
DM820
 Advanced Topics in

Programming Languages

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM820/!

ASPECT-ORIENTED
PROGRAMMING

June 2009 2

The ProblemTM

§  Different concerns should be encapsulated in different parts of
the program

§  Traditional approach uses classes and modules / packages
§  Works well for many concerns:

§  Players, AIs, graphics engine, sound engine, game play
§  Database, business logic, presentation layer

§  Does not work well for others:
§  Logging, profiling, …
§  Different concerns using the same data representation

§  These concerns are called “cross-cutting concerns”
§  Need to find new way to modularize these

June 2009 3

The Idea®

§  Aspect-Orientation is modularization of cross-cutting concerns
§  Lots of funny names for concepts:

§  “Aspects” are cross-cutting concerns
§  Aspects offer “advice” (additional behaviour)
§  “Join points” are specified in “pointcuts”
§  Code of aspects “scattered” (spread out)
§  Aspects can become “tangled” (interacting with each other)

§  Main Idea:
§  Keep base source code and aspect source code separate
§  “Weave” bytecode/machine code into compiled base code
§  Alternatively, “weave” source code into base source code

June 2009 4

Example: Aspect/J

§  Adds aspect-orientation to the Java programming language
§  Join points defined by matching Java constructs:

§  execution(* set*(*)))
§  this(Point)
§  within(com.company.*)
§  Can be named:

pointcut set() : execution(* set*(*)) && this(Point) &&
within(com.company.*);

§  Advice defined using join points:
§  before() : execution(* set*(*))) { Graphics.repaint(); }
§  after() : set() { Model.hasChanged(); }

June 2009 5

Hands-On

§  Aspect/J tutorial J

June 2009 6

