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We consider (a, b)-trees for b ≥ 2a−1 and a ≥ 2. Recall that the rebalancing
operations work as follows:

Split: A node with b+1 children are split into two nodes having
⌊(b + 1)/2⌋ and ⌈(b + 1)/2⌉ children, respectively.

Fuse: A node with a − 1 children, whose neighboring siblings
(one or two exist) all have a children each, fuses with one of
these siblings into a single node with 2a − 1 children.

Share: A node with a− 1 children, and at least one neighboring
sibling having x ≥ a + 1 children, first fuses with such a sibling,
and then splits (into two nodes having ⌊(x+a−1)/2⌋ and ⌈(x+
a − 1)/2⌉ children, respectively).

The following points expand on and complement the description of (a, b)-
trees in the main notes:

• In all of the rebalancing operations, we end up with legal nodes (check
this) at the current level.

• Splits [fuses] increase [decrease] by one the number of children of the
parent. These operations may therefore propagate all the way to the
root. Sharing does not propagate, as the number of children of the
parent is unchanged.

• Rebalancing at the root are special cases. Splitting the root gives rise
to a new root (with just two children) one level higher. We will view
this as the introduction of a new unary root before the split, such that
a splitting node always has a parent. Fuses just below the root may
lead to a root having a single child, which is superfluous and hence
is removed after the fuse. Thus, by a root operation we mean the
introduction or removal of a unary root.

• Let the share threshold be the minimal number of children after a fuse
for which we go on to split (resulting in a share operation). Above, the
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threshold is 2a. This value may be defined differently, while still lead-
ing to legal nodes. The minimum value possible is 2a, the maximum
value possible is b + 1.

• In leaf-oriented search trees, the leaves contain all the elements stored,
and internal nodes contain only key values to guide the search. B-trees,
widely used in database systems for indexes, are usually leaf-oriented
(a, b)-trees, with b = 2a− 1 or b = 2a, and b equal to the block size B.
Often, the leaf level has a separate set (a′, b′) of values for a and b, as
leaves contain elements, while internal nodes contain keys (normally
just a part of elements) and pointers, making the maximal number
fitting in a block differ between the leaves and the internal nodes. We
in this note use leaf oriented trees, and for simplicity of statements
and proofs assume a′ = a and b′ = b. Adapting to the general case is
straight-forward.

• The above statement of the rebalancing operations apply for inter-
nal nodes. Leaf nodes have corresponding operations with“number of
children” changed into “number of elements in node”.

• In leaf-oriented trees, the handling of keys in internal nodes differ
between the leaf level and the higher levels. When splitting [fusing] at
a leaf, a copy of an appropriate leaf key is inserted into [deleted from]
the next higher level. When splitting [fusing] at an internal node,
all required keys are present, and one is moved one level up [down]
during the operation. For shares, the handling of keys follows from
the definition of a share as a fuse and a split combined.

Now for the main aim of this note, which is to give bounds on the amortized
number of rebalancing operations in (a, b)-trees. The bounds turn out to
depend on the relation between a and b, as stated in the following theorem.

For the theorem to be true, the share threshold cannot be chosen entirely
freely: In the first statement in the theorem, the minimal value 2a and
maximal value b+1 possible are actually the same. The proof of the second
statement can be seen to hold for share threshold values from 2a to b, i.e.,
the maximal value b + 1 must be disallowed (the below proof is carried out
using the specific value 2a from the description of the rebalancing operations
above). For the third statement to be true, the share threshold value should
be chosen even more restrictively (actually deviating from the description
of the rebalancing operations above). One possible choice is setting the
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share threshold value for rebalancing at the leaf level to the specific value
2a+ 2∆/3, where ∆ is defined by b = 2a+ ∆, while for the remaining levels
just disallowing the maximal value b + 1.

Theorem 1 Starting with an empty tree, the amortized number of rebal-

ancing operations in an (a, b)-tree is:

1. Θ(loga n) when b = 2a − 1.

2. Θ(1) when b = 2a.

3. Θ(1/(ǫa)) when b = (2 + ǫ)a, for ǫ > 0.

Proof: The first statement is seen by considering a tree where all nodes
on the left-most path have b children (and the leaf has b elements). When
inserting a new smallest key and deleting it again, each update creates re-
balancing which propagates all the way to the root, and we end up with the
same tree as we started with. As this can be repeated indefinitely, we get
the stated lower bound on the amortized number of rebalancing operations.
The upper bound follows from the general worst case upper bound.

