
DM207 I/O-Efficient Algorithms and Data Structures

Fall 2009

Project 2

Department of Mathematics and Computer Science

University of Southern Denmark

November 1, 2009

The aim of this project is to gain practical experience with the effect of the memory hierarchy
in the setting of searching.

Search Trees in Arrays

Recall the idea of the heap data structure that if a binary tree is laid out in an array in
a breadth-first manner (root, then its children, then its grandchildren,. . . ), then navigation
from a node to its children or vice verse can be done by simple arithmetic, i.e., there is no
need for pointers. Specifically, if the root is placed at index 0 in the array, navigation can be
done using the following rule:

For a node at entry i, its two children are at positions 2i + 1 and 2i + 2, and its
parent is at position (i−1)/2 (rounded down, i.e. the division is integer division).

The rule is easily generalized to trees of fixed degree larger than two (deduce it from a
drawing).

The idea of the project is to create static balanced search trees of this kind, and investigate
what is the best fan-out of the trees for various sizes of trees, when searching for random
elements in the trees. By comparing the binary solution with the best solution, this should
give an idea of what gains are achievable in the setting of searching by optimizing for I/O-
efficiency.

Experiments

Fan-outs of degrees K = 2k for k = 1, 2, 3, 4, . . . , 12, and sizes of trees ranging from within
L1 cache size (i.e., array size below 64 Kb) to above RAM size (i.e. disk should be reached),
should be considered.

For ease of construction, the trees should be as follows: The lowest level of the trees should
contain the integers from 1 to N . The levels above should have nodes with K children and
K−1 guiding elements. The ith guiding element should be the smallest value in the (i+1)th

1



subtree, which for this data set can be calculated directly for each level in the tree due to
the regularity of the stored keys (deduce the guiding elements from a drawing of the tree).
In other words, each level of the tree can be created as a scan of an appropriate part of the
array, directly placing the correct values which are found by calculation. For homogeneity,
let also the leaves have K − 1 elements.

Do not just consider tree sizes where the lowest level is full, as this will give far too few
possible tree sizes. Rather, consider trees of heap shape, i.e., all levels except the lowest are
full, while the lowest level contains N elements and is filled from the left. The (guiding)
elements in nodes on levels above the lowest should be as if the lowest level had been padded
with the value infinity in all the empty slots in the right part (so the value infinity will appear
in the tree in the rightmost parts of the levels above the lowest—if these were removed, the
node navigation formula would no longer be correct). As the value infinity, use MAXINT.

A tree with N = 9 and fan-out 3 will look like the one below, where the greyed out parts
represent the padded parts, which will not be stored.

1 2 3 4 5 6 7 8 9 ∞ ∞∞ ∞∞ ∞∞ ∞∞

3 5 9 ∞ ∞∞

7 ∞

The corresponding array representation is as follows:

7 ∞ 3 5 9 ∞ ∞∞ 1 2 3 4 5 6 7 8 9

For each fan-out, try traversing each node during the tree search by both linear search and
binary search of the node, to see which is best (this may differ for each fan-out).

For each size, each fan-out of tree, and each node traversal method (linear or binary search),
conduct the experiment of repeatedly searching for an appropriate number (a number making
the total running time around one minute, possibly larger for the trees on disk) of random
values in the the range 1 . . . N . The cost measure should be wall clock time, which in C can
be measured using the gettimeofday library call (see man gettimeofday). Plot the average
running time per search against fan-out size, using e.g. gnuplot. A sensible value to plot could
be running time divided by log N , which should be a constant (at least when searching a node
by binary search) if there were no impact of the memory hierarchy. From this, determine the
best fan-out (and node search method) for each size, and consequently determine what gains
in running time can be achieved by having a larger fan-out than binary.

Do not forget to test your programs before measuring, such as checking that the search return
the value searched for. Measuring on incorrect programs teaches us nothing. The programs
should be run on the local disk of the machine, not on a network file system (on the machines
at Imada, work in tmp), in order to avoid having network latency mask the disk latency.

The program should be implemented in C or C++, and should be compiled using maximal op-
timization (e.g. option -O3 for the gcc compiler). It is important to actually use the searched

2



keys for something, since the compiler may remove computations and memory accesses that
it can deduce have no influence on the outcome of the program. One suggestion is to have
a counter to which each found key is added, and then at the end of the program to write
out the value of the counter on the screen. Another suggestion is to keep an eye on the
assembler-version of the code generated by the compiler, to see what code is actually running
in the end (only feasible for small programs).

Pay close attention to minimizing CPU cycles as the CPU time can easily dominate the run-
ning time for experiments within cache. This may be at the expense of normal programming
conventions. For instance, try to inline functions (although the compiler should do this to a
large extent), use global variables, and minimize the number of if/else’s (they work against
the processors pipelined instruction execution). For the smaller trees, it is quite conceivable
that generating random integers will dominate the running time—this may be tested by mea-
suring the time of a lot of calls to the random number generator versus the time for the same
number of an elementary operation like addition of one. If this is the case, consider making in
advance an array of N random integers in the range 1 to N , and then during testing traverse
this array (repeatedly) while using the read values as the search keys. To make the size of
this array significantly smaller than the tree, you may for some small integer k (e.g. k = 16)
instead store N/k random integers in the range 1 to N , and before each traversal of the array
generate a random value r and add it to the read search keys in that traversal (subtracting
N if the resulting search key is larger than N). The creation of the array of random numbers
should not be included in the time measurements for searches in the tree, and neither should
the tree/array construction time.

For suggestions of ways to work with arrays past the size of the RAM, see the mails sent out
during Project 1. In particular, for Linux on a 64 bit machine, using the mmap64 library call
should make it possible.

Scripting the execution of your entire set of experiments makes them easier for you to control
and to redo if needed.

Formalities

Make a report of 6–8 pages describing your implementation and your experiments, on a
level of detail such that others could repeat your experiments themselves. In particular, this
includes reporting the compiler version, compilation options, and machine characteristics (at
least disk, RAM, and cache sizes). Use many plots of your experimental data (not tables),
and make sure it is explained what they show. Draw conclusions based on the observed data.
Plots should be given as an appendix (not included in the page count above), code should be
online available and an url to it should be given in the report.

You should hand in your report (in pdf) using the digital drop-box at the Blackboard page
of the course (under menu item “Tools”).

Deadline:

Monday, November 30, 2009, at 23:59.

3


