and “]”
§ Example: [42, 23]

["Hello", "World", "!"]
["strings and", int, "mix", 2]
[]

§ lists can be nested, i.e., a list can contain other lists
§ Example: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
§ lists are normal values, i.e., they can be printed, assigned etc.
§ Example: x = [1, 2, 3]

print(x, [x, x], [[x, x], x])

June 200914

Mutable Lists

§ lists can be accessed using indices
§ lists are mutable, i.e., they can be changed destructively
§ Example:

x = [1, 2, 3]
print(x[1])
x[1] = 4
print(x, x[1])

§ len(object) and negative values work like for strings
§ Example:

x[2] == x[-1]
x[1] == x[len(x)-2]

June 200915

§ lists can be viewed as mappings from indices to elements
§ Example 1: x = ["Hello", "World", "!"]

§ Example 2: x = [[23, 42, -3.0], "Bye!"]

list

x 0 "Hello"
"World"
"!"

1
2

Stack Diagrams with Lists

June 200916

list

x 0
"Bye!"1

list

0 23
42
-3.0

1
2

Traversing Lists

§ for loop consecutively assigns variable to elements of list
§ Example: print squares of numbers from 1 to 10

for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
print(x**2)

§ arithmetic sequences can be generated using range function:
§ range([start,] stop[, step])

§ Example:
list(range(4)) == [0, 1, 2, 3]
list(range(1, 11)) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
list(range(9, 1, -2)) == [9, 7, 5, 3]
list(range(1,10, 2)) == [1, 3, 5, 7, 9]

June 200917

Traversing Lists

§ for loop consecutively assigns variable to elements of list
§ general form

for element in my_list:
print(element)

§ iteration through list with indices:
for index in range(len(my_list)):

element = my_list[index]
print(element)

§ Example: in-situ update of list
x = [8388608, 4398046511104, 0.125]
for i in range(len(x)):

x[i] = math.log(x[i], 2)
June 200918

List Operations

§ like for strings, “+” concatenates two lists
§ Example:

[1, 2, 3] + [4, 5, 6] == list(range(1, 7))
[[23, 42] + [-3.0]] + ["Bye!"] == [[23, 42, -3.0], "Bye!"]

§ like for strings, “* n” with integer n produces n copies
§ Example:

len(["I", "love", "penguins!"] * 100) == 300
(list(range(1, 3)) + list(range(3, 1, -1))) * 2 ==

[1, 2, 3, 2, 1, 2, 3, 2]

June 200919

List Slices

§ slices work just like for strings
§ Example: x = ["Hello", 2, "u", 2, "!"]

x[2:4] == ["u", 2]
x[2:] == x[-3:len(x)]
y = x[:] # make a copy (lists are mutable!)

§ BUT: we can also assign to slices!
§ Example: x[1:4] = ["to", "you", "too"]

x == ["Hello", "to", "you", "too", "!"]
x[1:3] = ["to me"]
x == ["Hello", "to me", "too", "!"]
x[2:3] = []
x == ["Hello", "to me", "!"]

June 200920

List Methods

§ appending elements to the end of the list (destructive)
§ Example: x = [5, 3, 1]

y = [2, 4, 6]
for e in y: x.append(e)

§ Note: x += [e] would create new list in each step!
§ also available as method: x.extend(y)

§ sorting elements in ascending order (destructive)
§ Example: x.sort()

x == range(1, 7)

§ careful with destructive updates: x = x.sort()

June 200921

Higher-Order Functions (map)

§ Example 1: new list with squares of all elements of a list
def square_all(x):

res = []
for e in x: res.append(e**2)
return res

§ Example 2: new list with all elements increased by one
def increment_all(x):

res = []
for e in x: res.append(e+1)
return res

June 200922

Higher-Order Functions (map)

§ these map operations have an identical structure:
res = [] res = []
for e in x: res.append(e**2) for e in x: res.append(e+1)
return res return res
§ Python has generic function map(function, sequence)
§ Implementation idea:
def map(function, sequence):

res = []
for e in sequence:

res.append(function(e))
return res

June 200923

Higher-Order Functions (map)

§ these map operations have an identical structure:
res = [] res = []
for e in x: res.append(e**2) for e in x: res.append(e+1)
return res return res
§ Python has generic function map(function, sequence)
§ Example:
def square(x): return x**2
def increment(x): return x+1
def square_all(x):

return map(square, x)
def increment_all(x):

return map(increment, x)
June 200924

Higher-Order Functions (filter)

§ Example 1: new list with elements greater than 42
def filter_greater42(x):

res = []
for e in x:

if e > 42: res.append(e)
return res

§ Example 2: new list with elements whose length is smaller 3
def filter_len_smaller3(x):

res = []
for e in x:

if len(e) < 3: res.append(e)
return res

June 200925

Higher-Order Functions (filter)

§ these filter operations have an identical structure:
res = [] res = []
for e in x: for e in x:

if e > 42: res.append(e) if len(e) < 3: res.append(e)
return res return res
§ Python has generic function filter(function, iterable)
§ Implementation idea:
def filter(function, iterable):

res = []
for e in iterable:

if function(e): res.append(e)
return res

June 200926

Higher-Order Functions (filter)

§ these filter operations have an identical structure:
res = [] res = []
for e in x: for e in x:

if e > 42: res.append(e) if len(e) < 3: res.append(e)
return res return res
§ Python has generic function filter(function, iterable)
§ Example:
def greater42(x): return x > 42
def len_smaller3(x): return len(x) < 3
def filter_greater42(x): return filter(greater42, x)
def filter_len_smaller3(x): return filter(len_smaller3, x)

June 200927

Higher-Order Functions (reduce)

§ Example 1: computing factorial using range
def mul_all(x):

prod = 1
for e in x: prod *= e # prod = prod * e
return prod

def factorial(n):
return mul_all(range(1,n+1))

§ Example 2: summing all elements in a list
def add_all(x):

sum = 0
for e in x: sum += e # sum = sum + e
return sum

June 200928

Higher-Order Functions (reduce)

§ these reduce operations have an identical structure:
prod = 1 sum = 0
for e in x: prod *= e for e in x: sum += e
return prod return sum

§ Python has generic function functools.reduce(func, seq, init)
§ Implementation idea:
def reduce(func, seq, init):

result = init
for e in seq:

result = func(result, e)
return result

June 200929

Higher-Order Functions (reduce)

§ these reduce operations have an identical structure:
prod = 1 sum = 0
for e in x: prod *= e for e in x: sum += e
return prod return sum

§ Python has generic function functools.reduce(funct, seq, init)
§ Example:
def add(x,y): return x+y
def mul(x,y): return x*y
def add_all(x):

return reduce(add, x, 0)
def mul_all(x):

return reduce(mul, x, 1)
June 200930

Deleting Elements

§ there are three different ways to delete elements from list

§ if you know index and want the element, use pop(index)
§ Example: my_list = [23, 42, -3.0, 4711]

my_list.pop(1) == 42
my_list == [23, -3.0, 4711]

§ if you do not know index, but the element, use remove(value)
§ Example: my_list.remove(-3.0)

my_list == [23, 4711]
§ if you know the index, you can use the del statement
§ Example: del my_list[0]

my_list == [4711]

June 200931

Deleting Elements

§ there are three different ways to delete elements from list

§ as we have seen, you can also use slices to delete elements
§ Example: my_list = [23, 42, -3.0, 4711]

my_list[2:] = []
my_list == [23, 42]

§ alternatively, you can use del together with slices
§ Example: my_list = my_list * 3

del my_list[:3]
my_list == [42, 23, 42]

June 200932