To prove the upper bound of the second statement, note that each update
can at most generate one share (shares do not propagate). Similarly, adding
or removing a unary root happens only once per update. Thus, we only need
to bound the number of splits and fuses. We use a coin-based amortization
argument where one coin is able to pay for one split or one fuse. We maintain
the invariant that all non-root nodes has a number of coins based on its
number x of children (for leaves: its number x of elements) as follows:

2 1 0 0 · · · 0 2 4

a − 1 a b b + 1x:

Coins:

For the root, the invariant is similar, except it is zero for all x ≤ b − 1.

The initial empty tree has zero coins. Inserts and deletes of elements at the
leaves (not counting any ensuing rebalancing) may need to introduce up to
two new coins to maintain the invariant.

When a node is about to do a split, it by the invariant has 4 coins. After the
split, one of the resulting nodes has x = ⌊(b + 1)/2⌋, which is at least a (as
b+1 ≥ 2a). This node needs at most one coin. The other resulting node has
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x = ⌈(b+1)/2⌉, which is at least a+1 (as b+1 > 2a and a is an integer) and
at most b−1 (as (b+1)/2 = b/2+1/2 = b− b/2+1/2 ≤ b−2+1/2), where
the inequality follows from b ≥ 2a ≥ 2 · 2). This node needs no coins. For
the parent, x increases by one, hence it may need at most two new coins.
This leaves at least one free coin, one of which pays for the split (the rest,
if any, are thrown away).

When a node is about to do a fuse, it has x = a − 1, and the sibling fused
with has x = a. In total, they have three coins. The resulting nodes has
x = 2a− 1, which is at at least a + 1 (as a ≥ 2) and most b− 1 (as b ≥ 2a).
Hence, it needs no coins. For the parent, x may decrease by one, hence it
needs at most one new coin. This leaves at least two free coins, one of which
pays for the fuse (the rest are thrown away).

When a node is about to do a share, it has x = a−1, and the sibling shared
with has a + 1 ≤ x ≤ b. In total, they have at least two coins. After the
share, one of the resulting nodes has x = ⌊y/2⌋ and the other x = ⌈y/2⌉,
for a y between 2a and b + a − 1. Hence, for both nodes, we have an x
of at least a and at most b − 1 (the latter because b + a − 1 ≤ 2b − 3, as
b − a ≥ a ≥ 2). For the parent, x is unchanged. Hence, we can always
maintain the invariant by reusing existing coins. No coin is needed to pay
the share, as shares are already accounted for.

A root operation, i.e., the introduction or removal of a unary root, does not
require any new coins to maintain the invariant. No coin is needed to pay
the operation, as root operations are already accounted for.

Summing up: The tree initially has zero coins. New coins are only added
to the tree by updates, and each update adds at most two coins. Each split
and fuse is payed by one coin, which is removed from the tree. It follows
that at any given point in time, the number of splits and fuses can only
be twice the number of updates performed until now. We have previously
argued that the number of shares and root operations can at most be the
number of updates performed until now. This proves the upper bound of
the second statement.

The proof of the lower bound of the second statement is left as an exercise.

The proof of the third statement is also left as an exercise (hint: allow
fractional coins, and change the invariant for leaf nodes such that updates
only need to pay O(1/a) of a coin). �

The following stronger versions of the amortized bounds above actually hold
(exercise: argue they are stronger by using them to prove the statements
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in the theorem above). The restrictions on the share threshold value for
the previous theorem apply, with the addition that for the third statement,
we set the share threshold to 2a + 2∆/3 for the rebalancing of nodes on all

levels, not just for the leaf nodes.

By the level of a rebalancing operation, we mean the height of the node
splitting, fusing, or sharing (or in the case of root operations, the height of
the unary root added or removed). The height of leaves is defined as one,
and the height of an internal is node defined as one larger than the height
of its children.

Theorem 2 Starting with an empty tree, the amortized number of rebal-

ancing operations taking place at a given level i of the tree is

1. Θ(1) when b = 2a − 1.

2. O((2/3)i) when b = 2a.

3. O((Θ(1/ǫa))i) when b = (2 + ǫ)a.

Proof: The first statement follows directly from the proof of the corre-
sponding statement of the previous theorem.

The second statement also follows from the proof of the corresponding state-
ment of the previous theorem by noting that coins are only moved upwards
during rebalancing. In particular, one coin on level i is used by a split or
fuse for each moving of at most two coins to the next level. This means
that only two thirds of the coins reaching any given level can reach the level
above it. This shows the statement for split and fuse operations. For shares
and root operations, note that for any such operation on a given level, there
must have been a split or fuse on the level below (or, if the given level is the
leaf level, there must have been an insert or delete). This shows the theorem
for shares and root operations.

The proof of the third statement is left as an exercise (hint: allow fractional
coins, and change the invariant like you did when proving the third statement
in the previous theorem, but now for all nodes (not just the one on the leaf
level), then follow the reasoning from the proof of the second statement in
the current theorem). �
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