External partition element finding

Lars Arge and Michail G. Lagoudakis

November 15, 1999

Algorithm for selecting \/m partitioning elements from a set S, where |S| = N.

1. Choose a subset G (green) of S of size % as follows:

e Load and sort N/M memory loads individually.

e Pick every y/m/4’th element from each sorted memory load.
2. Choose a subset R (red) of G of size y/m as follows:

e Use the linear I/O selection algorithm /m times to find every % /v/m = 4N/m’th element
of G.

3. Return R.
Lemma 1 The algorithm performs O(n) I/0s.
Proof : The first step uses O(|S|/B) = O(N/B) = O(n) 1/Os. The second step uses

Vi - O(IGI/B) = Vi - 0 ((%) /B) — O(4N/B) = O(n)

I/Os. Overall, the algorithm performs O(n) I/Os.]

Lemma 2 The number of elements of S between two consecutive elements in R is less than %%
Proof : There are N/M = n/m sorted memory loads. The number of elements of S between two consec-
utive red elements r; and 79 (r1,72 might come from different memory loads) is bounded by the sum of

the following (see Figure 1):

e The number of green elements between m and ry which is at most 4N/m (because of the way reds
were chosen from greens).

e The number of elements of S between two green elements between r; and r9, which is at most

g(ﬁ 1>_ N 4N

m

4 Ym om

To see this notice that there are y/m/4 — 1 elements between a pair of consecutive greens in the
same memory load. Since there are 4N/m greens between 71 and ro, there are at most 4N/m such
pairs.

| |
|
DAkl | i
’ ° ece — 90— —o® -
| |
—@ O Ui @ CO@® ; e)
| |
1 | Yopeas] | .; © L
n/m 0ccces Pyt —ce eccce
memory' | |
loads L4 | ASAGASL uy S} meioasy 4 ®
| |
—@ © @ @ © @ } @ o—
| |
® o }.uum L } © @ O L J
| |
\ e*cccoeccoeccoecco —ecco®
l l
| |
ri! 2

Figure 1: The sorted memory loads are depicted one below the other. Elements of S are shown as circles
and their position reflects their rank in the total order. Green elements are shown as solid circles and red
elements are enclosed in a square (only two reds (r; and r2) are shown).

e The number of elements of S between r; and r, but not between two greens (i.e. they are between
one green and r1 or r3), which is at most

2n\/ﬁ1_n 2n
m\ 4 C2ym m

To see this notice that there are two “boundaries” (one defined by r1 and one by r2) and n/m
memory loads. The number of elements of S between one of the boundaries and the closest green
is at most /m/4 — 1 (otherwise there would be another green in between) in each memory load.

Summing up the above, we have:

AN N 4N n 2n N n N N 3N
+ < + = -—

mtym wmtam wm S Umtam S Umtasm 2w

